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Abstract: Heavy metals are considered a class of contaminant that can accumulate in the food
chain and thus must be removed from contaminated media. Heavy metals can be removed by
electrocoagulation, electroflotation, electrodialysis, capacitive deionization, and so on. Among the
methods to remove heavy metals, capacitive deionization is one of the most attractive methods
that can remove heavy metal ions without using a large volume of chemicals and producing a high
number of heavy metals containing solid wastes. In this study, after a brief introduction to the
mechanism of capacitive deionization, we focus on materials that have been developed as electrodes
for heavy metal removal in capacitive deionization and summarize the latest advancements. Finally,
with particular emphasis on material design, we provide some further insights in this area.
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1. Introduction

Industrialization brings about the rapid transformation of manufacturing and leads to
higher productivity, raising living standards. However, this process also brings threats to
human beings such as the pollution of air, water, and soil, which can result in significant
deterioration of quality of life and life expectancy [1]. Heavy metals (HMs) are regarded
as one of the most important categories of pollutants and have caused wide concern due
to their high toxicity and bioaccumulative properties. The bioaccumulative process leads
to the pollution of air, water, and soil and eventually leads to adverse effects on humans.
HMs have no rigorous definition on a scientific and chemical basis [2]. Generally, HMs
have a density of over 5 g cm−3 (5 times > H2O), meaning a metal with a density below this
lacks heavy metal chemistry. Thus, HM properties are partially related to density as well as
their chemical properties; they contain transition and post-transition elements along with
metalloids, namely arsenic and selenium. Moreover, HMs are regarded as “toxic elements”
priority contaminants listed by the United States Environmental Protection Agency [3]. A
large number of HMs, with the exceptions of Cd, Hg, and Pb, are also essential micronu-
trients for living organisms; they only become toxic when the concentration is over the
limit [4,5]. The dosage that determines either HM toxicity or micronutrient properties is
the critical criterion with which to identify the toxicity of HMs [6].

Sources of HMs can be natural such as landslides, weathering, and volcanic erup-
tions, but they mainly originate from anthropogenic processes such as mining, agriculture,
electroplating fossil fuel combustion, and waste disposal. For instance, agricultural use
of HMs in the form of pesticides and fertilizer as well as corrosion and industrialization
releases HMs into the environment [7,8]. Untreated wastewater containing heavy metals
discharged into the natural environment can pollute water bodies and soil, endangering
food safety and human health through the food chain [8]. An increase in concern for public
health has led to the enaction of varied legislation to control the emission of HMs [9]. This
increase in public health concern has led to the enaction of varied HM emissions control
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legislation. This leads to an eruption of interest in developing new technologies to control
emissions. Widely applied technologies for HM removal are based on solid-phase extrac-
tion using precipitation, coagulation, and flocculation [10]. However, a major concern with
this technology is its output of heavy metal solids, which become solid waste. Conversely,
liquid-phase extraction based on new technologies such as adsorption, ion exchange, and
membrane separation has gained much interest because these processes concentrate metal
ions directly devoid of a huge amount of solid heavy metal-containing waste. However,
new advanced liquid phase extraction methods are highly dependent on emerging new
materials such as adsorbents and ion exchangers, membranes, and electrochemical adsorp-
tion materials. [11,12]. In the past several decades, great efforts have been made toward
developing new materials for heavy metal removal. With the exception of adsorption and
membrane filtration processes, electrochemical treatments for HM removal are gaining
increasing interest. These methods use electrostatic fields to dry metal ions and enhance
precipitation, adsorption, and separation. And this paper reviews the electrochemical
treatment technology of heavy metal wastewater, which can provide a reference for the
development of efficient and energy-saving heavy metal wastewater treatment technology.
Figure 1 summarizes electrochemical methods for HM removal. These electrochemical
methods can be classified into electrocoagulation, electroflotation, electrodialysis, and
electrodeposition depending on their mechanism.
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2. A Brief Review of Electrochemical Methods

Electrocoagulation (EC) is currently an efficient technology in wastewater treatment [13].
EC is a process involving the in situ generation of coagulants such as aluminum/iron
ions and corresponding hydroxides from the electrical dissolution of “sacrificed anodes”
under direct electrical currents [14]. Generated iron or aluminum flocs serve as coagulants
and subsequently precipitate HMs, and an aluminum plate, steel/iron plate/mesh, and Ti
plate/mesh are applied as anode and cathode materials to remove Cr(VI), Cu(II), Ni(II),
Cd(II), Pb(II), Zn(II), Ba(II), and As(III) [15–23]. The EC process can dispose of multiple
contaminants in one process; has low sludge production and maintenance costs; can
easily handle water quality variations; and can achieve over 95% removal efficiency for
HMs. [15,18,22]. The disadvantages of EC are as follows: (1) The dissolution of “sacrificial
electrodes” into wastewater occurs due to oxidation, which requires frequent disposal.
(2) The passivation of electrodes over time has limited its implementation. (3) The use
of electricity may be expensive in many places. (4) High conductivity of the wastewater
suspension is required [24–26].
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Electroflotation (EF) is suitable for separating complex heavy metal wastewater with
heterotic contaminants such as sludge. In this process, water is split into oxygen and
hydrogen electrodes. Gas bubbles are generated, and the suspended contaminants are
raised to the water surface. In this complicated process, bubble size and gas generation rate
are two crucial factors in metal efficiency, deeply dependent on the current density used [27].
EF is gaining interest because its system produces a fine gas bubble without turbulence,
the bubbles exhibit good coverage of the whole area, and the system is suitable for full
automatization. The EF process has been applied in the food industry; oily wastewater;
chemical wastewaters; effluents from the sugar and leather industries; and farms as well
as in the dairy industry, and thus has been successfully commercialized [28]. Gas bubbles
are the workhorse of EF, and bubble size is the key parameter for determining efficiency.
Recently, a coupled method combining EF and EC to remove and separate heavy ions has
been scaled up in industry [29]. In such a process, metal ions are coagulated and floated
over the water surface [30]. The drawbacks of EF are the insufficiently high productivity
of its units; the release of H2 bubbles; the cost of electrodes and maintenance; and the
formation of sludge by volume [31].

The EF system relies on hydrogen and oxygen/chloride produced at the cathode
and anode, respectively, which are referred to as the hydrogen evolution reaction and
oxygen/chloride evolution reaction, respectively. These processes are particularly energy-
consuming due to the water-splitting process, requiring a potential over 1.5 V even when
using the best-developed catalysts. Presently, the most widely applied anode materials
in EF systems are stainless steel, nickel plates, titanium, and carbon cloths due to their
cheap price and relatively good HER ability [32,33]. Anode materials should be chemically
stable since the electrodes are working at high potentials (1–3 V). Iron, aluminum, and
stainless steel are cheap but suffer from corrosion [34]. Graphite and other carbon-based
materials are relatively stable but exhibit high overpotential for OER [35]. Dimensionally
stable anodes (DSA) are the most attractive anodes for EF [36,37]. The electrodes are
developed using conductive precious RuO2, IrO2, and their composite metal oxides as the
electrocatalysts, normally using TiO2, Nb2O5, Ta2O5, and ZrO2 as the stabilizing agents
supported on a Ti-, Ta-, W-, etc. -based metal substrate [37,38]. The major merits of these
materials are their high stability and long lifetimes even in low-pH solution; thus, these
anodes provide an attractive alternation for EF.

Electrodialysis (ED) is used to transport metal ions between two solutions along ion-
exchange membranes under the influence of an applied electric potential difference. ED
is an established technology in treating industrial wastewater; wastewater from the drug
and food industries; table salt production; chemical processes; and HMs removal [22,39].
It is conducted in a configuration called an ED cell [40]. The ED process can purify water
without phase change, reaction, or chemicals [41]. These merits provide environmental
benefits without the use of fossil fuels or chemical detergents. However, ED technology
has limitations, including scaling, membrane fouling, energy consumption, and selectiv-
ity [42,43]. ED has been investigated for the removal of Cr(VI) [44,45], Cu(II) [46], Zn(II) [47],
Ni(II) [48], and Ag(I) [49]. ED systems necessitate excellent ion exchange membranes with
lower electrical resistance, mechanical durability, improved permeability, and higher selec-
tivity for specific ions. Production costs have also come under consideration [32], which is
discussed in this paper’s section on membranes.

Electrodeposition (EP) is a practical method that relies on the redox reduction of anodes
alone. Heavy metal ions are reduced and deposited on an electrode in solid form. This
process allows the simultaneous removal and recovery of HMs from wastewater [50,51].
High removal and recovery efficiency have been reported for the disposal of As(V)-, Cr(VI)-,
and Cu(II)-containing wastewaters [51,52]. However, the reaction degree and side reactions
such as water splitting were hard to control due to high energy dissipation [25]. Table 1
summarizes the application of EC, EF, and EP for heavy metal removal.
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Table 1. Electrochemical methods for heavy metal removal.

Metal Method Cathode Anode Ref

Cr6+ Reverse electrodialysis Carbon felt Ti/IrO2-Ta2O5 [44]
Cr6+ Reverse electrodialysis Carbon felt Biotic anode [45]

Cr6+ Electrocoagulation Cylindrical vessel iron
cathode

Vertical rotating impeller
Fe anode [15]

Cr6+ Electrocoagulation Air cathode Pure sacrificial iron plate [16]
Cr6+ Microbial fuel cell Carbon brush Carbon felt [53]
Cr6+ [54]

Cr6+ Microbial fuel cell Graphite rods Polyaniline-modified
carbon Fe [55]

Cr6+ Alkaline ethanol fuel cell Carbon fiber cloth
Carbon-fiber-cloth-

coated
Pt

[56]

Pb2+ Fuel cell Carbon cloth Carbon-cloth-coated Ni [57]
Cr6+ Solar electrocoagulation Perforated Zn Perforated Zn [17]

Cu2+; Cr6+; Ni2+;
Electrocoagulation–

electroflotation Stainless steel Al [58]

Cd2+ Electrocoagulation Zn Zn [18]
Pb2+; Zn2+; Cd2+; Electrocoagulation Stainless steel Al [19]

As3+ Electrocoagulation Fe plate Al plate [20]
Cd2+; Cu2+ Electrocoagulation Al plate Al plate [21]

Zn2+ Electrocoagulation Stainless steel plate Ti expanded mesh [59]
Cu2+ Electro-Fenton method Graphite Fe [32]

Cr3+; Cu2+; Ni2+; Zn2+ Electroflotation Stainless steel Ti plate [60]
Fe3+; Cu2+; Zn2+ Electrocoagulation Iron (carbon steel) plates Iron (carbon steel) plates [61]

Cu2+; Zn2+; Ni2+; Ag+ Microbial fuel cell Activated carbon Carbon fiber veil [49]
Ni2+; Cu2+ Microfluidic electrodialysis Au Au [62]

Mo4+ Electro-reduction Carbon fiber cloth Pt-coated Ti panel [63]
Cd2+; Cu2+; Zn2+; Ni2+;

Fe2+; Pb2+; As3+ Electro-oxidation Ti/RuO2–IrO2 Ti/RuO2–IrO2 [64]

Hg2+ Electro-reduction and ion
exchange Graphite particle Ti substrate [65]

Cd2+ Electro-reduction PSAC Graphite felt [66]
Cu2+ Microbial electrolysis cells Stainless steel mesh Graphite fiber brush [67]
Cu2+ Electrodeposition Ti [68]

Pd2+; Zn2+ Cd2+; Cr6+

Cu2+; Ni2+ Hg2+ Electrodeposition Ti [33]

Cu2+ Electrocoagulation Conductive carbon cloth Pt-coated panel [69]
Cu2+; Ni2+ Fe2+ Electrolysis Mesh Ti stainless steel plate Mesh Pt-coated titanium [70]
Cu2+; Zn2+ Pb2+ Microbial electrolysis cell Carbon cloth Graphite brush [71]

Ni2+ Electrolysis Graphite plate Graphite felt [72]
Cu2+ Electrolysis Granular graphite [73]

Pd2+; Ni2+ Electrolysis Cu sheet Pt wires [74]
Cu2+; Cr6+; Ni2+ Electrodialysis Pt Pt [75]

Cu2+ Electrolysis Stainless steel Ti grid [76]

Capacitive deionization (CDI) is among emerging separation technologies for remov-
ing charged ions from wastewater using electrochemical principles on electrode surfaces.
Figure 2 shows the mechanism of CDI for HM removal. Ions are removed from the aqueous
solution and are stored on the internal surface areas of the porous electrodes; this results in
an effluent product stream with reduced ion concentration. Moreover, ions can be reversed
into solution by reducing or even reversing the applied voltage, resulting in a product
stream concentrated in ions. In principle, CDI is based on the electrosorption of cations
and anions on the electrode surface captured by electrical double layers [77]. Generally, the
electrical properties of electrodes govern the adsorption capacity, chiefly specific capaci-
tance, and their surface areas are believed to be closely related to the removal efficiency
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of CDI cells [78]. The CDI process may specifically remove heavy metal ions using an
electric field without adding any chemicals, making the process an energy-efficient tech-
nology compared with distillation and reverse osmosis. In recent decades, CDI has grown
substantially, considering electrode materials, cell configurations, and process analysis,
while parasitic reactions and a relatively low desalination capacity hinder the practical
application and further development of CDI [79]. Its side reactions mainly include anode
oxidation reactions (such as carbon electrode oxidation and chloride oxidation), cathode
reduction reactions (such as oxygen reduction and carbon electrode reduction), and co-ion
expulsion (-i.e., ions with similar charge to the electrodes are expelled from the electrodes
during the charging process in CDI). These reactions often occur during the operational
process, increasing energy loss and leading to water quality fluctuations. The low desali-
nation capacity is mainly due to the relatively low physical charge storage capacitance
of the electrode materials and the adverse effects of side reactions. CDI technology is
energy efficient, has a low life-cycle cost, is capable of removing a wide range of ionic
contaminants, has a high recovery rate, and is cost-competitive compared with membrane
filtration processes such as reverse osmosis (RO), which can be especially beneficial for
saline groundwater treatment for rural or remote communities [78–80].
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3. Materials for Heavy Metal Removing Using CDI

Great efforts to solve the challenges of CDI have been made. These include CDI config-
uration optimization and developments in operation style as well as the search for highly
efficient and cheap electrode materials with high adsorption capacity and stability [81].
The electrode material is a crucial component of CDI cells that determines the desalination
performance of CDI [78]. Usually, electrode materials should be conducive to a high surface
area and have a good affinity with heavy metal ions. A large number of electrode materials
have been developed for CDI. Figure 3 summarizes the materials applied for CDI, the
majority of which include carbon materials, metal oxides, polymers, and their composites.
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Figure 3. Summary of materials applied for CDI.

3.1. Pure Carbon Materials

Generally, adsorption capacity is governed by the electrical properties of electrodes,
especially specific capacitance, and surface areas is believed to be relevant to the removal
efficiency of CDI cells [82]. Carbon has abundant allotropes and has been extensively
studied in the past several decades for a variety of applications. Owing to its high surface
area, excellent conductivity, and tunable structure, carbon materials are the most popular
materials applied for CDI electrodes. Large surface areas and mesoporous carbon materials
exhibit good characteristics and excellent performance regarding electrochemical activity,
the adsorption/sorption of toxic gases, and the removal of HMs [83].

Carbon materials can reversibly adsorb and desorb significant amounts of HMs using
double-layer mechanisms without affecting their mechanical and electrical properties. Spe-
cific surface areas and pore sizes were found to closely correlate with ion electroadsorption
at the electrical double layer [84]. High-surface-area porous electrodes must be optimized
for both high surface area (capacity) and pore size (kinetics), and electrosorption perfor-
mance was found to be primarily determined by hydrated size, ionic charge, and initial
molar concentration in solutions. Nanoporous carbons are used as a key component in the
electrosorption process due to their good electrical conductivity, high surface area, and re-
markable sorption capacity. Carbon aerogels, activated carbons, carbon nanofibers, carbon
nanotubes, graphene, mesoporous carbon, and carbon-based composites are recognized as
promising electrodes for CDI [78]. Since the first report on the electroadsorption of Cr(VI)
using carbon aerogel electrodes in 1997, increasing attention has been paid to developing
new carbon-based materials for heavy metal electroadsorption [85].

Activated carbon is a notable material used for electrosorption because of its strong
mechanical stability; large pore volume; high surface area; electrochemical stability; and low
manufacturing cost. Many investigations have revealed that activated carbon is effective
in removing ions such as Na, Mg, Ca, Cl, etc., from water. For example, in one study, the
removal efficiencies were 32%, 43%, and 52% for Cd2+, Pb2+, and Cr3+, respectively, initially
formed heavy metal-containing water with a concentration of 0.5 mM [86]. Electrosorption
rates and ionic hydrated radii were not linear for heavy metal but in the order Cu2+ >
Pb2+ > Cd2+, attributed to the complex mechanisms occurring in electrosorption, such
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as electrodeposition, and OH- complex formation during charging [86]. Cu2+ and Pb2+

showed notably low desorption efficiency during electrode regeneration, implying high
fouling potential during CDI treatment because of the facial deposition of Cu (+0.34 V) and
Pb (−0.13 V). Chen et al. investigated the electrosorption and reduction behavior of Cu2+

and Zn2+ in a wide voltage window on activated carbon fiber electrodes [87]. It was shown
that removal of Cu2+ worked better than that of Zn2+ at 0.4–0.6 V, while better removal
efficiency for Zn2+ occurred in the range 0.8–1.2 V in wastewater containing a single metal
ion. During the membrane CDI process, Cu2+ could be preferentially electrodeposited
while Zn2+ reduction was prevented at the voltage of 0.8 V [87]. As(III) and As(VI) removal
action is known, and the removal capacity of activated carbon electrodes strongly depends
on applied voltage and initial arsenic concentration. The sorption capacity for treating
As(V) is superior to that for As(III) due to the negative charges of prevalent As(V) species.
The removal of As(V) occurs mainly via electrosorption, whereas As(III) removal using the
CDI system involves the oxidation of As(III) to As(V) before it is electrostatically adsorbed
on the anode surface [88]. The fundamental behavior of Cu2+ removal in the CDI process
over activated carbon electrodes has been investigated [89]. It was shown that electrical
double-layer charging assisted Cu2+ removal, and electrodeposition can be curbed at a low
applied voltage. The equilibrium electrosorption capacity of Cu2+ was 24.57 mg g−1 by the
electrical double layer at a charge potentially less than 0.8 V, while electrodeposition of Cu
was seen when the potential was over 0.8 V.

The adsorption capacity of electrodes also depends on co-existing organic and inor-
ganic pollutants. Cr(VI) electroadsorption was raised from 155.7 to 190.8 mg g−1 when
KCl concentration inclined in an electrolyte in the range of 100–500 mg L−1, but notably
declined to 90.2 mg g−1 when the KCl concentration reached 1000 mg L−1. High Cr6+

removal efficiency occurred in the absorption of Cr(VI) onto electrodes, the reduction
of Cr(VI) into Cr(III), and the formation of precipitation onto the electrode surface [90].
Co-existing Sr and Cs ions in aqueous solution largely inhibited the removal efficiency of
Co ions from 36.54% to 8.37% [91]. Wang et al. used a carbon aerogel as the electrode for
the CDI removal of Cu2+ [92]. The 3D network-like carbon structure was composed of
small particles with mesopores and macropores having a pore volume of 3.41 cm3 g−1 nm
in the carbon materials and had a great impact on the adsorption of diverse ions and the
anion adsorption effect in the following order: SO4

2− > NO3
− > Cl−. The highest specific

capacity of 156 F g−1 in 6 M KOH solution, reaching a Cu2+ adsorption rate of 29.7 mg g−1,
was achieved in an optimized condition in which the Cu2+ concentration was 100 mg L−1

and the applied voltage was 1.2 V.
Graphene is a two-dimensional material with a high specific surface area and intrinsic

electrical conductivity along with mechanical robustness. It is considered an excellent
candidate for CDI electrodes. Graphene-based materials have been widely studied for
water desalination [93,94]. However, graphene sheets are prone to stack and agglomerate,
resulting in low surface area and uncontrollable pore size. This decreases the electrical
double layer capacitance of the electrodes and reduces the CDI performance [95]. Zhang
et al. fabricated carbon nanotube–graphene hybrid aerogels as electrode materials through
the CO2 supercritical drying of graphene–CNT hybrid hydrogel [96]. This novel material
has the impressive properties of a large surface area (435 m2 g−1), large pore volume
(2.58 m3 g−1), high conductivity (7.5 S m−1), and being light weight (41.1 mg cm-3). The hi-
erarchically porous structure was found to be crucial to the electro-binding of four different
HMs with adsorption capacities of 104.9 mg g−1 for Pb2+, 93.3 mg g−1 for Hg2+, 64 mg g−1

for Ag+, and 33.8 mg g−1 for Cu2+ [96]. Graphene-oxide-modified carbon felt electrodes
have been used to dispose of both low-concentration and high-concentration heavy metal
pollution using either direct current (DC) or alternating current (AC) electrodeposition.
Graphene oxide (GO) provides a high density of surface oxygen functional groups (C-O,
COOH, COH, etc.) to assist in electrodeposition. The electrodeposition method showed a
capacity two orders of magnitude of a higher capacity (>29 g heavy metal for 1 g of GO)
than traditional adsorption methods [97]. DC electrodeposition with GO-modified carbon
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felt electrodes can reduce single-heavy-metal-ion pollution (Cu, Cd, and Pb) and multi-
ple ion mixtures to below safe water drinking water levels. By tuning the AC frequency
and voltage, the electrodeposition method can further selectively recover Cu, Cd, and Pb
separately, which adds value to the heavy metal removal process [97].

Based on the electroadsorption theory, the Helmholtz electrical double layer model
is widely understood [98]. The initial CDI models for EDL structure models are the
Helmholtz EDL model and the Gouy–Chapman–Stern (GCS) EDL model. An advanced
equilibrium EDL structure model named the modified Donnan (mD) model can account
for the macropores’ confined nature in CDI electrodes [99]. In the mD model, micropores
are seen to have a strongly overlapped double layer, so the classical Donnan notion of a
uniform pore electrostatic potential can be used. In-depth research has found that a high ion
adsorption capacity is closely related to the micropores rather than the mesopores [100,101].
Thus, porous carbon is an attractive material for the electrochemical adsorption of HMs. In
these micropores, typically, the Debye length λD is of the order of, or larger than, the pore
size. In micropores, when the R of the pores is smaller than the Debye length, an overlap of
the electrical double layer is found. Hence, the electrical potential makes a distinct jump
from a value on the surface outside the particles to another value in the micropores [80,102].
Then, the concentration of counterions is significantly higher than that on the outside
surface. Thus, the micropores (<2 nm) are highly effective in achieving high ion adsorption.

3.2. Heteroatom Doped Carbon

Heteroatom doping is the process of substituting some carbon atoms with other atoms
in the carbon structure, primarily P block elements [103]. Bringing heteroatoms (e.g., N, B,
S, P, etc.) into carbon nanomaterials can alter the electron configurations of the adjacent
carbons due to their sizes and electronegativity differences, hence enhancing electrical
conductivity and wettability [103,104]. Moreover, this process can induce a huge number
of defects, which can create a more accessible surface area and is beneficial for charge
accumulation.

A sheet-like N, O-enriched hierarchical porous carbon material was developed by
Zhao et al. [105], adopting eggplant as the carbon source and KHCO3 as the activation agent.
The largest capacitance was up to 172.5 F g−1 in NaCl solution. Pb2+-and Cd2+-containing
wastewater mainly occurred due to a high concentration of N-doped oxygen functional
groups on the surface and a 3D porous structure leading to greater mass transport efficiency
and electroconductibility [83]. Further, with wastewater containing Pb2+ and Cd2+ at
concentrations of 0.5 ppm and 0.1 ppm, removal rates of 99.1% and 97.9%, respectively, were
achieved in rechargeable Zn–air battery-coupled CDI devices. The self-powered system
displayed excellent charge efficiency (60.3%) for CDI, whereby the residual concentrations
of Pb2+ and Cd2+ in water dropped to 4.5 ppb and 2.2 ppb in 90 minutes. In another study,
3D honeycomb-like porous carbon was synthesized via the hydrothermal carbonization of
corncob combined with KOH activation [106]. The newly prepared porous carbon-based
electrodes exhibited a high capacitance of 452 F g−1 in 1 M Na2SO4. A batch-mode CDI
experiment demonstrated the removal of Cr6+ through a non-faradic process, achieving
a removal rate of 91.85% when the initial Cr6+ concentration was 30 mg·L−1. Moreover,
a highly porous N-doped graphene-based CDI device exhibited high removal efficiency
(90–100%), fast removal (<30 min), and good regeneration performance (10 cycles, 99%
retention) for multiple HMs (Pb2+, Cd2+, Cu2+, Fe2+, etc.) in water at a wide range of
concentrations (0.05–200 ppm) [94]. Chen et al. developed an N-doped graphene nanosheet
material via the one-step pyrolysis of a graphene oxide and cyanamide mixture [94].
Mamaril et al. developed an N-doped and fluorine co-doped graphene oxide as an electrode
material, and a specific capacitance of 245.6 F g−1 was achieved with a high removal
percentage of 95% and a specific electrosorption capacity of 52.4 mg g−1 at 100 mg L−1

Cu(II) [107]. It is worth noting that highly prepared porous carbon was firstly used as an
electrode for membrane CDI to remove multiple HMs, e.g., Pb2+, Cd2+, Fe2+, and Cu2+,
simultaneously, as the prepared carbon material showed a high specific surface area of
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695 m2 g−1. At 200 ppm, the adsorption capacity of NG for Pb2+ and Cd2+ can, dramatically,
reach 521 mg g−1 and 498 mg g−1, and high removal efficiencies of 96%, 80%, 100%, and
100% for Fe2+, Cd2+, Pb2+, and Cu2+, respectively, have been achieved with a wide range of
initial concentrations (0.05–200 ppm).

Wang et al. developed a three-dimensional reduced graphene oxide/nitrogen-doped
carbon quantum dot composite. In this work, the electrosorption capacity of an rGO/25%
NCDs electrode was 19.26 mg/g when the initial concentration of Pb2+ was 5 mg/L [108].
Hu et al. developed two kinds of N-doped carbon with distinct configurations: pyrrolic
N-dominated graphene (N-5-G) and pyridinic N-dominated graphene (N-6-G) [109]. The
specific capacitance of N-6-G is 239.7 F g−1, which is larger than N-5-G (195.2 F g−1) in
Na2SO4 solution, while the Pb2+ electrosorption capacity of N-5-G is 2.43 mg m−2, which
is three times that of N-6-G (0.73 mg m−2). The removal efficiency of Pb2+ was found
to be 95.8% for N-5-G. Three main types of nitrogen defects exist in the N-doped carbon
structure: graphitic nitrogen, pyridinic nitrogen, and pyrrolic nitrogen. The final two kinds
are proven to be more electroactive for CDI than graphitic nitrogen because they are prone
to donor electrons [109]. Graphitic nitrogen and pyridine nitrogen oxide have shown merit
in capacitance. Hu et al. revealed that pyridinic nitrogen groups tend to prefer H+ and Na+,
while pyrrolic nitrogen exhibits efficient Pb2+ sorption. This conclusion bridges the matric
structure of N-doped carbon with CDI performance for the removal of heavy metal ions.

P and N have the same number of valence electrons, meaning that P-doped carbon
materials are also electron-rich. Moreover, the diameter of P is much larger than that of
C; thus, P-doping results in the greater local structural distortion of the hexagonal carbon
framework and also protrudes out of the graphene plane. The reasons why P-doped carbon
materials overcome the steric hindrance effects encountered in N-doped carbon materials
were indicated in [110]. Interestingly, multi-heteroatom co-doped carbon materials can
produce double functional groups or diatomic synergies, likely resulting in improved
electrical conductivity and the enhanced wettability of the carbon materials. The doping of
nitrogen atoms into graphitic networks is seen as one of the best approaches to producing
n-type conductive materials with improved conductivity [109].

3.3. Polymer Functionalized Carbon Materials

The selectivity of materials for electrochemical adsorption has been highlighted be-
cause high selective adsorption can simultaneously achieve the separation and recovery
of valuable heavy metals. Despite their large number of functionalities, the inhomoge-
neous surface properties of carbon materials mean that they mostly exhibit poor selectivity.
Functionalization of the carbon surface with designed functional groups not only provides
high-density homogenous functional groups but can control the selective chelation of func-
tional groups with designed heavy metal species. Ethylene diamine tetraacetic acid (EDTA)
and 3-aminopropyltriethoxysilane functionalized 3D graphene were applied to selectively
remove Na(I) and Pb(II) [111]. Interestingly, Na ions were electrically adopted on the 3D
graphene pores by electrosorption, while Pb2+ ions were adsorbed on a EDTA-grafted
macroscopic 3D graphene cathode (3DEGR) via a chelation reaction. At pH 6.0, using
synthetic wastewater containing 20 ppm Pb2+ and 100 ppm Na+, the removal efficiency for
Pb2+ was 99.9% and the desorption rate was ~99.6%. The removal efficiency remained at
94.4% after eight cycles, demonstrating the high reversibility of these materials. Thus, heavy
metal and salt ions could be separated and recovered, purifying wastewater [111]. The ad-
sorption/desorption experiments indicated that the specific adsorption capacity of the com-
posite for Cu2+ was 99.67 mg g−1. Moreover, polypyrrole/chitosan/CNT (Py/CS/CNT)
nanomaterials were prepared via in situ polymerization [112]. The modified nanomaterials
provided sufficient porosity for the diffusion of ions and solvent molecules. In the CuSO4
solution of 100 mg L−1, a higher Cu2+ removal rate of 80% was achieved compared with
Py/CS-coated electrodes (56.4%). The decreased capacitance of Py/CS/CNT was only 3.4%
after 50 cycles, showing remarkable stability due to the highly conductive CNTs which
provided an electron pathway and stabilized the polypyrrole and chitosan. Shi et al. used
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the air-plasma method to modify the structure and composition of polytetrafluoroethy-
lene/carbon nanotube composite materials [113]. Plasma activation raised the relative O
and N content, which improved the Pb2+ removal capacity from 1.36 mg g−1 to 2.40 mg g−1

at a voltage of 450 mV and initial concentration of 5 mg L−1.

3.4. Metal Oxide Supported Carbon Composites

Many solutions have been developed to solve the aforementioned challenges. For
example, one of the best of such solutions involves using faradaic electrode materials as the
electrode. Unlike non-faradaic materials such as porous carbon electrodes, which store salt
ions capacitively in an electric double layer along surfaces or nanopores, faradaic electrodes
store ions via intercalation or conversion reactions [114]. Incorporated transited metal
oxide could efficiently enhance the capacitance and electrosorption ability of carbon-based
materials due to the conversion of heavy metal ions and the adsorption of HMs on defects
as well as the intercalation of metal ions into the metal oxide layer structure. Banat et al. syn-
thesized highly mesoporous peanut-shell-derived activated carbon/Fe3O4 nanocomposite
materials [115]. Cr(VI) was reduced to Cr(III) by Fe(II) ions of Fe3O4 and was then directly
electro-captured on carbon-based composite materials in acidic conditions. The synergetic
effect of both physical adsorption and electrosorption combined with a reduction pathway
was crucial to Cr(VI) removal. Nearly 99.9% of the Cr(VI) was removed with a high elec-
troadsorption rate up to 24.5 mg g−1 at pH 6.5 with an initial concentration of 50 mg L−1.
Wang et al. induced highly distributed α-Fe3O4 of a uniform size on carbon matrixes
through the carbonization of MIL101(Fe) [116]. The porous carbon yield exhibited surface
areas of ~1832 m2 g−1 and showed excellent adsorption capacity for Pb2+ (830.17 mg g−1)
and a high removal efficiency of 90.3% at an initial concentration of 500 mg L−1 Pb(II)-
containing water through the CDI process with high durability within 10 cycles [116]. This
high adsorption capacity and removal efficiency resulted from the electroadsorption and
electrodeposition of the Pt(II) on the electrode [116]. In another study, a graphene sheet
exfoliated by potassium ions from graphite was prepared [117]. Fe3O4 nanoparticles were
successfully supported on porous graphene sheets via the hydrothermal process. The
Fe3O4/porous graphene nanocomposites showed great potential for the removal of both
organic pollutants and heavy metal ions, with the removal rates for Pb2+, Cu2+, and Cd2+

found to be 90.6%, 92%, and 90.2%, respectively. Moreover, the results revealed ultrahigh
electrosorption capacities for Pb2+, Cu2+, and Cd2+ ions which were found to be 47, 40, and
49 mg g−1, respectively, in NaCl solution with an initial concentration of 500 mg L−1, a cell
potential of 1.6 V, and a 0.03 mM initial metal ion concentration. α-MnO2 nanoneedles were
grown on carbon fiber paper using an ordinary hydrothermal method [118]. Both Ni(II)
and Mn(II) ions reduced easily and electrosorbed on the α-MnO2–carbon-paper-based
electrode due to its mesoporous structure, contributing to fast electron charge transfer.
Birnessite-type MnO2 on carbon nanotubes can effectively remove both Zn2+ and Ni2+

via constant potential electrolysis. CNTs offer a larger specific surface area and higher
conductivity to birnessite. Their removal capacities for Zn2+ and Ni2+ have been found
to reach 155.6 and 158.4 mg g−1 in 50 mg L−1 origin wastewater, respectively. Hexagonal
birnessite is proposed to consist of edge-sharing Mn(IV)O6 octahedral layers, and these
layers are interlayered with water molecules. There are Mn(IV) vacancies in Mn(IV)O6
octahedral layers due to the repulsion between neighboring Mn(IV). Heavy metal ions
can be adsorbed on or below the vacancies during the isothermal adsorption process [119].
Figure 4 depicts the mechanisms of metal-oxide-supported carbon composites in heavy
metal removal. GO–TiO2 nanotube composites have high specific electrosorption capacities
of 253.25 mg g−1 and 241.65 mg g−1 for Cu2+ and Pb2+, respectively [120]. This microwave-
assisted fabricated composite releases little during desorption at zero voltage caused by
induced oxygen, and π electrons lead to strong interactions with Pb2+ and Cu2+. Metal
oxide/carbonaceous gel hybrid materials derived from natural and renewable biomass
exhibit excellent flexibility and high electrochemical reactivity (capacitance of 120.4 F g−1 in
50 mg L−1 CuCl2 solution), primarily in the area of CDI decontamination applications. In
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one study, Cu2+ was nearly completely removed (removal capacity of 57.3 mg g−1) and the
as-assembled CDI testing apparatus showed durability after 1000 cycles [121]. Activated
carbon cloth coated with zinc oxide nanoparticles has been used for electrode inflow via a
CDI system. Upon incorporation with ZnO NPs, electrosorption efficiency was enhanced
from 17% to 33% for Pb2+, from 21% to 29% for Cd2+, and from 21% to 35% for mixed
Pb2+ and Cd2+ ions [122]. These results together illustrate the promising applications of
metal-oxide/carbon electrodes for heavy metal removal.

Figure 4. Mechanism of metal-oxide-supported carbon composites for heavy metal removal.

3.5. Others

Aside from carbon-based materials, polymer-based materials have attracted great
interest owing to their ion-exchanging ability and conductivity. Polypyrrole is one of
the most studied polymers due to its high specific capacitance, high conductivity, and
simple preparation. Polyaniline/attapulgite composites (PANI/ATP) were prepared via in
situ oxidative polymerization [123]. The calculated equilibrium adsorption capacity was
15.42 mg g−1. The facile modified paper electrode with polymer attached to the surface of
ATP contributed to the high removal efficiency of lead ions (66.5%) in wastewater, with an
initial concentration of 2.5 mM Pb2+ and stable cyclability after 10 runs (64.2%). Li et al.
deposited polypyrrole on chitosan, a stable adhesive agent functionalized with -OH and
-NH2 groups, and proved that a polypyrrole/chitosan composite (Py/CS) exhibits con-
siderably stable electroadsorption and desorption behavior and shows good performance
regarding the removal of heavy metal ions including Ag+, Cu2+, Pb2+, and Cd2+ [124].
Transition metal sulfide has been viewed as a promising modified candidate for CDI. Hu
et al. decorated ZnS and FeS on a carbon felt electrode. The ZnS on the carbon material
increased the wettability and electrochemical capacitance. The enhanced adsorption ability
of Cu2+ and removal capacity of Cu2+ was 27.4 mg g−1 in the presence of Cr6+ and natural
organic matter [124].

The materials used for heavy metal electrosorption are primarily carbon-based materi-
als due to their tunable properties such as surface area, pore size, and distribution as well
as their surface functionalities. Overall, polymer carbon composites have been investigated
for Cu and Pb removal, and their physical and chemical adsorption abilities were found
to be excellent owing to the chelation process of capturing ions. However, a few unusual
properties, such as restricted specific area and relatively poor conductivity, limit their per-
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formance regarding the electrosorption of HMs. Their adsorption capacity is relatively low,
and a higher adsorption capacity was achieved for Pb using PTFE/CNTs. An adsorption
capacity of 16.83 mg g−1 for Cu was achieved using polypyrrole/chitosan/CNT due to
the use of functional polymer-like polypyrrole, a common conducting polymer, which
showed ultra-high specific capacitance and conductivity [112,113]. Moreover, synergy
between polypyrrole and chitosan increased adsorption capacity through the chelation
process [125,126]. Metal-oxide carbon composites have been proven to show excellent
performance in the removal of Pb, Cu, and Cr. Fe3O4/peanut-shell-derived activated
carbon material exhibited a 99.9% removal rate and 24.5 mg g−1 Cr6+ adsorption rate in
wastewater [116]. The redox ability of transition metal oxide was useful in deducing the tox-
icity of HMs during the electrosorption process. The removal of Cu by MnO2/carbon fiber
demonstrated a 96% removal rate with a 172.9 mg g−1 adsorption rate [127]. The enhance-
ment of adsorption via the polarization potential and unique nanoflower microstructure
of deposited MnO2 may equally lead to the superior adsorption ability of MnO2/CF elec-
trodes. TiO2-nanotube-coated CNT electrodes have been proven to efficiently remove Cu
and Pb with adsorption capacities of 282.25 mg g−1 and 241.65 mg g−1, respectively. The
excellent activity of metal oxide/CNT composite relies on its mesoporous features, good
ion-exchanging properties, and very high conductivity. The removal rates and adsorption
capacities for Pb by Fe2O3/C were 90.3% and 830.17 mg g−1, respectively; this improve-
ment was accredited to its considerably large specific surface area (1832 m2 g−1) and high
dispersion at the near quantum scale. Carbon has been shown to be an excellent material
for various HMs, including Pb, Cu, Cr, Cd, and Ni. Carbon is the most widely applied
material due to its abundance in nature and facile modification methods. Table 2 presents
the various materials that have been studied for heavy metal removal, such as activated car-
bons, carbon cloths/fiber, ordered mesoporous carbons, carbon aerogels, carbide-derived
carbons, carbon nanotubes, carbon black, and graphene.

Table 2. CDI methods for heavy metal removal.

Metal Working Electrode Counter Electrode Removal Rate/Adsorption
Rate/CF Ref

Cr6+ Fe3O4/peanut-shell-derived
activated carbon PSAC 99.9%; 24.5 mg/g; 610 F/g [116]

Pd2+, Cd2+ Eggplant-derived carbon Zn foil 99.1% Pd; 97.9% Cd; 172.5 F/g; [105]
Pb2+ Fe2O3@C Fe2O3@C 90.3%; 830.17 mg/g; 115.6 F/g [116]
Cu2+ Polypyrrole/chitosan 56.4%; 99.67 mg/g; 102.96 F/g [124]
Cu2+ Polypyrrole /chitosan /CNT Graphite 80.08%; 16.83 mg/g; 103.19 F/g [112]
Cu2+ ZnS-decorated carbon felt >90%; 27.4 mg/g; 168 F/g [128]

Cr6+ Bael-fruit-shell-derived
carbon on Cu wire Fe wire 100%; -; - [129]

Pd2+ Graphite foil 90%; -; - [130]
Cu2+ Activated carbon on Ti net 95.7%; -; - [131]

Pd2+, Cd2+ rGo-CNT on Ti platcocoe Pt plate/sheet 253.25 mg/g Cu, 241.65 mg/g
Pb; 165.22 F/g [120]

Cr MIL-53(Fe) on
graphite paper Graphite paper 72.2%; 224.7 F/g [132]

Cr6+ Corncob-derived 3D porous
carbon on Ni foam Pt foil 91.85%; 452 F/g; [106]

Pb2+, Cd2+, Cu2+, Fe2+ N-doped graphene on
graphite foil paper Graphite rod 90~96%; 521 mg/g Pb; 498

mg/g Cu [94]

Zn2+, Ni2+ Na4Mn14O27 on
carbon fabric Carbon fabric 90% Zn; 88% Ni155.6 mg/g Zn;

158.4 mg/g Ni [119]

Pb2+, Cu2+; Cd2+ Fe3O4/graphene 90.6% Pb; 92% Cu; 90.2% Cd [117]

Cu2+ TiO2/watermelon derived
carbonaceous hydrogels 57.13 mg/g; 120.4 F/g; [121]

Cd2+; Pd2+; Cr6+ Activated carbon cloth on
stainless mesh

Activated carbon cloth
on stainless mesh 81% Pb; 78% Cr; 42% Cd [133]
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Table 2. Cont.

Metal Working Electrode Counter Electrode Removal Rate/Adsorption
Rate/CF Ref

Pb2+ 3D macroscopic graphene on
graphite paper

3D N-doped
macroscopic graphene

on graphite paper
99.6%; 134.4 F/g [111]

Mn2+ Graphene-chitosan-Mn3O4 Pt foil 12.7 mg/g; 190 F/g [134]
Cu2+ Activated carbon Activated carbon 69%; 24.57 mg/g; 164.3 F/g [89]

Pb2+, Hg2+, Ag+, Cu2+ Graphene/MWCNT hybrid
aerogels on Ni foam

Graphene/MWCNT
hybrid aerogels on

Ni foam

104.9 mg/g Pb; 93.3 mg/g Hg;
64 mg/g Ag; 33.8 mg/g Cu [96]

Ni2+, Mn2+ α-MnO2/carbon fiber paper Active carbon 88.9% 16.4 mg/g Ni; 98.5% Mn;
126.7 F/g [118]

Cu2+ Carbon aerogel Carbon aerogel 73.6%; 29.7 mg/g; 156 F/g [92]
Pb2+ N-doped graphene Carbon cloth 95.8%; 2.43 mg/m2; 195.2 F/g [109]

Pb2+ Chicken-feather-derived
carbon

Chicken-feather-
derived
carbon

81%; 4.1 mg/g [135]

Co2+ Activated carbon cloth Activated carbon cloth 36.54%; 8.3 mg/g [91]
Cu2+ Activated carbon fibers 108.8 mg/g Cu; 122.6 mg/g Zn [87]
Pb2+ PTFE/CNTs 2.40 mg/g; 43 F/g [113]
Pb2+ Polyaniline/attapulgite 66.5%; 12.39 mg/g [123]

Cu2+ MnOx
Saturated

calomelelectrode
66%; 372.3 mg/g (electro sob)

44.3 mg/g (iso sorb) [136]

4. Challenges and Opportunities

Heavy metal removal using CDI techniques provides an energy-efficient and cheap
removal method. This real application can be integrated into renewable energy systems,
which would be useful in remote areas. Studying the literature on the assessment of
CDI energy efficiency reveals its relatively low, specific energy consumption, which is
considerably below 1 kWh m−3. Theoretically, energy is stored in the electrical double
layer during the charging process, whereby it may be discharged and recovered. However,
practically, resistance during charge and discharge leads to energy losses. This resistance
arises from the contact resistance of components, connecting wires, the electronic resistance
in the solid matrix of the electrode, and ionic transportation resistance. Hence, this requires
the optimization of electrode material composition, structure, and porosity as well as
minimized contact resistance in the whole CDI assembly.

The pursuit of intercalation materials as promising CDI electrode materials is primarily
driven by their ability to yield far higher specific adsorption capacities than conventional
carbon-based electrodes. This is due to the ability of intercalation materials to store ions
in their solid phase, in contrast to carbon electrodes that store ions by forming EDLs in
their micropores. In theory, intercalation materials do not possess a direct advantage over
carbonaceous materials considering the reduction in cell resistance and resistive energy loss.
Most intercalation materials have poor electronic conductivity, which is inimical to high
energy efficiency. However, these materials have two major advantages that allow im-CDI
systems to operate in ways that significantly benefit TEE. The first advantage is their high
specific adsorption capacity. Although specific adsorption capacity is not directly relevant
to TEE, the high SAC of intercalation materials enables im-CDI to remove a considerable
amount of salt and thereby achieve an appreciable salinity percentage reduction when
employed to desalinate high-salinity feed solutions.

CDI requires an electrode with a large ion-accessible specific surface area. Metal ion
electrosorption is a surface-related process, and surface area plays a very important role.
However, the entire surface may not have access to metal ions; the latest research shows
that not all BET surface areas can participate in ion adsorption. Van der Waals results have
revealed that the effectively used are of a porous activated carbon electrode is ∼55% of the
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BET area of the electrode. The wettability of the electrode and the porous structure of the
materials ensure a greater surface area is engaged in ion charge and discharge. Notably, the
specific area is highly dependent on the number of small pores, while more small pores
limit ion transportation. The final and ultimate limitation on pore size is the metal ion size.
Moreover, large pores provide better transportation pathways but limit surface area, while
small pores provide a large surface area and higher adsorption capacity but are constrained
by ion transportation.

The relationship between these two factors raises vital questions regarding the validity
of the gas adsorption models usually used to determine porous electrode surface areas and
pore size distributions as well as the effective sizes of ions in pores concerning their degree
of solvation. For instance, it is important to discover to what extent and at which potentials
the solvation shells of ions entering into pores are partially or completely removed. For
example, Li et al. reported an order of Fe3+ (0.62 mg FeCl3/g) > Ca2+ (0.55 mg CaCl2/g) >
Mg2+ (0.52 mg MgCl2/g) > Na+ (0.45 mg NaCl/g) for mono-component solutions, while the
order became Na+ > Mg2+ > Ca2+ > Fe3+ in mmol/g [137]. Moreover, the removal of certain
HMs by CDI was complicated, and an observed order of Cr2+ > Pb2+ > Cd2+ in the percent-
age removal by Huang et al. was observed under the effect of physical adsorption, which
introduced uncertainties into the quantification of the sole electrosorption amount [133].
Thus, a good CDI electrode should not only exhibit good porosity and connectivity; the
porosity of the electrode material should also allow for a reasonable combination with
macropores, mesopores, and micropores to balance the adsorption surface area and metal
ion transportation. Further, dead pores that are not accessible to the ions should be avoided.

The good electrochemical stability of a material over wide pH and voltage ranges plays
a key role in real applications. The oxidation of electrode materials under electrochemical
conditions is inimical to their stability. The stability of an electrode is also closely related to
its high electric conductivity and contact resistance between the porous electrode and the
current collector. Higher resistance leads to the generation of local heat, and thus speeds
up the corrosion of carbon and the dissolution of metal species. Therefore, in addition to
a low-cost design and simple scalability, the design of compacted electrodes with good
processability, such as being shapeable into film electrodes based on compacted powders,
fibers, or monolith film electrodes, is crucial to improving electrochemical stability.
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