
 
 

 

 
Appl. Sci. 2023, 13, 5578. https://doi.org/10.3390/app13095578 www.mdpi.com/journal/applsci 

Article 

An Intuitionistic Fuzzy-Rough Set-Based Classification for 
Anomaly Detection 
Fokrul Alom Mazarbhuiya 1,* and Mohamed Shenify 2,* 

1 School of Fundamental and Applied Sciences, Assam Don Bosco University, Guwahati 782402, India 
2 College of Computer Science and IT, Albaha University, Al Baha 65799, Saudi Arabia 
* Correspondence: fokrul.mazarbhuiya@dbuniversity.ac.in (F.A.M.); maalshenify@bu.edu.sa (M.S.) 

Abstract: The challenging issues of computer networks and databases are not only the intrusion 
detection but also the reduction of false positives and increase of detection rate. In any intrusion 
detection system, anomaly detection mainly focuses on modeling the normal behavior of the users 
and detecting the deviations from normal behavior, which are assumed to be potential intrusions 
or threats. Several techniques have already been successfully tried for this purpose. However, the 
normal and suspicious behaviors are hard to predict as there is no precise boundary differentiating 
one from another. Here, rough set theory and fuzzy set theory come into the picture. In this article, 
a hybrid approach consisting of rough set theory and intuitionistic fuzzy set theory is proposed for 
the detection of anomaly. The proposed approach is a classification approach which takes the ad-
vantages of both rough set and intuitionistic fuzzy set to deal with inherent uncertainty, vagueness, 
and indiscernibility in the dataset. The algorithm classifies the data instances in such a way that they 
can be expressed using natural language. A data instance can possibly or certainly belong to a class 
with degrees of membership and non-membership. The empirical study with a real-world and a 
synthetic dataset demonstrates that the proposed algorithm has normal true positive rates of 
91.989% and 96.99% and attack true positive rates of 91.289% and 96.29%, respectively. 

Keywords: intuitionistic fuzzy sets; fuzzy correlation; fuzzy relation; α-cut of a fuzzy relation;  
similarity relation; fuzzy lower and upper approximation of sets 
 

1. Introduction 
Anomaly detection (AD) can be termed as the detection of the patterns that deviate 

from the expected normal behavior [1]. Anomaly detection is essential when such abnor-
mality in the datasets can provide sufficient system information [2]. An anomaly may be 
malicious activities, instrumentation errors, human errors, etc. It is an emerging research 
area with applications in fields such as cybersecurity, medicine, intrusion detections, fi-
nancial fraud, etc. With the advancement of computers and networks and their extensive 
uses, organizations are becoming vulnerable to malicious activities. Although the existing 
defense mechanism can provide protection up to a reasonable extent, the malicious at-
tackers are becoming more sophisticated in intruding across the networks. In the case of 
internal attack, it might be interesting and challenging to identify the anomalies. The de-
tection of anomaly from network data has been accepted as one of the most promising 
research areas of information security. 

Intrusion detection systems (IDSs) [3] are security devices for shielding networks or 
systems from unauthorized activity that could endanger accessibility, privacy, or integ-
rity. Anomaly-detection-based and signature-recognition-based techniques are the two 
main categories of IDSs. By monitoring the systems and categorizing the actions as normal 
or anomalous, the former [4] is utilized to find network and computer misuse or intru-
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sions. Anomaly-based IDS is the name given to the ensuing system [3,4]. However, a sig-
nature-recognition-based intrusion detection technique [5] uses a database of known at-
tack signatures and raises an alarm whenever network traffic matches any signature. Usu-
ally, a computer and associated network can easily use an anomaly-based IDS as a risk 
mitigation technique. 

Several anomaly detection approaches were developed in the previous decade [6–11]. 
The classification-based approach is one such approach. The classification [12] is a data pro-
cessing tool to classify the items into predefined classes, and it has been applied in several 
areas such as pattern recognition, anomaly detection, prediction, machine vision, etc. [13–
16]. An anomaly detection algorithm using neighborhood rough set classification for dataset 
with mixed attributes was proposed in [13]. In [14], the authors proposed a decision-tree-
based approach for the detection of anomaly in the results of computer assessment to im-
prove the quality of educational management. In [15], the authors proposed a Bayesian-net-
work-based anomaly detection method. In [16], the authors developed a single deep RBF 
network, used to predict control actions and to detect hostile cyber physical system attacks. 
In [17], the authors presented an anomaly detection method using a rough-set-based attrib-
ute reduction. In [18], the authors introduced an anomalous event identification approach 
on video surveillance applications. In [19], the authors introduced a neural-network-based 
semi-supervised approach for efficient anomaly detection. 

A problem similar to classification approach is also addressed using the clustering 
approach [20–24]. In [25], the authors proposed a complex method for detecting anomaly 
from real-time data using recurrence and fractal analysis. In [26], the authors made a de-
tailed comparative analysis of five different time series models of anomaly detection. In 
[27], an ensemble learning model was applied to investigate and forecast outliers of the 
enormous system logs. In [28], the authors suggested a strategy for anomaly detection that 
permits the use of state-of-the-art feature selection techniques for idea representation of 
meta-features. A new outline focusing on data-technology-based real-time AD was pro-
posed in [29], which uses a streaming sliding window factor corset clustering algorithm. 
In [30], the authors proposed a mixed clustering algorithm (MCAD) for detecting anomaly 
in real-time data. In [31], the authors proposed an approach called density-increasing path 
(DIP) to address issues of arbitrary shapes and unknown cluster numbers appearing dur-
ing clustering processes. 

Most of the aforesaid methods only addressed the accuracy of the anomaly detection 
and a few addressed the false positive rates of the methods. Since the increase in the false 
positive rate decreases the detection rates and thus the efficacy of any classifier, it is re-
quired to minimize the false positive rates. Again, the normal and anomalous behaviors 
of the system are difficult to predict as there is no precise boundary differentiating one 
from another. In this scenario, either fuzzy set theory or rough set theory, or the combina-
tion of both, can effectively be utilized. 

L. A. Zadeh [32] introduced fuzziness in the realm of mathematics by formally defining 
it as a generalization of ordinary set. Atanassov [33] introduced intuitionistic fuzzy sets 
(IFSs) by generalizing them in terms of membership and nonmembership functions. Most 
of the works on anomaly detection used Zadeh’s [32] fuzzy set, and a few only used IFS. 
Since the IFS has the inherent ability to tackle the imbalance and overlapping data [34], it 
can efficiently be used to describe the uncertainty, imprecision, and vagueness in more gen-
eralized ways than the traditional fuzzy approaches [32]. Considering the strength of the 
intuitionistic fuzzy sets, in [35], the authors proposed an intuitionistic approach to detect 
anomaly from time series data. In [36], the authors proposed the formula for correlation 
coefficient of intuitionistic fuzzy sets whose value lies in the interval [0, 1]. Fuzzy relation, 
α-cut of a fuzzy relation, and fuzzy equivalence relations were introduced in [37,38]. 

Pawlak [39] introduced the rough set theory to deal with uncertainty, imprecision, or 
vagueness that exist in the datasets. Using the features of an equivalence relation, [40] 
nicely applied the rough-set-based classification to discrete datasets. In [41], the authors 
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proposed an efficient method using fuzzy neighborhood rough set for the detection anom-
aly in large datasets. In [42], the authors proposed an efficient fuzzy-rough-set-based al-
gorithm for feature selection. In [43,44], the authors proposed two density-based ap-
proaches using neutrosophic sets and fuzzy proximity relations for the detection anomaly. 
In [45], the authors proposed an NN classification algorithm which uses the fuzzy-rough 
lower and upper approximations to classify test objects, or to predict their decision value. 
The methods discussed above used the parameters such as entropy and weighted density 
as classification criterion for anomaly detection. However, when using correlation coeffi-
cient of intuitionistic fuzzy sets, classification rules can be generated where each data in-
stance participating in the rules is characterized by its membership as well as non-mem-
bership values defined over a universe of discourse. 

Thivagar et al. [46] introduced nano topological space with respect to a subset X of 
universe U in terms of lower and upper approximation of X. In [47], the authors not only 
introduced a nano topology structure but also applied it in medical diagnosis. In [48], the 
authors introduced three novel fuzzy nano topologies. Most classification-based anomaly 
detection algorithms developed up until today used different well-known measures to 
differentiate classes, and very few works were reported using the statistical measures such 
as correlation coefficient. Secondly, most of the fuzzy-rough approaches consider the cor-
responding fuzziness in Zadeh’s sense [32]. However, if the approach can be extended to 
the intuitionistic fuzzy set, then the detected anomalies can provide more information 
about the system. 

In this article, a hybrid approach consisting of intuitionistic fuzzy set (IFS) and rough 
set (RS) was used in the classification algorithm for the anomaly detection of network da-
tasets. The objectives of the paper are threefold. 
• First of all, a formula for correlation coefficient of IFSs is defined. 
• Secondly, using the above correlation coefficient, an α-relation (for a preassigned 

value of α) and an equivalence relation [49–51] are generated to generate two approx-
imations. 

• Finally, a classification-based hybrid algorithm (IFRSCAD) consisting of both IFS and 
RS is proposed to generate the certain and possible fuzzy rules. 
Furthermore, the proposed algorithm (IFRSCAD) is implemented using Matlab with 

two well-known datasets: KDDCUP’99 Network Anomaly Detection dataset [52] and Kin-
sune Network Attack dataset [53]. The classification results are compared with other clas-
sification-based methods, namely, Cuijuan et al. [17], Wang et al. [35], deep-RBF network 
[16], Bayes network [15], and decision tree [14]. It is found that the proposed algorithm is 
comparatively more efficient than others with respect to true positive rates and false pos-
itive rates. The time-complexity of the IFRSCAD is also compared with a well-known clus-
tering-based algorithm MCAD [30] and is found to be comparatively efficient. 

This paper is formatted in the following ways. The recent advances in this field are 
described in Section 2. The problem definition is given in Section 3. The algorithm and the 
flowchart explaining the system are given in Section 4. The time-complexity analysis is 
presented in Section 5. The experimental study and outcomes are presented in Section 6, 
and, lastly, the conclusions, limitations, and future directions of work are given in Section 
7. 

2. Related Works 
AD [1] is termed as the discovery of those patterns that deviate from previously oc-

curring ones. It can be useful for obtaining sufficient system information [2], and is one of 
the vital areas of modern research, which is receiving more and more attention of the re-
searcher day by day. A couple of anomaly detection systems have already been developed 
[3,4]. Classification-based anomaly detection systems are some of the many. Using a clas-
sification-based labeling technique, Abdullah et al. [6] presented a method of anomaly 
detection in cellular networks. In [6], the authors used negative selection algorithm for 
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detecting anomalies in multidimensional data. Taha et al. [8] reviewed the different anom-
aly detection methods for categorical data. Diaz Verdejo et al. [5] proposed an efficient 
alternative approach, named signature-recognition-based detection, in the context of web 
attacks. 

Mazarbhuiya et al. [13] introduced a neighborhood rough-set-based classification ap-
proach to detect the anomaly in a mixed attribute dataset. For assessment of the computer 
and to improve the quality of educational management, a decision-tree-based anomaly 
detection was proposed [14]. A Bayesian-network-based algorithm for anomaly detection 
and offering correction hints was presented in [15]. In [16], the authors designed a single 
deep-RBF network to predict control actions and detect unwanted attacks in cyber physi-
cal systems. In [16], the authors proposed a rough set attribute reduction approach to de-
tect anomaly. Wang et al. [17] designed an efficient intuitionistic fuzzy-set-based approach 
to detect anomaly from network traffic. Sengonul et al. [18] introduced AI-based analysis 
of anomaly detection in video surveillance applications. Fan et al. [19] introduced a neu-
ral-network-based semi-supervised approach for efficient anomaly detection. 

Anomaly detection using a clustering approach was also studied by many research-
ers. Mazarbhuiya et al. [20] proposed an agglomerative hierarchical-clustering-based 
anomaly detection algorithm for anomaly detection in network datasets. An fuzzy c-
means clustering-based anomaly detection method was proposed in [21]. Mazarbhuiya et 
al. [22] proposed a mixed algorithm consisting of features of both k-means and hierar-
chical algorithm for anomaly detection in network datasets. Retting et al. [23] proposed 
an algorithm of online anomaly detection in big data streams. Alguliyev et al. [24] pro-
posed a clustering-based anomaly detection for big data. Using fractal and recurrence 
analysis, Alghawli et al. [25] proposed a real-time anomaly detection algorithm in time 
series data. 

Kim et al. [26] performed a comparative analysis of five models of time series anom-
aly detection. In [27], the authors applied an ensemble learning model to study and predict 
anomaly of the enormous system logs. Halstead et al. [28] devised a strategy for anomaly 
detection that permitted the use of the latest feature selection techniques for idea repre-
sentation of meta-features. Habeeb et al. [29] presented a data-technology-based frame-
work focusing on real-time anomaly detection, which used a streaming sliding window 
factor corset clustering algorithm. Mazarbhuiya et al. [30] introduced a mixed clustering 
algorithm for anomaly detection of real-time data. Zhao et al. [31] proposed an efficient 
density-increasing path (DIP) anomaly detection approach to address arbitrary shapes 
and unknown cluster numbers appearing during clustering processes. 

The fuzzy set was formally introduced by Zadeh [32] to deal with imprecision, un-
certainty, or linguistic vagueness occurring in any dataset. Generalizing the concept of 
fuzzy set, Atanassov [33] defined intuitionistic fuzzy sets using membership and non-
membership functions. Eulalia et al. [34] proposed an IFS-based classification on imbal-
ance and overlapping classes to capture inherent imprecision, vagueness, and uncertainty 
occurring in the dataset. Wang et al. [35] proposed an intuitionistic fuzzy-set-based ap-
proach for the detection anomaly from time series data. Gerstenkorn et al. [36] proposed 
the definition correlation coefficient of intuitionistic fuzzy sets. Zadeh et al. [37] intro-
duced the details of fuzzy similarity relations. In [38], the concepts of α-cut of a fuzzy 
relation and fuzzy equivalence relations were introduced in detail. 

Rough set theory was introduced by Pawlak [39] to deal with imprecision, uncer-
tainty, or vagueness that exist in any datasets. Using properties to equivalence relation, 
Nowicki et al. [40] proposed a rough-set-based classification method on discrete datasets. 
Maroune et al. [41] proposed an anomaly-detection-based method on a highly scalable 
approach to compute the nearest neighbor of objects using rough set theory. Li et al. [42] 
proposed an efficient fuzzy-rough-set-based approach for the feature selection. Sangeetha 
et al. [43,44, proposed two density approaches based on neutrosophic sets and fuzzy prox-
imity relations for the detection anomaly. Yuan et al. [45] introduced a neural-network-
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based classification algorithm using the fuzzy-rough lower and upper approximations to 
classify test objects or to predict their decision value. 

Thivagar et al. [46,47] not only proposed the structure of nanotopological space in 
terms of lower and upper approximation but also applied it in medical diagnosis. Shum-
rani et al. [48] first introduced the concept of the covering-based rough fuzzy nanotopol-
ogy, the covering-based rough intuitionistic fuzzy nanotopology, and the covering-based 
rough neutrosophic nanotopology. In [49], the authors introduced the concept of fuzzy-
rough set theory. Maji et al. [50] applied fuzzy-rough set for relevant genes selection from 
microarray data. Chimphlee et al. [51] proposed an anomaly-based IDS, which used 
fuzzy-rough clustering method. In [30], the authors conducted the experimental studies 
with two well-known datasets: KDDCUP’99 [52] Network Anomaly Detection dataset and 
Kitsune [53] Network Attack dataset. 

3. Problem Definitions 
Below, we present some important terms and definitions used in the paper. 

Definition 1. Fuzzy set. 

Let X = {x1, x2,… xn} be the universe of discourse. A fuzzy set [32] A on X is character-
ized by 

A = {(𝑥 , 𝜇 (𝑥 )); 𝑥 𝑋, 𝑖 = 1, 2, … 𝑛}  (1)

where 𝜇 : 𝑋[0, 1], the membership function, gives the grade of membership of each el-
ement 𝑥 𝑋 in A. 

Definition 2. Intuitionistic fuzzy set. 

Atanassov [33] proposed the definition of an intuitionistic fuzzy set A on X as 

A = {(𝑥 , 𝜇 (𝑥 ), 𝜈 (𝑥 )); 𝑥 𝑋, 𝑖 = 1, 2, … 𝑛}  (2)

where 𝜇 : 𝑋[0, 1] and 𝜈 : 𝑋[0, 1] are the membership function and nonmembership 
function of the fuzzy set A, respectively, satisfying the condition 0 ≤ 𝜇 (𝑥 ) + 𝜈 (𝑥 ) ≤ 1, 
for every 𝑥 𝑋. 

Definition 3. Correlation of intuitionistic fuzzy sets. 

Let A = {( 𝑥  ; 𝜇 (𝑥 ),  𝜈 (𝑥 )); 𝑥 𝑋, 𝑖 = 1, 2, … 𝑛}  and B = {( 𝑥  ; 𝜇 (𝑥 ), 𝜈 (𝑥 )); 𝑥 𝑋, 𝑖 = 1, 2, … 𝑛} are two intuitionistic fuzzy sets on X = {x1, x2,… xn}. Gersten-
korn et al. [36] proposed the formula correlation coefficient as 𝜌 = ∑ [ ( ). ( ) ( ). ( )]∑ [( ( )) ( ( )) ] ∑ [( ( )) ( ( )) ]  (3)

Furthermore, 0 ≤ 𝜌  ≤ 1. 

Definition 4. Fuzzy relation [37,38]. 

For any data instances xi; i = 1, 2, … m in U, we define a fuzzy relation R on U as R = 
{(xi, xj); ρxixj; xi, xj ∈U}. Since 0 ≤ ρ ≤ 1, R will be an equivalence relation. 

Definition 5. 𝛼 − 𝑐𝑢t Rα [37,38]. 

An 𝛼 − cut Rα of a fuzzy relation R on U is a crisp set containing the elements with 
membership values greater than 𝛼 that is 
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Rα = {(x, y); 𝜇 (𝑥, 𝑦) ≥ 𝛼, 𝛼 ∈(0, 1], x, y∈U} (4)

Definition 6. 𝛼 −relation [37,38]. 

For any data instances xi; i = 1, 2, … m in U and 0 < 𝛼 ≤ 1, the 𝛼 −cut Rα of R generates 𝛼-relation (U, 𝜌) as 𝛼(xi) = {x; 𝜌  ≥𝛼}. (5)

Proposition 1. [37,38] 

If a fuzzy relation R is an equivalence relation in max–min sense, then for 𝛼 ∈ (0, 1), 
Rα possesses an equivalence relation. Therefore, any 𝛼 −relation represented by an 𝛼–cut 
Rα will have an equivalence relation. The ordered pair (U, Rα) is an approximation space. 

Definition 7. Fuzzy-Rough Set. 

Fuzzy-rough set theory is an extension of rough set theory where the crisp equiva-
lence class concept is extended to form fuzzy equivalence classes. Let the conditional and 
decision attributes of an information systems both be intuitionistic fuzzy sets and let us 
define an 𝛼 −relation in the aforesaid manner. Since a fuzzy equivalence relation gener-
ates a fuzzy partition of the universe of discourse, the 𝛼 −relation will generate a series 
of fuzzy equivalence classes [49–51], known as fuzzy knowledge granules. Letting (U, R) 
represent a fuzzy approximation space and X be a fuzzy subject of U intuitionistic sense, 
the intuitionistic fuzzy nano lower approximation, the intuitionistic fuzzy nano upper ap-
proximation, and the intuitionistic nano boundary approximation of X on (U, R) are de-
noted by 𝐼(𝑋), 𝐼(𝑋), and 𝐵 (𝑋), respectively, which are expressed as follows [48]: 𝐼(𝑋) = x, 𝜇 (𝑥), 𝜈 (𝑥) , 𝑦 ∈ [𝑥] , 𝑥 ∈ 𝑈  (6)

𝐼(𝑋) = x, 𝜇 (𝑥), 𝜈 (𝑥) , 𝑦 ∈ [𝑥] , 𝑥 ∈ 𝑈   (7)

𝐵 (𝑋) =  𝐼(𝑋) − 𝐼(𝑋) (8)

where 𝜇 (𝑥) = 𝑖𝑛𝑓 ∈[ ] (𝑦) , 𝜈 (𝑥) = 𝑠𝑢𝑝 ∈[ ] (𝑦) , 𝜇 (𝑥) = 𝑠𝑢𝑝 ∈[ ] (𝑦) , and 𝜈 (𝑥) = 𝑖𝑛𝑓 ∈[ ] (𝑦). 

4. Proposed Algorithm 
For generating classification rules, we choose a suitable value of the correlation coef-

ficient (α) to define the α-relation. The correlation coefficient used to define the relation is 
given in Section 3. The procedure of finding classification rules is given as follows. We 
have a collection of m-data instances, each of which is described by n-intuitionistic fuzzy 
attributes and is represented as an intuitionistic fuzzy matrix [54], where each entry is <xij, 
yij>, xij ∈ [0, 1], yij ∈ [0, 1], and 0 ≤ xij + yij ≤ 1, I = 1, 2, … m and j = 1, 2, … n. Usually, the 
dataset can be expressed as an information system (U, C∪D), where C and D are condi-
tional and decision attributes, respectively, and are expressed as intuitionistic fuzzy sets. 
The method is described below. 

The first step of the proposed method is to compute α-relation of the conditional at-
tribute using correlation coefficient, and compute the equivalence classes of decision at-
tributes using the same formula of the correlation coefficient. The value of α is taken to be 
0.4. Then, the “infimum” operator is applied on fuzzy knowledge granules of conditional 
attributes. Then, intuitionistic fuzzy nano lower approximation and intuitionistic fuzzy 
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nano upper approximation are constructed using decision class. Then, the boundary re-
gions are also found. With the help of two approximations, two sets of fuzzy rules, 
namely, the certain fuzzy rules and possible fuzzy rules, can be generated. The proposed 
method is also explained with the help of the flowchart given in Figure 1 below. 

 
Figure 1. Flowchart of the algorithm. 

The pseudocode for the algorithm is given as follows. 

Algorithm 1. IFRSCAD  

1: Input (U, C∪D), α//C, the conditional fuzzy attributes, D, the decision fuzzy attrib-
utes 

2: Step1. Create α-relation on C using correlation coefficient. 
3: Step2. Create the fuzzy equivalence relation for D. 

4: Step3. Apply ‘infimum’ operator on the fuzzy granules of records of U brought up 
by C. 

5: 
Step4. Construct separately nano lower approximation space (𝐼(𝑋)) Nano upper ap-
proximation space 𝐼(𝑋) for D and the result of fuzzy granules after applying ‘infi-
mum’ to C. 

6: Step5. Find boundary regions. 

7: 
Step6. Generate certain fuzzy rules from nano lower approximation space, possible 
fuzzy rules from nano upper approximation, and boundary rules from boundary re-
gion. 

Obviously, each rule generated by the system is fuzzy in the intuitionistic sense. That 
is, attributes contributing in any of the rules will be in the intuitionistic fuzzy set. 

5. Complexity Analysis 
To generate α-relation, the algorithm needs to choose all possible pairs of data in-

stances from U, compute their correlation coefficients, then compare these with α. These 
are performed in (½ |U|C2.|C| + ½ |U|C2), where (½ |U|C2) computation is required for choosing 
pairs of data instances, |C| is required for computation correlation coefficients, and (½ |U|C2) 
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number of comparisons with α are required. Thus, the running cost of step 1 is O(m2.n), 
where |U| = m and |C| = n. For generating equivalence relation for D, the algorithm needs 
to take all possible pairs of data instances and compute the correlations, and this can be 
performed in (½ |U|C2.|C|). The running cost for step 2 is O(m2.n). Thus, the running cost of 
step 1 and step 2 is O(m2.n + m2.n)= O(m2.n). The running cost for step 3 is O(m). For gen-
erating the nano topology, the lower approximation, upper approximation, and boundary 
regions of the set have to be generated, which takes the computational time of O(|X|.|U|). 
Therefore, the total cost from step 1 to step 5 is O(m2.n + m + |X|.|U|) = O(m2.n), which is the 
worst-case complexity. Step 6 takes constant time. Therefore, the overall time-complexity 
of the proposed algorithm is O(m2.n), which shows that the proposed algorithm is quite 
efficient. 

6. Experimental Analysis and Results 
6.1. Datasets 

KDDCUP’99 [52]: It is a synthetic dataset that simulates intrusion in the military net-
work environment. The data are collected for 9 weeks, and the training data consist of 
5000 thousand network connections. The attributes can be divided into the classes, viz., 
normal (unauthorized access to local super user privileges, unauthorized access from a 
remote machine), dos, and probe. 

Kitsune [53]: It is a group of nine network attack datasets, each containing millions 
of network packets and different cyberattacks, that were either gathered from an IP-based 
commercial surveillance system or a network of IoT devices. 

The above datasets were acquired through the UCI machine repository. A brief de-
scription of the datasets is given in Table 1. 

Table 1. Dataset descriptions. 

Dataset Dataset Characteristics Attribute Characteristics No. of Instances No. of Attributes 
KDDCUP’99 Network Anomaly De-

tection dataset [44] 
Multivariate Numeric, categorical, temporal 4,898,431 41 

Kitsune Network Attack dataset [45] 
Multivariate, sequential, 

time series 
Real, temporal 27,170,754 115 

6.2. Experimental Results and Analysis 
The experiments were carried out in Matlab with Intel Core i7-2600 machine with 3.4 

GHz, 8 MB Cache, 8 GB RAM, and 500 GB hard disc, running Windows 10, and the out-
comes were analyzed with five prominent classification-based methods, namely, Cuijuan 
et al.’s algorithm [17], Wang et al.’s algorithm [35], deep-RBF network [16], Bayes network 
[15], and decision tree [14]. The classifiers were built using the aforesaid dataset. The value 
of α was assumed to be 0.4. The classifiers were then used to categorize any new instance 
as either normal traffic or an attack. For a variety of attributes sizes, the outcomes of all 
the aforesaid six methods were recorded. Data instances from various attacks were signif-
icantly out of proportion to normal data. Parameters such as true positive rate (TPR) and 
false positive rate (FPR) were utilized to estimate the effectiveness of the approaches and 
comparative analysis. A partial view of the results of the six algorithms describing the 
comparative analysis of normal true positive rate, attack true positive rate, normal false 
positive rate, and attack false positive rate for different sizes of attribute sets of the 
KDDCUP’99 dataset [52] is presented in Table 2 and Figures 2–7, respectively. 

Table 2. Normal vs. attack TPR/FPR using KDDCUP’99 [52]. 

Algorithm No. of 
Attributes Normal TPR Attack TPR Normal FPR Attack FPR Avg. TPR Avg. FPR 

IFRSCAD 
41 0.9699 0.9629 0.03010 0.03710 0.9664 0.03360 
20 0.97999 0.9789 0.02010 0.02110 0.974445 0.02060 
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10 0.98342 0.9804 0.01658 0.01960 0.98191 0.01809 

Wang et al. [35] 
41 0.9625 0.9325 0.0302 0.0675 0.9475 0.04885 
20 0.9745 0.9415 0.0312 0.0585 0.9580 0.04485 
10 0.9821 0.9621 0.0212 0.0379 0.9721 0.02955 

Cuijuan et al. [17] 
41 0.9325 0.8925 0.0580 0.1075 0.9175 0.08275 
20 0.9445 0.9245 0.0540 0.0755 0.9345 0.06475 
10 0.9775 0.9575 0.0320 0.0425 0.9675 0.03725 

Deep-RBF network 
41 0.9025 0.8525 0.0975 0.1475 0.8775 0.12250 
20 0.9212 0.8812 0.0788 0.1188 0.9012 0.09880 
10 0.9425 0.9023 0.0575 0.0975 0.9225 0.07750 

Bayes network 
41 0.9313 0.8349 0.0687 0.1651 0.8831 0.11690 
20 0.9429 0.8720 0.0571 0.1328 0.9075 0.09255 
10 0.9587 0.9087 0.0413 0.0913 0.9337 0.05215 

Decision tree 
41 0.6649 0.6223 0.3351 0.3771 0.6436 0.35610 
20 0.6829 0.6520 0.3171 0.3480 0.6779 0.33255 
10 0.7131 0.6744 0.2969 0.3256 0.69375 0.31125 

  
Figure 2. Comparative analysis of normal true positive rates of different algorithms with 
KDDCUP’99. 

The bar diagram of Figure 2 represents the percentage of normal true positive rate of 
six different algorithms, namely, Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm 
[17], deep-RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD for dif-
ferent attribute sizes, say 10, 20, and 41 of the dataset KDDCUP’99 [52]. Here, each colored 
bar represents one algorithm’s percentage of normal true positive rates. 
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Figure 3. Comparative analysis of attack true positive rates of different algorithms with 
KDDCUP’99. 

The bar diagram of Figure 3 represents the percentages of attack true positive rate of 
six aforesaid algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm [17], deep-
RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD) for different at-
tribute sizes of the dataset KDDCUP’99 [52]. 

  
Figure 4. Comparative analysis of normal false positive rates of different algorithms with 
KDDCUP’99. 

The bar diagram of Figure 4 represents the percentages of normal false positive rates 
of aforesaid algorithms for different attribute sizes of the dataset KDDCUP’99 [52]. 
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Figure 5. Comparative analysis of attack false positive rates of different algorithms with 
KDDCUP’99. 

Again the bar diagram of Figure 5 represents the percentages of the attack false pos-
itive rates of the aforesaid six algorithms for different attribute sizes of the dataset 
KDDCUP’99 [52]. 

  
Figure 6. Comparative analysis of average true positive rates of different algorithms with 
KDDCUP’99. 

Again, the bar diagram of Figure 6 represents the percentages of the average true pos-
itive rate of the aforesaid six algorithms for different attribute sizes of KDDCUP’99 [52]. 
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Figure 7. Comparative analysis of average false positive rates of different algorithms with 
KDDCUP’99. 

Again, the bar diagram of Figure 7 represents the percentage of average false positive 
rate of the aforesaid six algorithms for different attribute sizes of the dataset KDDCUP’99 
[52]. 

Similarly, a partial view of the results of the six algorithms describing the compara-
tive analysis of normal true positive rate, attack true positive rate, normal false positive 
rate, and attack false positive rate for different sizes of attribute set of the Kitsune dataset 
[53] is presented in Table 3 and Figures 8–13, respectively. 

Table 3. Normal vs. attack TPR/FPR using Kitsune [53]. 

Algorithm No. of 
Attributes 

Normal TPR Attack TPR Normal FPR Attack FPR Avg. TPR Avg. FPR 

IFRSCAD 

115 0.91989 0.91289 0.08011 0.08711 0.91639 0.08361 
100 0.92766 0.92066 0.07234 0.07934 0.92416 0.07584 
50 0.9679  0.95116 0.04110 0.04884 0.95453 0.04497 
25 0.96999 0.96678 0.03010 0.03322 0.968385 0.03166 
10 0.98342 0.9804 0.01658 0.0196 0.98191 0.01809 

Wang et al. [35] 

115 0.9044 0.8933 0.0956 0.1067 0.89885 0.10115 
100 0.9277 0.9189 0.0723 0.0811 0.9233 0.1534 
50 0.9625 0.9425 0.0375 0.0575 0.9525 0.0475 
25 0.9745 0.9545 0.0255 0.0455 0.9645 0.0355 
10 0.9821 0.9621 0.0179 0.0379 0.9721 0.0279 

Cuijuan et al. [17] 

115 0.8232 0.8142 0.18232 0.1858 0.8187 0.06703 
100 0.8633 0.8621 0.1367 0.1379 0.8627 0.1373 
50 0.9025 0.9011 0.0975 0.0989 0.9018 0.0982 
25 0.9445 0.9345 0.0555 0.0645 0.9395 0.0600 
10 0.9595 0.9575 0.0405 0.0425 0.9585 0.0415 

Deep-RBF network 

115 0.8121 0.8056 0.1879 0.1944 0.0885 0.19115 
100 0.8411 0.8352 0.1589 0.1648 0.83815 0.16185 
50 0.9025 0.8933 0.0975 0.1067 0.8979 0.1021 
25 0.9212 0.9102 0.0788 0.0898 0.9157 0.0843 
10 0.9425 0.9311 0.0575 0.0689 0.9368 0.07750 

Bayes network 

115 0.8055 0.7953 0.1945 0.2047 0.8004 0.1996 
100 0.8432 0.8342 0.1568 0.1658 0.8387 0.1613 
50 0.9313 0.9349 0.0687 0.0651 0.9331 0.0669 
25 0.9429 0.9420 0.0571 0.0580 0.94245 0.05755 
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10 0.9587 0.9480 0.0413 0.0520 0.95335 0.04665 

Decision tree 

115 0.5012 0.4934 0.4988 0.5056 0.4973 0.5027 
100 0.5434 0.5345 0.4566 0.4655 0.53895 0.46105 
50 0.6449 0.6323 0.3551 0.3677 0.6386 0.3614 
25 0.6729 0.6629 0.3271 0.3371 0.6679 0.3321 
10 0.7131 0.6744 0.2869 0.3256 0.69375 0.30625 

  
Figure 8. Comparative analysis of normal true positive rates of different algorithms with Kitsune [53]. 

The bar diagram of Figure 8 represents the percentages of normal true positive rate 
of the aforesaid six algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm [17], 
deep-RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD) for different 
attribute sizes, say 10, 25, 50, 100, and 41 of the dataset Kitsune [53]. Similarly, each colored 
bar represents one algorithm’s percentage of normal true positive rates. 

 
Figure 9. Comparative analysis of attack true positive rates of different algorithms using Kitsune. 

The bar diagram of Figure 9 represents the percentages of the attack true positive rate 
of six aforesaid algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm [17], 
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deep-RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD) for different 
attribute sizes of the dataset Kinsune [53]. 

  
Figure 10. Comparing analysis of normal false positive rates of different algorithms with Kitsune. 

The bar diagram of Figure 10 represents the percentages of normal false positive rates 
of the six aforesaid algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm [17], 
deep-RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD) for different 
attribute sizes of the dataset Kitsune [53]. 

  
Figure 11. Comparing analysis of attack false positive rates of different algorithms with Kitsune. 

The bar diagram of Figure 11 represents the percentages of attack false positive rates 
of the six aforesaid algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm [17], 
deep-RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD) for different 
attribute sizes of the Kitsune dataset [53]. 
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Figure 12. Comparing analysis of average true positive rates of different algorithms with Kitsune. 

The bar diagram of Figure 12 represents the percentages of average true positive rates 
of the aforesaid six algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s algorithm [17], 
deep-RBF network [16], Bayes network [15], decision tree [14], and IFRSCAD) for different 
attribute sizes of the dataset Kitsune [53]. 

  
Figure 13. Comparing analysis of average false positive rates of different algorithms with Kitsune. 

Again, the bar diagram of Figure 13 represents the percentages of average true posi-
tive rates of the aforesaid six algorithms (Wang et al.’s algorithm [35], Cuijuan et al.’s al-
gorithm [17], deep-RBF network [16], Bayes network [15], decision tree [14], and 
IFRSCAD) for different attribute sizes of the dataset Kitsune [53]. 

The following observations can be drawn from the above tables and bar diagrams. 
• The decision-tree-based algorithm [14] has the poorest detection rate. It has 71.31–

66.49% of normal TPR, 67.44–62.23% of attack TPR, 29.69–33.51% of normal FPR, and 
32.56–37.71% of attack FPR for ascending order of attribute sizes (from 10–41) of the 
dataset KDDCUP’99 [52]. Similarly, it has 71.31–50.12% of normal TPR, 67.44–49.34% 
of attack TPR, 28.69–49.88% of normal FPR, and 32.56–50.56% of attack FPR for as-
cending order of attribute sizes (from 10–115) of the dataset Kitsune [53]. It shows 
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that the algorithm has the poorest performances, which decreases with the increase 
in dimension size of the dataset. 

• The deep-RBF-network-based algorithm [16] is better than the decision-tree-based 
algorithm [14] and it has 94.25–90.25% of normal TPR, 90.23–85.25% of attack TPR, 
5.75–9.75% of normal FPR, and 9.75–14.75% of attack FPR for ascending order of at-
tribute sizes (from 10–41) of the dataset KDDCUP’99 [52]. Similarly, it has 94.25–
81.21% of normal TPR, 93.11–80.56% of attack TPR, 5.75–18.79% of normal FPR, and 
6.89–19.44% of attack FPR for ascending order of attribute sizes (from 10–115) of the 
dataset Kitsune [53]. 

• The Bayes-network-based algorithm [15] is better than the decision-tree-based algo-
rithm [14] and the deep-RBF-network-based algorithm [16] in terms of detection 
rates. It has 95.87–93.13% of normal TPR, 90.87–83.49% of attack TPR, 4.13–6.87% of 
normal FPR, and 9.136–16.51% of attack FPR for ascending order of attribute sizes 
(from 10–41) of the dataset KDDCUP’99 [52]. Similarly, it has 95.87–80.55% of normal 
TPR, 94.8–79.53% of attack TPR, 4.13–19.45% of normal FPR, and 5.20–20.47% of at-
tack FPR for ascending order of attribute sizes (from 10–115) of the dataset Kitsune 
[53]. Although the algorithm is quite efficient, its performance decreases with the in-
crease in the dimension of the datasets. 

• Cuijuan et al.’s algorithm [17] is better than all the previous three algorithms as far 
as detection rate is concerned. It has 97.75–93.25% of normal TPR, 95.25–89.25% of 
attack TPR, 3.20–5.80% of normal FPR, and 4.25–10.75% of attack FPR for ascending 
order of attribute sizes (from 10–41) of the dataset KDDCUP’99 [52]. Similarly, it has 
95.95–82.32% of normal TPR, 95.75–81.42% of attack TPR, 4.05–18.232% of normal 
FPR, and 4.25–18.58% of attack FPR for ascending order of attribute sizes (from 10–
115) of the dataset Kitsune [53]. Its performance also decreases proportionately with 
the increase in the dimension of the datasets. 

• Wang et al.’s algorithm [35] is the most efficient in comparison with all the aforesaid 
algorithms. It has 98.21–96.25% of normal TPR, 96.21–93.25% of attack TPR, 2.12–
3.02% of normal FPR, and 3.79–6.75% of attack FPR for ascending order of attribute 
sizes (from 10–42) of the dataset KDDCUP’99 [52]. Similarly, it has 98.21–90.44% of 
normal TPR, 96.21–89.33% of attack TPR, 1.79–9.56% of normal FPR, and 3.79–10.67% 
of attack FPR for ascending order of attribute sizes (from 10–115) of the dataset 
Kitsune [53]. Its performance also decreases proportionately with the increase in the 
dimension of the datasets. 

• The proposed algorithm (IFRSCAD) has 98.342–96.99% of normal TPR, 98.04–96.29% 
of attack TPR, 1.658–3.01% of normal FPR, and 1.96–3.71% of attack FPR for ascend-
ing order of attribute sizes (from 10–42) of the dataset KDDCUP’99 [52]. Similarly, it 
has 98.342–91.989% of normal TPR, 98.04–91.289% of attack TPR, 1.658–8.011% of 
normal FPR, and 1.96–8.711% of attack FPR for ascending order of attribute sizes 
(from 10–115) of the dataset Kitsune [53]. Its performance also decreases proportion-
ately with the increase in the dimension of datasets. It is clear from the data that the 
proposed algorithm has more TPR and less FPR. The difference between normal TPR 
and attack TPR and normal FPR and attack FPR is also less in comparison with other 
methods. The performance decrement is less with the increase in dimensions. Obvi-
ously, the IFRSCAD has more average TPR and less average FPR than others. 

• In addition, the execution time of the IFRSCAD depends upon two factors, namely, 
dimension and size of the datasets. It was found that if the dimension is kept constant, 
the algorithm has quadratic execution time, whereas if the data size is kept constant, 
it runs in linear time. Therefore, the proposed algorithm’s time complexity is more 
dependent on the data size than the number of attributes. The time-complexity 
graphs for constant dimension and constant data size are given, respectively, in Fig-
ures 14 and 15. 
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Figure 14. Execution time of IFRSCAD for different dimensions (n). 

  
Figure 15. Execution time of IFRSCAD for different data sizes (m). 

Furthermore, the IFRSCAD’s time-complexity is also analyzed against that of MCAD 
[30]. If the dimension of the dataset is assumed to be constant, the MCAD [30] runs in cubic 
time and IFRSCAD runs in quadratic time. Thus for large data size, the IFRSCAD outper-
forms MCAD [30]. The comparative analysis is presented graphically in Figure 16 below. 
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Figure 16. Comparative analysis of execution time of MCAD [30] and IFRSCAD. 

7. Conclusions, Limitations, and Lines for Future Work 
7.1. Conclusions 

In this article, a hybrid algorithm consisting of both rough set and fuzzy set theoretic 
approaches is presented for the detection of anomaly. The algorithm is a classification-
based algorithm which uses rough set and intuitionistic fuzzy set to deal with uncertainty 
in the dataset. The obtained rules can be expressed using intuitionistic fuzzy sets. The 
algorithm generates certain rules from lower approximation space, possible rules from 
upper approximation space, and boundary rules from boundary regions. Each attribute 
contributing in a rule can be expressed in terms of its membership value and non-mem-
bership value. In addition, an attribute can contribute in both the certain rules as well as 
the possible rules. Therefore, each rule obtained by the algorithm is expressed using intu-
itionistic fuzzy set. The algorithm is named IFRSCAD. The proposed algorithm’s perfor-
mance is demonstrated by experimental analysis, and using the datasets KDDCUP’99 [52] 
and Kitsune [53], the algorithm extract anomalies with the accuracy of 96.99% and 
91.989%, respectively. The comparative analysis shows that the proposed algorithm out-
performs a couple of well-known classification-based algorithms. 

Finally, the proposed algorithm’s time-complexity is found to be less dependent on 
dimension of the dataset and, rather, more on the size of the datasets. However, the de-
tection rate depends more on dimensions, as evident from the obtained results. The pro-
posed algorithm’s time-complexity is compared with a clustering-based algorithm MCAD 
[30], and under the assumption of constant dimension, the algorithm is found to be more 
efficient than MCAD [30]. 

7.2. Limitations and Lines for Future Work 
Though the proposed algorithm performs very well, it has some limitations. Firstly, 

although the run time of the proposed algorithm is less dependent on dimension of the 
dataset, it detection rate decreases proportionately with the increase in dimension. Sec-
ondly, the algorithm lacks efficacy in dealing with continuous data, as rough set cannot 
handle continuous data, and finding the correlation coefficient of continuous data would 
be difficult. Finally, the algorithm in its current form is inefficient to deal with real-time 
data. 

Future works can be possible along the following lines: 
• An effective method can be designed for anomaly detection in high-dimensional 

data. 
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• An effective method can be designed for anomaly detection from datasets with con-
tinuous attributes. 

• An effective method can be designed for real-time anomaly from heterogeneous data. 
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