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Abstract: The trial-and-error method is complex and tedious, but often adapted to determine the 
cross-section sizes of core beams in the design of reduced-scale models. In this study, two optimi-
zation methods, the optimization methods in ANSYS and the genetic algorithm, are investigated to 
optimize the cross-section sizes of core beams of reduced-scale models, which centers around two 
targeted moments of inertia and a targeted torsion constant. Due to the difficulty of obtaining an 
analytical solution of the torsion constant, a series of numerical solutions are proposed. Then, taking 
a U-shaped cross section as an example, the four geometric sizes of the section are optimized by the 
ANSYS optimization method and the genetic algorithm, respectively. The results of both methods 
are in good agreement with the targeted values, but the ANSYS optimization method is prone to 
fall into the local optimization zone and hence could be easily affected by the initial values. The 
shortcomings of the ANSYS optimization method can be easily avoided by the genetic algorithm, 
and it is easier to reach the global optimal solution. Finally, taking a suspension bridge with a main 
span of 920 m as a prototype, the full-bridge aeroelastic model is designed and the genetic algorithm 
is used to optimize the cross-section sizes of core beams in the bridge tower and the deck. Natural 
frequencies identified from the aeroelastic model agree well with the target ones, indicating the 
structural stiffness, which is provided by the core beams, has been modelled successfully. 

Keywords: aero-elastic model; core beam; geometric parameter; genetic algorithm; optimization 
 

1. Introduction 
Suspension bridges and cable-stayed bridges are sensitive to the effect of wind loads, 

due to their light mass, large flexibility, and small damping [1–5], and the dynamic re-
sponse of the long-span bridges under wind actions has an increasing relevance as the 
lengths of the spans grow [6,7]. So, the evaluation of wind resistance performance is es-
sential for large-span bridges and other important structures [8]. Despite computational 
fluid dynamics [9,10] and semi-analytical approaches [11,12], wind tunnel tests remain 
the most direct and reliable way that investigates the aeroelastic behavior of a full bridge 
due to many complex factors [13,14]. 

Among various reduced-scale models that can be tested in the wind tunnel to study 
the aeroelastic response of a real bridge, the full-bridge model can more realistically sim-
ulate various aerodynamic actions of the real bridge under the action of wind, as well as 
the interaction between the main vibration modes of the structure [15–17]. A large number 
of wind tunnel tests on the full-bridge aeroelastic models have been carried out to study 
the aerodynamic performances of the prototype bridge [18–25]. According to these refer-
ences, the full-bridge reduced model tests require a faithful representation of the phenom-
ena that are going to be studied when carried out in boundary layer wind tunnels. This 
requires a series of critical tasks [20,26–28]. One of them is a precise reproduction of the 
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geometry of the model, otherwise slight variations will deeply affect the results [27,29]. 
Therefore, very high requirements have been put in place throughout the design, and pro-
duction of the reduced-scale model. The reduced-scale models consist of core beams and 
“clothing”, where the former provides required stiffness, and the latter simulates the aer-
odynamic configuration [30]. Furthermore, the mass properties of the core beam and the 
clothing combined should be similar to those of the real bridges. Obviously, the determi-
nation of the section geometric parameters of the core beam is particularly important. 

Targeted inertial moments of the core beam are calculated based on the similarity 
relationship with the prototype bridge [30]. The inertial moments of the core beam, in-
cluding two bending moments of inertia and one torsional constant, are controlled by the 
section geometric parameters. The inertial moments determined by the section parameters 
should be as close as possible to the targeted ones.  

However, the common cross-sections of the core beams are various, such as rectan-
gular, circular, U-shaped and π-shaped sections [31–33], the ranges of the section geomet-
ric parameters are ambiguous. It is difficult to obtain an analytical solution of the torsion 
constant. Therefore, it is extremely difficult to determine the section geometric parameters 
of the core beam even if all the targeted inertial moments are modeled accurately. At pre-
sent, the trial-and-error method is commonly used to determine the section parameters of 
the core beam, which is complex, is tedious and has low accuracy. The U-shaped cross-
section has been the most widely used for core beams of bridge decks, and the rectangular 
section is generally used for the core beams of bridge towers [33]. 

In order to determine which geometric parameters of the core beam the model tar-
geted inertial moments effectively, three numerical solutions of the torsion constant are 
proposed, and two optimization methods for geometric parameters are presented in this 
study. The first optimization method is the optimization in ANSYS, and the other one is 
the genetic algorithm. The advantages and disadvantages of the concerned methods are 
presented.  

2. Design of Reduced-Scale Aeroelastic Models 
Reduced-scale aeroelastic models are designed and produced (aeroelastic modeling), 

which aims to reproduce the exact structural dynamic response of the prototype bridge 
when tested in a wind tunnel. There are four main steps from the actual bridge to the 
scaled aeroelastic model, as shown in Figure 1. For more details on the design process of 
reduced-scale aeroelastic models, readers may refer to Ref. [30]. 

 
Figure 1. The design process of reduced-scale aeroelastic models. 

Step 1. A prototype to the actual bridge is modeled and the dynamic characteristics 
of the prototype are determined. This prototype has to reproduce the stiffness of the actual 
bridge in the six degrees of freedom, or at least represent the stiffness in the most repre-
sentative degree of freedom (the prototype shown as Figure 1). 

Step 2. Based on the fundamental relationships between the limiting dimension of 
the wind tunnel test section and the dimensions of the prototype, the length scale factor 
λL is defined, and the similarity requirements can be determined. Consequently, an ideal 
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reduced-scale model can be defined by employing the scale factors and the similarity re-
quirements.  

Step 3. Due to the limitation of model construction, it is difficult to realize the contin-
uous characteristics of the ideal model in the length direction. So, the discretization of 
continuous properties and simplification of geometric details is necessary. Based on these 
adjustments, the real reduced model is created and targeted inertial moments are deter-
mined, which should be as close as possible to the ideal reduced model. 

Step 4. The model production is conducted according to the real reduced model. 
In model production, the section parameters of the core beam are determined and 

the inertial moments calculated by the section parameter should be as close as possible to 
the targeted ones. A detailed optimization process and numerical solution of the torsion 
constant are described in detail next. 

3. Numerical Solution of Torsion Constant 
The cross-section of a core beam commonly used in aeroelastic models is various, 

rectangular, circular, U-shaped, π-shaped sections and so on. It is difficult to obtain an 
analytical solution of the torsion constant, so a series of numerical solutions are proposed 
here. In fact, the finite element method and generalized difference method can deal with 
the torsion constant for any complex simply connected section, while the five-point dif-
ference method is not. For simple simply connected sections, such as rectangular sections, 
the torsion constant can be obtained by the five-point difference method. For complex 
simply connected sections, such as U-shaped cross-sections, the torsion constant can be 
obtained by the generalized difference method or the finite element method. 

3.1. Basic Theory 
Considering the Prandtl stress function method [34], the two-dimensional elliptic 

Poisson equation of the first type of Dirichlet boundary value problem for a simply con-
nected section can be obtained as follows: 

2 -2∇ φ =  (1) 

0Γφ =  (2) 

where, ϕ is the stress function, Γ is the boundary of cross-section region Ω. Equation (1) is 
only applicable in the region Ω, and Equation (2) is valid on the boundary Γ. 

The torsion constant D is expressed as a double integral of stress function ϕ in region 
Ω (including the boundary Γ) as: 

2D dxdy
Ω

φ=   (3) 

3.2. Generalized Difference Method 
In 1978, Li et al. [35] merged the integral interpolation method into the generalized 

Galerkin method and thereby extended the irregular grid difference method to the gener-
alized difference. This method not only maintains the simplicity of the difference method, 
but also has the accuracy of the finite element. 

The above method adopts a triangular meshing scheme, as shown in Figure 2. The 
entire cross-section region Ω is triangularly meshed and the internal angle of each triangle 
is less than 90°. Taking P0 in the subregion G0 as an example, outer nodes around P0, 
namely P1, P2, P3, P4, P5, and P6, are selected, and these points are arranged counterclock-
wise. Meanwhile, six triangles, P0P1P2, P0P2P3, P0P3P4, P0P4P5, P0P5P6 and P0P6P1, are defined 
by these seven points with point P0 being their common vertex. The outer centers of these 
six triangles, q1, q2, q3, q4, q5 and q6, and the adjacent-side midpoints of the six triangles, m1, 
m2, m3, m4, m5 and m6, define the shaded part G0, which also is a dual unit.  
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Figure 2. Geometric structure of triangle difference scheme. 

For any node inside the region Ω, a difference format is created. Both sides of Equa-
tion (1) are integrated over the subdomain G0: 

0 0

2 2= -
G G

dxdy dxdy∇ φ  , 
(4) 

Using the Green formula, Equation (4) is rewritten as 

0
0

2-
G

G

ds dxdy
n
φ

∂

∂− =
∂   

(5) 

where, ∂G0 is the boundary of the subdomain G0, and n is the unit normal vector of ∂G0. 
Therefore, the difference format for each point in the subdomain G0 is obtained as 

( ) ( ) ( ) ( )
0

0

6
1

1 0 0 7 1
1 0 1

( ),i i
i GG

i i

q
P

qds P P m G R q q
n P
φ φ φ φ+

+∂
= +

∂ = ⋅ − + =  ∂  , (6) 

where, m(G0) is the area of G0, RG0(ϕ) is the truncation error. 
Substituting Equation (6) into Equation (3) and rounding RG0(ϕ) off, the difference 

equation of point P0 is presented as Equation (7): 

( ) ( ) ( )

( )

0

0

0
0

6
1

1 0 0
1

1

0
0

2

1 2

-

-

i i
i

i
Gi

G

q P P dxdy m G
P

dxdy
m G

q
P

φ φ ϕ

ϕ

+
+

=
+

− − = = ⋅  

=





, 
(7) 

For an arbitrary point on the boundary Γ, the stress function value of P0, is obtained 
as 

( )0 0Pφ = , (8) 

The difference equations of all points are formed as a closed system of linear algebraic 
equations, and its coefficient matrix is symmetric. After solving the equations, the stress 
results in the region Ω are obtained as shown in Figure 3. According to Equation (3), the 
double volume of the stress results is the torsion constant of the U-shaped cross-section. 
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Figure 3. Differential stress function in the region Ω. 

3.3. Finite Element Method 
The Galerkin method is applied to the variation δϕ, namely 

( )2
02 0dGφ δφ∇ + =Ω , (9) 

For simply connected sections, the expression is equivalent to the torsion constant 
when the stress function is 0 at the boundary Γ. So, it is expressed as: 

22

0 0
1 2
2

J dG dG
x yΩ Ω

φ φ φ
  ∂ ∂ = ⋅ + −   ∂ ∂    

  , (10) 

In the region Ω, the stress function at node i is supposed as ϕi. For any point in the 
element e, the stress function ϕ can be interpolated as Equation (11), and the partial deriv-
ative of the stress function to the coordinate is expressed as Equation (12).  

eφ = NΦ , (11) 

e e

N
x x

N
y y

φ

φ

∂ ∂   
   ∂ ∂   = =   ∂ ∂   

∂ ∂      

BΦ Φ
, 

(12) 

where, Φe = {ϕ1, …, ϕn}T is the stress function vector of the element e, and N = {N1,…, Nn} 
is the shape function matrix. 

Substituting Equations (11) and (12) into (10), and letting δJ = 0, leads to the balance 
equation of the element e, as 

e e e=K RΦ , (13) 

0
T

e dG= ΩK B B , (14) 

02 T
e dG= ΩR N  (15) 

where, Ke and Re are, respectively, the stiffness matrix and equivalent node loading vector 
of element e. 

Arranging the balance equations of all the elements in region Ω leads to the general 
balance equation. Typical stress results are shown in Figure 4 by solving the general bal-
ance equation. According to Equation (3), the torsion constant is the double volume en-
closed by the stress surface and the XY plane. 
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Figure 4. Finite element stress function. 

3.4. Five-Point Difference Method 
In the five-point difference method, a partial derivative is replaced by the difference 

quotient of several adjacent numerical points [36], which applies well to a rectangular sec-
tion. First, a rectangular section is meshed into grids as shown in Figure 5. The edge along 
the x-axis is divided into N equal segments and the one along the y-axis is divided into M 
equal segments. Let xi = a + ih1, yj = c + jh2, where 0 ≤ i ≤ N, and 0 ≤ j ≤ M. In addition, ϕij = 
ϕ(xi, yj) is defined and the Poisson problem at the inner node is defined as 

( ) ( ) ( )
2 2

2 2

, ,
,i j i j

i j

x y x y
const x y

x y
φ φ∂ ∂

+ =
∂ ∂

, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1, (16) 

where, const(xi, yj) is a constant value equal to −2 in Equation (13). 

 
Figure 5. A rectangular cross-section. 

The two terms in the left side of Equation (16) are expanded according to the Taylor 
formula, as 

( ) ( ) ( ) ( ) ( )2 42
1

1 12 2 4
1

, ,1 , 2 , ,
12

i j ij j
i j i j i j

x y yhx y x y x y
x h x

φ φ ξ
φ φ φ− +

∂ ∂
 = − + − ∂ ∂

, xi−1 < ξij < xi+1 (17)

( ) ( ) ( ) ( ) ( )2 42
2

1 12 2 4
2

, ,1 , 2 , ,
12

i j i ij
i j i j i j

x y xhx y x y x y
y h y

φ φ η
φ φ φ− +

∂ ∂
 = − + − ∂ ∂

, yi−1 < ηij < yi+1 (18)

Substituting Equation (17) and (18) into Equation (16) and ignoring the second order 
quantity O(h12 + h22), one obtains 

( ), 1 1, , 1, , 12 2 2 2 2 2
2 1 1 2 1 2

1 1 1 1 1 12 ,i j i j i j i j i j i jconst x y
h h h h h h

φ φ φ φ φ− − + +

 
− + + + = 

 
, 1 ≤ i≤N-1, 0 ≤ j≤M-1 (19) 

The stress function vector ϕj is defined as  
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( )T

1 2 1,, , ,j j j N jφ φ φ −= …φ , 0 ≤ j ≤ M, (20)

and Equation (19) is rewritten as 

1 1D C D constj j j j− ++ + =φ φ φ , 1 ≤ j ≤ M − 1, (21)

2 2 2
1 2 1

2 2 2 2
1 1 2 1

2 2 2 2
1 1 2 1

2 2 2
1 1 2

1 1 12

1 1 1 12

1 1 1 12

1 1 12

C

h h h

h h h h

h h h h

h h h

  
+ −  

  
   − + −   
 

=  
   − + −   
 

  − +  
  

  

, 

(22) 

2

2

2

2

2

2

2

2

1

1

1

1

D

h

h

h

h

 − 
 
 

− 
 
 =
 
 − 
 
 − 
 



 

(23) 

( )
( )

( )
( )

1

2

2

1

,

,

const

,

,

j

j

j

N j

N j

const x y

const x y

const x y

const x y

−

−

 
 
 
 
 
 
 
 
 
 

= 
 

(24) 

Note that the first and last terms of vector constj already contain the boundary condi-
tions at x = a and x = b. 

Equation (21) can also be expanded to the following matrix form similar to Equation 
(25), as 

1 1 0

2 2

2 2

1 1

const DC D
constD C D

constD C D
const DD C

Μ Μ

Μ Μ Μ

− −

− −

    
    
    
     =
    
    

   

−

−    

 

φ φ
φ

φ
φ φ

 
(25)

Note that the first and last elements of the vector on the right side of Equation (25) 
take into account the boundary conditions at y = c and y = d. 

Difference equations of all points form a closed system of linear algebraic equations, 
of which the coefficient matrix is symmetric. After solving the equations, stress results can 
be obtained. A typical solution is shown in Figure 6 and the torsion constant is the double 
volume enclosed by the stress surface and the XY plane, according to Equation (3). 
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Figure 6. Differential stress function. 

4. Geometric Parameters Searching 
As shown in Figure 7, a U-shaped cross-section can be divided into three rectangular 

sections, I, II, and III. Four independent section parameters, h, d, th and td, are used to 
describe section size. According to Figure 6, coordinates of the centroid are obtained as  

2 ( ) + 4
4 2

2
4 2

2

c

2 2

c

d td h th h d td thz
h d td th

d h td thy
h d td th

⋅ + ⋅ + ⋅=
⋅ + ⋅

⋅ + ⋅=
⋅ + ⋅

, (26)

 
Figure 7. The U cross-section. 

The moments of inertia in the y and z directions, respectively, are given as  

2
3 3 2 2 21 ( 2 )I 2 ( - ) ( 2 ) ( - ) ( - ) ( - - ) ( 2 ) ( - )

12 2 2 2cy c c c
d d td dd h th td d th d h th z h z td d th z+  = + + + + + +    

 (27) 

2
3 3 21 1 1I 2 ( - ) ( 2 ) 2 ( - ) ( ) - ( 2 ) ( - )

12 2 2cz c cd h th td d th d h th h th y td d th th y     = + + + + + +    
 (28) 

The torsion constant of the U-shaped cross section can be determined by the numer-
ical solutions in Section 2.  

4.1. Optimization Method by ANSYS 
The optimization design module of ANSYS provides two optimization methods, 

namely the zero-order and the first-order method, which deal with most optimization 
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problems. The zero-order method randomly searches for the optimal solution in a given 
domain of the dependent variable, while the first-order method uses the first-order partial 
derivative of the dependent variable. Therefore, the latter is more suitable for local 
accurate optimization. 

Taking a U-shaped cross-section as an example, the target values of three moments 
of inertia, Target_Iz, Target_Iy and Target_Ix, are listed in Table 1. In fact, the target values 
listed in Table 1 are based on an actual suspension bridge, which will be mentioned later. 
In the process of ANSYS optimizing, the initial geometric sizes (h, d, th and td) of the 
section is first assigned, and then Iz, Iy and Ix are calculated.  

Table 1. Target section properties. 

Target_Iz (mm4) Target_Iy (mm4) Target_Ix (mm4) 
79.04 4518.74 241.44 

The errors of Iz, Iy and Ix are defined separately as 

( )
( )
( )

_ 100% Target _ / Target _

_ 100% Target _ / Target _

_ 100% Target _ / Target _

Err Iz Iz Iz Iz

Err Iy Iy Iy Iy

Err Ix Ix Ix Ix

= ⋅ −

= ⋅ −

= ⋅ −

 (29)

The three errors are all limited to 0~5%. The sum of the three errors is used as an 
objective function, as 

TErr=Err Iz+Err Iy+Err Ix_ _ _ , (30) 

where Err_Iz is the sum of the errors of Iz, Iy and Ix. 
The purpose of optimization is to minimize the total error. In order to investigate the 

influence of the initial parameters, two different sets of them and the searching domain 
are given, as listed in Table 2. It is seen that the initial value of d in the first set is not 
included in the searching domain. Figure 8 shows the optimization process of the zero-
order and the first-order method, where the ordinate is TErr and the abscissa is the num-
ber of iterations. 

Table 2. Initial values and searching domains. 

 h (mm) d (mm) th (mm) td (mm) 
Initial set 1 5.038 3.612 3.0579 19.585 
Initial set 2 4.138 2.712 3.06 19.6 

Searching domain 4.0~7.0 0.1~3.0 1.0~3.99 10.0~30.0 
Initial set 1 5.038 3.612 3.0579 19.585 

 
Figure 8. Optimization process. 
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It can be seen from Figure 8 that, based on the first set of initial values, the parameters 
are firstly optimized four times by zero-order method, resulting in a total error of 31.318%. 
Then the first-order method is performed three times, resulting in a total error of 3.738%. 
However, a total error as small as 0.31593% (see Table 3) is obtained when the second set 
of initial values is selected and optimized with the first-order method. Comparing the two 
sets of initial values, it is easy to find that the number of iterations of the second set of 
initial values is significantly reduced and the accuracy is obviously improved, which 
indicates that the initial values dominate the total error. 

Table 3. ANSYS optimization results of Initial set 2. 

Initial Set 2 + First-Order 
h (mm) d (mm) th (mm) td (mm) 
4.0378 2.6119 3.0574 19.582 
Err_Iz Err_Iy Err_Ix TErr 
0.083% 0.003% 0.229% 0.315% 

In order to investigate the influence of an individual variable, h, d, th or td on the 
target values in Table 1, the second set of initial values are taken as a reference. The 
optimization is performed with three variables fixed and the fourth one varies in the given 
range. The results are plotted in Figures 9–12, where it is noted that Err_Ix, Err_Iy and 
Err_Iz vary simultaneously. As h increases, Err_Iz increases exponentially, while Err_Iy 
and Err_Ix are only slightly affected (see Figure 9). The other three cases are similar in the 
way they change, with the error decreasing first and then increasing to some extent as 
Figures 10–12 show. Hence, each variable has an optimal value that minimizes the three 
errors at the same time. The optimal values of h, d, td, and th in their own dimensionless 
searching domain are 0, 0.9, 0.44, 0.67, respectively. Figure 13 shows the effects of the four 
variables on the total error TErr. It can be seen that TErr is relatively large except for four 
cases, which agrees well with the results in Figures 9–12. 
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Figure 9. The errors caused by h. 
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Figure 10. The errors caused by d. 
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Figure 11. The errors caused by td. 
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Figure 13. Total errors. 

4.2. Genetic Algorithm 
Due to the sensitivity of the zero-order and the first-order method to initial values, it 

is favorable to introduce a genetic algorithm to the optimization process. A genetic algo-
rithm is a method based on the theory of biological evolution and developed by Holland 
[37]. One of its advantages is that it does not require the calculation of a function gradient 
in the process of optimization. In addition, it can be easily extended to a global optimiza-
tion [38]. For more details on the terminology and algorithm, readers may refer to Refs. 
[39,40]. 

By using the global search ability of the genetic algorithm, the concerned problem 
can be converted into minimizing the total error expressed as 

TErr=Err Iz+Err Iy+Err Ix_ _ _ , (31) 

where TErr is the total error. Ranges of the four variables must be restricted as: a ≤ t ≤ b, c 
≤ d ≤ d, e ≤ th ≤ f, g ≤ td ≤ h. 

The genetic algorithm still takes the target values in Table 1 as optimization objec-
tives. Additionally, it is noted that the initial values are not needed in this case. Figure 14 
shows the genetic algorithm optimization process, and it shows that the average fitness 
value gradually approaches the maximum fitness value, which indicates that the possible 
solution approaches the optimal solution. Meanwhile, the best fitness value, which is the 
total error, converges to 0.47% at the 70th iteration. In addition, the mean distance between 
individuals, representing the diversity of offspring, decreases with the increase of the 
number of iterations of optimization, and approaches 0 at the 40th iteration. Table 4 shows 
the optimization results, which shows high accuracy of the genetic algorithm. 
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Figure 14. Genetic algorithm optimization process. 
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Table 4. Optimization results of genetic algorithm. 

Moment 
of Inertia 

Target  
Values (mm4) 

Optimized 
(mm4) Error (%) 

Final  
geometric sizes 

(mm) 

h 4 

Iz 79.05 79.34 0.37 d 2.62 
Iy 4518.74 4518.70 0.09 th 3.09 
Ix 241.44 241.42 0.01 td 19.57 

It is concluded that the zero-order and the first-order method leads to uncertainties 
results, which is affected by the initial values. The performance of the genetic algorithm is 
steady, converges rapidly and has high precision. 

5. Practical Application 
Taking a suspension bridge with a main span of 920 m as a prototype, the whole 

optimization process of the core beams in the full bridge reduced-scale model is repre-
sented. The overall layout of the suspension bridge is shown in Figure 15, and the cross-
section of the steel box girder is shown in Figure 16. 

25,500 25,50092,000
A B

unit cm
 

Figure 15. Layout of bridge span. 

2%2%

3100

2100500

30
0

500

unit cm

 
Figure 16. Main girder section. 

Considering the limiting dimensions of the wind tunnel (length × width × height: 15 
× 8.5 × 2 m), the geometric scale of the scaled model to the prototype is 1:121. In addition 
to the geometric similarity, the aeroelastic model and the real bridge should meet the sim-
ilarity of mass distribution, stiffness and damping characteristics that determine the sim-
ilarity of dynamic characteristics. Based on these similarity requirements, the similarity 
ratio of the bending and torsion stiffness with the prototype is 1:1215, shown in Table 5. 
The main cable is designed based on the principles of similar stiffness, mass, and quasi-
steady wind load. The hangers are tensile components, and the diameters of the hangers 
are determined by the principle of similar tensile stiffness. The full-bridge reduced-scale 
model is shown in Figure 17. The aeroelastic model adopts a combination of core beams 
enwrapped in “clothing”, which simulate aerodynamic configurations. The core beams 
provide the required rigidity, and the clothing simulates the aerodynamic configurations. 
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Figure 17. The full bridge reduced-scale model. 

Table 5. Similarity ratios based on similarity relationship. 

Parameter Unit Similarity Ratio 
Length m 1:121 

Wind Speed m/s 1:11 
Frequency Hz 11: 1 

Time s 1:11 
Mass per unit length Kg/m 1:1212 

Moment of inertia per unit mass Kg·m2/m 1:1214 
Bending stiffness N·m2 1:1215 
Torsional stiffness N·m2 1:1215 

Axial stiffness N 1:1213 

5.1. Core Beam Design of the Deck Girder 
In this section, the U-shaped section is used for the core beam of the deck girder. 

Based on the similarity ratio of 1:1215 for the bending and torsion stiffness, the targeted 
inertia moments and torsion constant of the core beam can be obtained listed in Table 6. 
The genetic algorithm is used to optimize the section parameters of the core beam, and 
the optimization results of the section parameters are also listed in Table 6. The results 
show the parameters of the U-shaped section are defined as 4, 2.62, 3.09, and 19.57 mm, 
and the total error is as low as 0.47%. The overall size of the U-shaped section of the core 
beam is given in Figure 18. 

 
Figure 18. Overall sizes of the core beam of the deck girder (mm). 
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Table 6. Section characteristics of main beam and steel core beam.  

Moment of 
Inertia Prototype (m4) 

model (mm4) 
error (%) 

Section 
sizes (mm) 

h 4.00 
Required Realized 

Iz 2.05 79.05 79.34 0.37 d 2.61 
Iy 117.20 4518.74 4518.70 0.09 th 3.09 
Ix 6.26 241.44 241.42 0.01 td 19.57 

It is not feasible to directly test the torsional frequency of the entire core beam. There-
fore, a 1498.6 mm-long core beam was subjected to finite element analysis and experi-
mental test in order to verify the accuracy of the torsional stiffness, as shown in Figure 19. 
One end of the core beam is fixed, and the attenuation time history in three directions 
were obtained to analyze the modal frequencies as shown in Figures 20–22. The targeted 
frequencies from finite element analysis and the tested frequencies are listed in Table 7. It 
can be found that there is little error between the targeted and the tested frequencies, 
which verifies that the design of the core beam is feasible. 

(a) the core beam section (b) the test photo 

Figure 19. The model test of the core beam section. 
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Figure 20. Time history of vertical-bending-free decay. 
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Figure 21. Time history of side-bending-free decay. 
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Figure 22. Time history of torsion-free decay. 

Table 7. Major modal properties of the tower models. 

core beam of the deck girder 

Mode Targeted (Hz) Measured (Hz) Error (%) 
1st-Vertical bending 1.00 0.98 −1.93 

1st-Side bending 8.47 8.3 −2.04 
1st-Torsional 20.49 20.3 −0.93 

5.2. Core Beam Design of the Bridge Tower 
The rectangular section is used for the cross-section of the bridge tower, the sizes of 

which vary vertically along the tower height. Due to the changing nature of the tower, it 
is discretized into ten segments, as shown in Figure 23. The section dimensions of each 
segment are averaged over its length. In so doing, tower B has ten groups of section prop-
erties as the targeted values. The optimization is accomplished by the genetic algorithm, 
of which the results are listed in Table 8. According to the properties listed in Table 8, the 
core beams of the bridge towers are manufactured as shown in Figure 24. The tested tor-
sional and vertical acceleration time histories of the core beam of tower B are given in 
Figures 25 and 26, and the natural frequencies can be obtained by Fourier transforms. 

When mass properties are concerned, it can be seen from Table 9 that additional mass 
is needed for all segments to meet the similarity of mass distribution with the prototype. 
This is realized by winding thin lead sheets around the core beams. Finally, the aeroelastic 
models of the two towers are shown in Figure 27. The tested torsional and vertical accel-
eration time histories of tower B are given in Figures 28 and 29, and the corresponding 
spectral analysis is also presented. All the tested frequencies and the theoretical ones of 
the models of bridge tower A and bridge tower B are listed in Table 10 and it shows that 
the tested frequencies agree very well with the targeted values. 
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Figure 23. The elevation and sectional views of bridge tower B. 

  
(a) (b) 

Figure 24. The core beam model test of bridge tower A and B. (a) The core beam of bridge tower B. 
(b) The core beam of bridge tower A. 
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Figure 25. Time history of torsion-free decay of tower B. 
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Figure 26. Time history of bending-free decay. 

Table 8. Geometric sizes of core beam sections of bridge tower B. 

Segment 
Moment of Inertia  Core Beam 

Error (%) 
Prototype (m4) Model (mm4) Section (mm) 

Iz Ix Iz Ix Width Height Iz Ix 
B-top 135.35 203.95 571.72 954.86 9.15 8.95 0.14 0.03 
B-C 144.89 212.61 848.96 1426.5 10.09 9.93 0.20 0.35 
C-D 154.83 221.31 907.98 1486.0 10.34 9.86 0.03 0.30 
D-E 165.18 230.05 969.42 1545.7 10.56 9.89 0.05 0.32 
E-F 175.93 238.83 1033.3 1605.7 10.80 9.84 0.01 0.08 
F-G 187.10 247.65 1099.7 1666.0 11.02 9.84 0.37 0.08 
G-H 198.69 256.49 1168.7 1726.4 11.27 9.81 0.01 0.01 
H-I 210.71 265.36 1240.2 1787.1 11.49 9.80 0.03 0.14 
I-J 223.17 274.27 1314.4 1848.0 11.77 9.73 0.51 0.51 
J-K 226.43 276.55 1362.0 1886.3 11.88 9.75 0.03 0.33 
L 84.29 145.63 510. 7 997.42 8.55 9.80 0.04 0.35 

Table 9. Mass per unit length of bridge tower B. 

Segment Prototype 
(kg) 

Required for the Model 
(g) 

Core Beam 
(g) 

Total Mass of Thin Lead Sheets 
and Clothing (g) 
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B-top 278,150.32 157.01 58.14 98.87 
B-C 670,724.55 378.61 76.58 302.03 
C-D 681,692.03 384.80 77.94 306.85 
D-E 692,659.52 390.99 79.77 311.21 
E-F 703,627.00 397.18 81.23 315.95 
F-G 714,594.48 403.37 82.81 320.56 
G-H 725,561.97 409.56 84.46 325.11 
H-I 736,529.45 415.75 86.11 329.64 
I-J 747,496.93 421.94 87.50 334.45 
J-K 192,097.71 108.43 22.54 85.89 
L 1,249,633.13 705.39 151.53 553.85 

 

  
(a) (b) 

Figure 27. Model test of the bridge towers. (a) The model of bridge tower B. (b) The model of 
bridge tower A. 
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Figure 28. Tested time history of torsion-free decay. 
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Figure 29. Acceleration Time history of bending-free decay. 

Table 10. Major modal properties of the tower models. 

 Mode Targeted (Hz) Measured (Hz) Error (%) 
A-core beam 1st-Vertical bending 4.226 4.321 2.25 
A-core beam 1st-Torsional 19.82 20.117 1.48 
B-core beam 1st-Vertical bending 11.551 11.42 1.13 
B-core beam 1st-Torsional 36.66 36.69 0.08 

A-bridge tower 1st-Vertical bending 1.913 1.953 2.11 
A-bridge tower 1st-Torsional 8.678 8.789 1.28 
B-bridge tower 1st-Vertical bending 5.405 5.493 1.63 
B-bridge tower 1st-Torsional 16.529 16.43 0.60 

5.3. The Dynamic Characteristics Testing of the Aeroelastic Model  
The dynamic characteristics test of the aeroelastic model is shown in Figure 30. Laser 

displacement meters and accelerometers are arranged at the quarter span length and half 
span length, which can collect different modal vibration information. Low-order modes 
are excited at different excitation positions, and vibration signals are collected to deter-
mine the frequencies. The test results are listed in Table 11. It is worth mentioning that 
due to the first-order antisymmetric torsional frequency reaching 6.302 Hz, manual exci-
tation cannot excite the vibration, while the bridge state flutter is controlled by a positive 
symmetric vibration mode, which can meet the test requirements.  
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Figure 30. Aeroelastic model dynamic characteristics testing. 

Table 11. Major frequency characteristics of the full-bridge aeroelastic model. 

Mode Targeted (Hz) Measured (Hz) Error (%) 
1st-Positive symmetrical vertical bending 1.859 1.818 −2.234 

1st-Antisymmetric vertical bending 1.280 1.270 −0.795 
1st-Positive symmetrical torsional 4.582 4.430 −3.323 

1st-Positive symmetrical lateral bending 6.302 / / 
1st-Positive symmetrical lateral bending 0.874 0.879 0.4801 

1st-Antisymmetric lateral bending 2.804 2.734 −2.483 

6. Conclusions 
In this study, numerical solutions of torsion constant of simply-connected sections 

are presented, two effective core beam design methods are proposed to address the diffi-
culties in the design of reduced-scale models, and the proposed methods are verified with 
an aeroelastic model of an actual suspension bridge. The conclusions are summarized as 
follows:  
(1) For simple simply connected sections, such as rectangular sections, the simple five-

point difference method is recommended to determine the torsion constant. For com-
plex simply connected sections, such as U-shaped cross sections, the generalized dif-
ference method and finite element method can be used to determine the torsion con-
stant. 

(2) For the ANSYS optimization method, the initial values of the section parameters of 
the core beams are required. If the initial values are not well-designed, the ANSYS 
optimization method is prone to fall into a local optimal solution. This study derives 
the numerical solution method for the torsion constant of rectangular and U-shaped 
sections commonly used in aeroelastic models, and proposes the genetic algorithm 
in the form of the total error of the section parameters. Through the optimization 
process, it is found that the genetic algorithm is easy to find out with the global opti-
mization solution. It not only converges at a fast speed, but also leads to results of 
high quality and reliability. Since the investigated concerns can deal with any re-
duced-scale model, the proposed solution is of general validity and can be extended 
to many other different cases.  
Each part in the design of an aeroelastic model is crucial to perfectly examine the 

aerodynamic performance of the full bridge in a wind tunnel, and these parts play differ-
ent roles but are closely related. This study only provides meaningful research on the op-
timization design of the cross-sectional size of the core beam. However, different scaled 
models or simplified aerodynamic shapes may have significant differences in their aero-
dynamic performance, which means there is still a long way to go for future research on 
the rationality of scaled and simplified aerodynamic shapes. 
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