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Featured Application: This paper presents an improvement of the Jukebox system for music gen-
eration, which significantly reduces the inference time. 

Abstract: The Jukebox model can generate high-diversity music within a single system, which is 
achieved by using a hierarchical VQ-VAE architecture to compress audio in a discrete space at dif-
ferent compression levels. Even though the results are impressive, the inference stage is tremen-
dously slow. To address this issue, we propose a Fast Jukebox, which uses different knowledge 
distillation strategies to reduce the number of parameters of the prior model for compressed space. 
Since the Jukebox has shown highly diverse audio generation capabilities, we used a simple compi-
lation of songs for experimental purposes. Evaluation results obtained using emotional valence 
show that the proposed approach achieved a tendency towards actively pleasant, thus reducing 
inference time for all VQ-VAE levels without compromising quality. 
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1. Introduction 
Music has been one of the most representative features of any culture around the 

world since ancient times. Because of this, many researchers have established that the re-
lationship existing between the music score and real music is quite similar to that existing 
between written text and real speech [1]. Here, we can describe music as consisting of two 
levels: the music score, which is a symbolic and highly abstract expression, and the sound, 
which is a continuous and concrete signal that provides the details that we can hear [1]. 
Thus, music generation can be divided into three stages: in the first stage, the composer 
generates the music scores; in the second stage, the musician or singer generates the per-
formance using the scores; and finally, in the last stage, the performance results in a mu-
sical sound by adding different instruments, which are perceived by the listeners [1]. From 
the above, the automatic music generation can be divided into three levels: (a) score gen-
eration, which covers polyphonic music generation, accompaniment generation, interac-
tive generation, etc.; (b) performance generation, which includes rendering the perfor-
mance, which does not change the stablished score features, and the composed perfor-
mance that models both the music score and performance features; and (c) audio genera-
tion, which pays attention to the acoustic information using either the waveform or spec-
tral approaches [1]. Finally, by adding lyrics to the score, proving it with timbre and style, 
it is possible to realize singing synthesis. 

Automatic music generation has been a topic of active research during the last 60 
years, during which many methods have been proposed, including grammar rules, prob-
abilistic models, evolutionary computing, neural networks, etc. [2]. More specifically, 
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thanks to advancements in the field of deep learning being applied in computer vision [3] 
and natural language processing [4,5], different proposals have been made to create arti-
ficial speech or sounds, with models such as recurrent neural networks [6], generative 
adversarial networks [7,8], variational autoencoders [9], and transformers [10]. One of the 
most recent and successful contributions in this field is the Jukebox [11,12]. The Juke-
box uses VQ-VAE [13], an approach that compresses and quantizes extremely long 
context inputs in the raw audio domain into shorter-length discrete latent encoding 
using a vector quantization approach. After training the VQ-VAE, a prior is learned 
over the compressed space to generate new audio samples. Generating discrete codes not 
only allows audio conditioning, but also creates music from different genres and instru-
ments, including singing voices. This system provides impressive results; however, the 
inference stage is very low and tremendously slow. To tackle this problem, a Fast Jukebox 
is proposed in this paper to reduce the inference time, in which we distilled the prior 
learning process by c o mp a r i n g  a large autoregressive model against a smaller one. 
With training losses borrowed from those recently proposed by Tiny Bert [14], this 
proposal generates audio several times faster than smaller Jukebox architectures. 

The paper is organized as follows: Section 2 provides a description of some 
related works, and Section 3 presents the background required in the presented 
work. The methodology used to develop the proposed scheme is provided in Sec-
tion 4. The evaluation results are provided in Section 5. Section 6 provides a dis-
cussion about the proposed research. Finally, the conclusions of this research are 
provided in Section 6. 

2. Related Work 
Due to the difficulty represented by modeling raw audio, most generative models 

use a symbolic approach. Some examples are MidiNet [15] and MusGAN [16], which 
use generative adversarial networks, as well as MusicVAE [17] and HRNN [18], which 
are based on hierarchical recurrent networks. The main drawback of the symbolic ap-
proach is that it constrains the generated music to a specific sequence of notes and a 
fixed set of instruments. This constraint has motivated researchers to investigate non-
symbolic approaches. WaveNet [19] performs autoregressive sample-by-sample prob-
abilistic modeling of the raw waveform using a series of dilated convolutions to expo-
nentially increase the context length. The  parallel use of Wavenet [20] and Clarinet al-
lows [21,22] faster sampling from a continuous probability distribution distilled using 
a pre-trained autoregressive model. Parallel WaveGAN and MelGAN [23,24] are 
GAN-based approaches that directly model audio waveforms, achieving a  similar qual-
ity to WaveNet models, with significantly fewer parameters. Transformers [25,26] have 
previously been introduced in the context of neural machine translation. Eventually, 
this encompassed music synthesis and composition with the likes of Music Transformer 
[27,28] to autoregressively predict MIDI note events. Due to the context limitations of 
the original model, authors such as Child et al. [29] introduced the sparse factorization 
of the attention matrix to reduce the self-attention complexity from 𝑂 𝑁√𝑁𝑑   to 𝑂(𝑁𝑑 ), where N is the sequence length and d is the transformer dimension. The auto-
regressive generation of discrete audio tokens has been studied recently in works such as 
those reported in [30,31], not only because it allows the processing of long-term structures 
in the raw audio domain, but it also serves to condition audio with other embedded in-
formation, such as text and lyrics. In our research, we trained the model not only with 
maximum likelihood, but also using knowledge distillation [32]. The latter allowed us 
to obtain the same quality of Jukebox model without the need to add trainable parameters. 
By taking a previously large prior model to serve the role of the teacher, a smaller model 
takes the role of the student during training. The forked code and samples are shared for 
further research and the evaluation process [33,34]. 
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3. Background 
According to [35], the Jukebox forms a part of embedding approach models. This 

is because the audio for music is usually sampled at 44KHz, with 16 bits of precision 
for each sample. This means that for one minute, there are more than 5 million in-
stances of 16 bits of information. This is why reducing dimensionality in sound pro-
cessing can sometimes be convenient, even if it is not always necessary. A VQ-VAE (vec-
tor-quantized variational autoencoder) is applied to obtain embedded vectors from 
an input sequence 𝑥 ⟨𝑥 ⟩ .  By encoding and quantizing audio samples to a se-
quence of K possible values, that are obtained for 𝑧 ⟨𝑧 𝜖𝐾⟩ . The token 𝑧  is the la-
tent discrete representation over which the prior is trained hierarchically to form a 
different temporal resolution. The model is illustrated in Figure 1. 

 
Figure 1. Hierarchical VQ-VAE of three levels of abstraction. Each level is a  model with separate 
priors conditioned on upper levels. ℎ   is the latent vector obtained from the encoder, and 𝑒   
is its nearest vector from codebook C ⟨𝑒 ⟩ . 
4. Methodology 

At each level of encoding, an autoregressive model was trained to learn the prior over 
the compressed spaces. This process resulted in the following: 𝑝(𝑧) 𝑝(𝑧 , 𝑧 , 𝑧 ) (1)𝑝(𝑧) 𝑝(𝑧 )𝑝(𝑧 |𝑧 ), 𝑝(𝑧 |𝑧 , 𝑧 ) (2)

where 𝑝(𝑧 )  is the top-level prior, while 𝑝(𝑧 |𝑧 )  and 𝑝(𝑧 |𝑧 , 𝑧 ) 
are the up samplers. Each model level was trained separately. Sparse transform-
ers were proposed to solve this autoregressive modeling problem. The spar-
sity patterns are shown in Figure 2. Due to the computational expensive na-
ture, knowledge distillation was used to accelerate the sampling time. 
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Figure 2. Attention patterns used in the sparse transformer. The first row shows the full attention of 
the vanilla transformer, since it is autoregressive all squares are marked up until the last iteration 
input (dark square). The second row shows the attention patterns of row attention, column attention, 
and previous row attention from left to right, respectively. 

Knowledge Distillation 
Knowledge distillation [2] is a method proposed to reduce size and computation 

costs during the inference stage in different models, such as transformers. The idea was to 
produce a large computational model to transfer its information to a smaller one. Once 
the large teacher model had been trained, its information would be used to train the stu-
dent network so it could mimic its behavior. The most intuitive method of carrying out 
knowledge distillation was proposed by Hinton et al. [32]; here, the loss function was 
defined with cross entropy between the teacher and the student at predicted logits of 𝑧  
and 𝑧 , respectively. 

𝐿 𝑧 𝑙𝑜𝑔 (𝑧 ) (3) 

In addition, we applied attention-based distillation and hidden-state-based dis-
tillation, as in [13], to strength transfer the information between the teacher and 
student using learning intermediate structures: 𝐿 𝑀𝑆𝐸(𝐻 , 𝐻 ) (4)

where 𝐻 ∈ 𝑅  and 𝐻 ∈ 𝑅  represent the values shown in Figure 3, which are ma-
trices with a sequence length l and transformer dimension d. The MSE evaluation was 
carried out with attention matrices 𝐴  and 𝐴 , also illustrated in Figure 3. The Jukebox 
used a sparse-attention transformer with a different attention pattern for each layer. 
To keep the same level of attention for the student, the correspondence between layers 
was carried out as shown in Figure 4. Each layer’s attention pattern was grouped together 
and distilled the information to the group in the student transformer. The layer proportion 
depended on the size of both the student and teacher transformers. 
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Figure 3. Transformer layer distillation for the prior Jukebox model architecture. 
Which is the typical autoregressive Transformer structure. Teacher and student 
outputs are compared in the attention block residual stage and outputs of the lay-
ers. 
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Figure 4. Layer correspondence based on attention pattern. Each attention pattern (row atten-
tion, column attention, and previous row attention) from the teacher model was consecutive. 

5. Results 
For the experiments, the compressed codes were obtained from the previously 

trained VQ-VAE model from the original jukebox code repository. It was a three-level 
hierarchical VQ-VAE, and its architecture is detailed in the original paper [11]. Audio 
was compressed to 128× of its input dimension on the top level, and to 32× and 8× on 
the middle and bottom levels, respectively. Since in this paper, our focus relies on re-
ducing inference time rather than showing music diversity, we chose the training data to 
be much smaller than the one used in the original Jukebox proposal. The training data 
consisted of a compilation of songs by a single commercial music interpreter. This 
encompassed around 300 32-bit-resolution songs sampled at 44.1 KHz. It encoded the au-
dio by taking 18, 6, and 1.5 s of raw audio during training from the top, middle, and bot-
tom levels, respectively. For the sake of simplicity, we trained the top prior uncondition-
ally, without lyrics or labels, and adopted almost the same architecture as in the 1-billion-
parameter example, which encompassed the three-factored attention-sparse functions, 
whose patterns are shown in Figure 4 ( further details can be seen in the Jukebox paper 
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[11]). The teacher model consisted of 72 layers of sparse attention for all prior and up 
samplers. Two student models were trained; they had 24 layers and 18 layers, respectively. 
The models were trained using Equation (4) for 20 epochs, and then using Equation (3) 
for a further 50 epochs. 

5.1. Samples 
Table 1 shows all ablation studies undertaken in this work, along with the sam-

pling times. The samples consisted of 60 s of audio obtained in a single GPU. All the 
variations from Table 1 have been shared for listening [24]. The samples show that even 
though the audio quality was far from ideal, it moved closer to the teacher-generated 
audio. When compared with the samples generated from the same student architecture 
without distillation, the distillation process enhanced the positive characteristics of the 
teacher baseline. Figure 5 shows the waveform representation of 5 s of audio for all the 
models trained; it follows that knowledge distillation [2] makes the signal more closely 
resemble the complexity of both the teacher and dataset audio. In Figure 6, the level of 
abstraction for both the teacher and student, and the capability of detailing audio, are 
illustrated by a mel-spectrogram representation of the samples. 

Table 1. List of samples shared for this research. All of them consisted of 60 s of audio obtained 
with a GPU Tesla P100. 

System Speedup 
Jukebox Base (Teacher) 1.0× 

Jukebox 24 3.0× 
Jukebox 18 4.0× 

Jukebox 24 (Student) w/o Pred 3.0× 
Jukebox 18 (Student) w/o Pred 4.0× 

Jukebox 24 (Student) 3.0× 
Jukebox 18 (Student) 4.0× 

 
Figure 5. Example of the dataset waveform compared to samples obtained from both teacher and 
student models, each lasting 5 s. All the audio was normalized within a range of −1 to 1. The first 
row shows an example of the dataset used, the second row is the teacher transformer, and the third 
and fourth rows correspond to student models of 24 and 18 layers, respectively. 
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Figure 6. Mel-spectrum of the audio signal. On the top is a sample from the music dataset. The 
samples in the middle are from the top prior and up sample teacher model, left and right, re-
spectively. The bottom samples are the student model, top prior and up-sampled. The up-sam-
pling stage made the time resolution more detailed and reduced the low-frequency noise. 

5.2. Emotional Valence Evaluation 
Performing a quantitative evaluation of music is difficult [36]. The reason is that mu-

sic itself is subjective in terms of quality. Despite this, it has been a subject of study by 
many researchers. Thus, the samples were analyzed using the classifier proposed by Su-
khavasi et al. [37], using the same labels of emotional valence made by Godwin et al. [38] 
in his deep music evaluation analysis. They consist of four labels describing the 
combination of valence and arousal, where valence refers to the pleasure provoked by 
an external agent in a person, while arousal is related to the amusement of this agent. 
Therefore, the labels are ‘activated pleasant’ (AP),‘activated unpleasant’ (AU), ‘deac-
tivated pleasant’ (DP), and ‘deactivated unpleasant’ (DU). Together, they describe the 
arousal and valence responses of an individual when listening to music. The classifier 
was trained with these four labels, as in the original work. After 180 epochs, it reached 
an area under the precision–recall curve (PR-AUC) of 0.5046 and an area under the 
receiver operator characteristics curve (ROC-AUC) of 0.7537. Table 2 shows that real 
music is considered to be in the activated pleasant (AP) category, which was expected 
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from commercial music. Deep generated music was spread more evenly across all labels, 
with a tendency to be actively unpleasant. Our proposed distilled version achieved a cat-
egorization inclined slightly more towards actively pleasant.  

Table 2. Mean of the classification of samples with emotional labels. Activated pleasant (AP), acti-
vated unpleasant (AU), deactivated pleasant (DP), and deactivated unpleasant (DU). More than a 
hundred samples were classified. Generative methods were expected to perform similarly to real 
music but were spread across the labels more evenly. 

Samples AP DP AU DU 
Real Music 0.7354 0.0743 0.0973 0.0989 

Jukebox 72 (Teacher) 0.3058 0.1985 0.3375 0.1143 
Jukebox 18 0.2109 0.2647 0.4162 0.0814 

Jukebox 18 (Student) 0.3444 0.2165 0.2476 0.1292 

6. Discussion 
One of the main drawbacks of the Jukebox occurs when it is required to generate long 

samples. This is because it loses temporal traditional structure, which is essential in music 
as we perceive it. Music structures such as choruses that repeat or question–answer-like 
melodies cannot be generated with longer samplers. Some other token-based autoregres-
sive models have dealt with this issue, such as AudioLM and MusicLM [30,39], even 
though in such cases, music and audio are conditioned on text and melody instead of 
lyrics, and they do not focus on sung music. In the future, experimenting with semantic 
tokens proposed by these two mentioned models with Jukebox transformer architecture 
could be the key to creating longer coherent music sequences. Additionally, using distil-
lation to reduce conditional transformer parameters is in our future scope. Conditional 
training has the need of a paired data dataset, which is troublesome to obtain if it is based 
on copyrighted content. Making it possible to use unpaired data for training models con-
ditioned on lyrics and metadata is also in our scope.  

Another aspect is the categorical distribution modeling. The categorical non-contin-
uous distribution is non-derivable, so it cannot be used in methods such as normalizing 
flows as in Parallel Wavenet [23]. Training transformer-like architectures for modeling 
discrete gaussians or logical distributions is currently a source of research. Finally, we 
acknowledge the progress in audio quality evaluation. Publicly available models, such as 
Trill [40] and VGGish [41], for audio quality metrics are expected to be tested with our 
model. 

7. Conclusions 
In this paper, the reach when distilling the transformer prior of the Jukebox model to 

accelerate audio generation was shown, which reduces the inference time of original Juke-
box system. The proposed scheme generates audio signal several times faster than the 
smaller Jukebox architecture. Because the proposed system is intended to reduce only the 
inference time of the original Jukebox, only 300 songs by a single interpreter were used as 
training data. Evaluation results show that even though the audio quality was far from 
ideal, the proposed distilled version achieved a categorization more towards actively 
pleasant based on the emotional valence evaluation. The quality had some room for im-
provement, even though the sampling time was reduced. It is important to note that when 
sharing the same architecture as the baseline teacher, the student model was still auto-
regressive. A paralleling sampling procedure using non-autoregressive methods by dis-
tilling it with autoregressive ones is set to be explored in the future. 
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