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Abstract: The unreasonable accumulation of coal gangue in mining areas has caused serious resource
waste and environmental pollution. The functional utilization of coal gangue with high added
value has become the key to solving the previous problem. Coal gangue has inherent advantages
such as large specific surface areas and rich active components, giving rise to an excellent precursor
of electrode material in electrochemical energy storage devices. Herein, we, firstly, fabricated an
amorphous SiCX/SiOX electrocatalyst with an abundant oxygen vacancy by acid–alkali activation
derived from coal gangue for advanced Li-O2 batteries. The in-depth experimental results coupled
with an in situ characterization analysis revealed that the amorphous SiCX/SiOX layer with abundant
functional groups and oxygen vacancies on the surface of the activated gangue was conducive to
promote structural stability and to improve the formation/decomposition efficiency of discharged
products (Li2O2). Therefore, the LOBs based on the activated coal gangue electrocatalyst delivered
a low overpotential of 1.12 V, high discharge capacity of 9156 mAh g−1, and an improved cyclic
stability (more than 350 h). This work can provide a new approach for the development of new
functions of coal gangue.

Keywords: coal gangue; surface modification; high value-added utilization; bifunctional
electrocatalysts; Li-O2 battery

1. Introduction

Aprotic lithium–oxygen batteries (LOBs) have emerged as a promising alternative
candidate for large-scale energy storage and practical electric vehicle applications by virtue
of their low cost, non-pollution, and high theoretical energy density (3500 Wh kg−1) [1,2]. In
1996, the concept of secondary LOBs was first proposed, which set off a wave of research in
the field [3]. However, to achieve large-scale commercial applications of LOBs, there are still
many key scientific issues that need to be resolved, including the low activity of the positive
electrode catalyst, serious polarization, and poor cycle stability [4,5]. These problems
can be attributed to the slow kinetics of oxygen reduction (ORR) and oxygen evolution
(OER) reactions in LOBs during cycling [6,7]. The introduction of high-efficiency and
stable electrocatalysts can significantly increase the rate of oxygen reduction and oxygen
evolution reactions, thereby reducing the overpotential during cycling and improving the
overall performance of LOBs [8,9]. The general working mechanism of typical LOBs could
be summarized as follows: O2 (diffusion from the cathode) can react with Li+ (coming
from the anode) to form a discharge product (Li2O2) on the surface of the cathode in
the discharge process, which could be, subsequently, decomposed after the following
charging [10]. Therefore, the preparation of cathode materials with high catalytic activities
and structural stabilities is the key to the development of LOBs [11]. Thus far, many
catalytic materials have been widely fabricated and applied in LOBs, such as carbonaceous
materials, noble-metal-based electrocatalysts, transitional metal oxide, etc. [12]. In order
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to achieve an efficient balance between the cost and electrochemical activity of cathode
materials, the utilization of coal-based solid waste has become quite a good choice.

Coal gangue is the main associated waste in the process of coal mine construction,
mining, and washing [13]. It is a hard mixture with a low carbon content and com-
plex composition (mainly containing SiO2 and Al2O3) [14]. Coal gangue has a loose and
porous needle-like flake structure with apparent densities ranging from 1960 kg/m3 to
2760 kg/m3 [15]. On the one hand, the clay minerals kaolinite and bentonite, which
are rich in coal gangue, have unique lamellar structures and surface chemical proper-
ties. The unique lamellar structures could provide sufficient storage space for discharge
products and surface chemical properties with excellent adsorption performance, which
could improve the formation/decomposition efficiency of discharge products, giving rise
to a well-knit Li2O2 formation [16]. On the other hand, there are abundant adsorption
sites and abundant hydroxyl groups on the surfaces of coal gangue, which are prone to
interfacial reactions [17]. The enhanced adsorption sites and hydroxyl groups could act as
the active sites for oxygen reduction and oxygen evolution reactions to further improve
the electrochemical performances of LOBs [18]. Thus, coal gangue is an ideal precursor for
constructing highly active electrochemical materials in energy storage devices (especially
LOBs). However, the complex composition of coal gangue has been proven to be the
main reason hindering its efficient comprehensive utilization. Coal gangue contains a
variety of trace heavy metal elements, such as lead, zinc, cadmium, arsenic, chromium, etc.,
which are non-degradable, carcinogenic, teratogenic, and bring potential environmental
risks [19,20]. In addition, the organics and minerals in coal gangue are easily oxidized
in lithium–air batteries to form various harmful substances, such as nitrogen oxides and
sulfides [21]. The functional modification and high-value utilization of coal gangue has be-
come an important research topic to solve the overall planning of mineral development and
environmental protection.

The functional modification of coal gangue refers to the mineral materials with elec-
trical, optical, thermal, and other functional effects prepared by coal gangue after deep
processing or fine processing [22]. Zhang et al. fabricated the metal-free composite of coal
gangue and graphite carbon nitride (g-C3N4) as the degradation catalytic material [23].
Coal gangue with rich hydroxyl groups can induce the formation of double-nitrogen de-
fects (cyanogroup and nitrogen vacancies) for g-C3N4, thus reducing the C-N band gap
and adsorption energy for peroxymonosulfate (PMS). The composite can oxidize PMS to
achieve efficient degradation of bisphenol A (BPA) without the assistance of light, electric-
ity, or other energy sources. Mei et al. modified the gangue mineral by a simple phase
transformation reaction, and the activated mineral obtained had lower crystallinity and
higher surface disorder, thus showing excellent catalytic activity for hydrogen evolution
(HER) and the oxygen evolution reaction (OER) [24]. Dong et al. anchored CuFe2O4
nanoparticles on kaolinite with Fe-O-Al chemical bonding by the calcination method. The
hydroxyl groups present on the surface of the kaolinite could effectively solve the problem
of nanoparticle agglomeration and increase the reactive sites [25]. The CuFe2O4/kaolinite
exhibited high photocatalytic activity for BPA and low leaching of metal ions. Sun et al.
synthesized a layered C/SiOx composite with a porous skeleton structure derived from
coal gangue, which showed high electrochemical performance in Li-ion batteries. These
studies indicated that there are a lot of adsorption sites and abundant hydroxyl groups on
the surface of coal gangue, which make coal gangue an ideal precursor for constructing
highly active electrochemical materials [26]. However, natural coal gangue is rarely used
in the field of electrochemical energy storage due to its complex mineral composition and
low electrochemical activity [27]. Therefore, the controllable design of coal-gangue-based
hybrid electrocatalysts still needs further development to break the bottleneck.

Herein, a coal gangue with an amorphous structure was, firstly, fabricated and applied
as a bifunctional cathode electrocatalyst for LOBs. An amorphous protective layer was
in situ fabricated on the surface of coal gangue by the well-designed acid–base activation
treatment, while abundant highly active functional groups and oxygen vacancies were in-
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troduced. The activated coal gangue demonstrated a superior electrochemical performance
and a long cyclic life. According to in-depth analysis, the synergistic interaction between
SiCX and SiOX, the distinctive amorphous structures, and the substantial active sites were
critical factors in contributing to good electrochemical performance. Impressively, this is
the first time that mined solid waste with modified treatment was proven to be a brilliant
cathode electrocatalyst for LOBs.

2. Materials and Methods
2.1. Synthesis of Activated Coal Gangue Precursor

In total, 2.5 g of crushed coal gangue powder was dissolved in 100 mL ammonia water,
and then the mixture was placed in an ultrasonic cleaner for 2 h. Next, the precipitates were
centrifuged with deionized water and ethanol 3~4 times to remove the side products and
dried at 60 ◦C, respectively. The dry powder was mixed with sodium carbonate (Na2CO3)
with a mass ratio of 10:6. The mixture was treated by high-energy ball milling for at least
4 h and then was calcined at 875 ◦C for 2.5 h.

2.2. Synthesis of Activated Coal Gangue

The precursor was vigorously stirred in dilute sulfuric acid (H2SO4) solution for 1 h,
centrifuged with deionized water and ethanol 3~4 times to remove the side products, and
dried at 60 ◦C, respectively. The dry intermediate product was mixed and vigorously stirred
with a sulfuric acid solution (6 mol/L), and then the pH of the solution was adjusted to
2 by adding deionized water. Finally, the resulting mixture was centrifuged with deionized
water and ethanol 3~4 times to remove impurities, and the final precipitation was collected
and dried at 60 ◦C.

2.3. Materials Characterization

The samples’ micro-morphologies and structures were determined by a Hitachi
SU8010-Scanning electron microscope (SEM, TESCAN, Brno, Czech Republic) and a D8
Advance X-ray diffractometer (XRD, Bede Scientific Ltd., Durham, UK). The elements’
compositions, chemical states, molecular structures, and other aspects of the samples were
tested by Escalab 250Xi- X-ray photoelectron spectroscopy (XPS, VG ESCALAB MKII, VG
Scientific, Cambridge, UK).

2.4. Electrochemical Measurement

The as-prepared gangue-based electrocatalyst powder was mixed with super P (acted
as conductive agent) and Polyvinylidene fluoride (acted as binder) at a weight ratio
of 7:2:1 and then dissolved in 1-Methyl-2-pyrrolidinone (NMP) under continuous stir-
ring. The homogeneous slurry was sprayed onto carbon paper with a mass loading of
0.5 ± 0.2 mg cm−2, and the final whole carbon paper was used as the working electrode. In
total, 1 M lithium bis (trifluoromethane sulphonamide, LiTFSI) was dissolved in dimethyl
sulfoxide (DMSO), and the solution was applied as electrolyte. The 2032-LOBs contained a
lithium metal anode (Φ = 16 mm), a glass-fiber separator (GFC, Whatman, Φ = 19 mm),
and a gangue-based cathode (Φ = 13 mm), which must be assembled in the customized
glove box filled with pure Ar. The assembled LOBs were measured in a homemade sealed
glass bottle filled with high-purity O2 to evaluate the electrochemical properties. The
galvanostatic discharge–charge tests were carried out on a LAND BT 2000 battery testing
system. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were
tested via an electrochemical workstation (CHI600E, Shanghai Chenhua Instrument Co.,
Ltd., Shanghai, China). All current densities and specific capacities of the LOBs were
normalized by the actual mass loading of the active materials.
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3. Results and Discussion
3.1. Analysis for the Fabrication of Activated coal Gangue Precursor

As shown in Figure 1, the activated coal gangue with an amorphous structure was,
firstly, prepared by a series of simple alkali–acid activation steps. Specifically, the alkaline
environment formed by early ammonia impregnation softened the Si-O species on the
surface of the coal gangue, which promoted the formation of the pore structure and reduced
the activation energy of the coal gangue. In the following calcination process, sodium
carbonate reacted with activated silicon oxide to form a NaAlSiO4 passivation layer on
the surface of the coal gangue (Figure S1). Finally, the NaAlSiO4 passivation layer was
acidified by multiple acid immersion to facilitate the formation of amorphous silicon oxide,
and unwanted oxide impurities on the surface of coal gangue were dissolved and removed
at the same time. In addition, it should be emphasized that the decomposition efficiencies
of the impurities were mainly related to the concentration of H+, thus we adjusted the pH
value of the last amount of sulfuric acid to 2 to ensure that there were enough hydrogen
ions to fully remove the impurities on the surface of the coal gangue.
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Figure 1. Schematic illustration of the preparation of activated coal gangue.

3.2. Morphological and Structural Characterization

Scanning electron microscope (SEM) analysis was conducted to feature the micro-
morphology differences of the coal gangue during the fabrication process. As shown
in Figure 2a, the crushed coal gangue after simple ball milling delivered the coexist-
ing structure of the bulk and layered particles, and the particle sizes ranged between
2–10 microns. The high-resolution SEM in Figure 2b further indicated that the surface of the
coal gangue particles had rich folds and porous skeleton structures. After the acid and alkali
activation, the activated coal gangue showed a loose and porous colloidal structure with
a nanometer scale (Figure 2c). Figure 2d demonstrated that the surface of activated coal
gangue contained abundant microporous and macroporous structures. The macropores
were conducive to the full infiltration of electrolyte and provided sufficient space for the
accumulation of discharge products, while the micropores could promote the ion diffusion
rate in the electrode reaction during the discharge–charge process in the LOBs [14]. In addi-
tion, the unique colloidal nano-morphology could ensure sufficient exposure of the active
sites on the surface of the activated coal gangue. In short, the acid and alkali activation
reaction effectively optimized the surface morphologies of the coal gangue, leading to the
improvement of the electrocatalytic activity in the LOBs.
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To excavate the differences in-depth in the surface area for the as-prepared samples,
the nitrogen adsorption/desorption isotherms and pore size distributions of the samples
were examined. As shown in Figure S2a, the total BET surface area of the activated coal
gangue is significantly larger than that of the crushed coal gangue, which was due to the
formation of loose and porous colloidal structures with a nanometer scale. In addition,
the pore sizes of both samples were mainly distributed mainly in the range of 5~20 nm
(Figure S2b), which could supply fast diffusion channels for O2 and sufficient storage space for
the discharge product Li2O2. The crystal structure of the crushed and activated coal gangues
was characterized by X-ray diffraction (XRD) in Figure 3. Apparently, the strong diffraction
peaks at 21.09◦ and 26.91◦ corresponded to the crystalline planes of quartz, the peaks at 11.61◦

and 29.75◦ related to the crystalline planes of kaolinite, and the peak at 35.15◦ was attributed to
the crystalline planes of hematite, respectively. The natural coal gangue contained a variety
of mineral components, leading to low electrochemical activity [28]. However, there were no
evident diffraction peaks in the XRD patterns of the activated coal gangue, indicating that the
activated coal gangue had an amorphous structure. It should be emphasized that the only
strong diffraction peak at 23.70◦ corresponded to the sample stage.
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X-ray photoelectron spectroscopy (XPS) was performed to further understand the
elements’ compositions, chemical states, molecular structures, and other aspects of the acti-
vated coal gangue. From the full spectra in Figure 4a, there are various peaks corresponding
to Si, Al, C, O, and many other impure elements on the surface of the crushed coal gangue.
However, the activated coal gangue contains only Si, C, and O peaks. As shown in Table S1,
the Si/C and Si/O ratio in the activated coal gangue is higher than those in crushed coal
gangue, suggesting the acid–alkali activation treatment could remove the impurities of the
gangue and retain the silica-based compounds. In addition, the Si/O atomic ratio is more
than 1/2 compared to that of the stoichiometric SiO2, which indicates that more oxygen
vacancies are exposed on the surface of the coal gangue after the acid–alkali activation
treatment. The high-resolution Si 2p spectra are displayed in Figure 4b. Both the spectra
of the activated coal gangue and the crushed coal gangue had to be fitted into two peaks
located at 104.2 and 103.6 eV, which represent the existence of the strong Si-C and Si-O
bonds, respectively [28]. Combined with the previous XRD data, it is shown that the
surface of the activated coal gangue in situ forms SiOX and SiCX with stable amorphous
structures, which has been proven to be helpful in improving the electrocatalytic activity of
coal gangue [29]. To make more efforts in verifying the conjecture ahead, the C 1s and O 1s
spectra of the samples were tested and analyzed in-depth. As shown in Figure 4c, the C 1s
spectra could be deconvoluted into three characteristic peaks centralized at 289.5, 286.3 and
284.8 eV for both the activated coal gangue and crushed coal gangue, which related to the
existence of π-π*, C-O, and C-C, respectively. In contrast, the intensities of π-π* and C-O are
both raised in the activated coal gangue, suggesting that there are abundant carbon-based
functional groups and strong chemical bonds between carbon and oxide formed on the
activated coal gangue. The O 1s spectra in Figure 4d could be well fitted into two peaks at
530.7 and 533.4 eV, corresponding to the lattice oxygen and defected oxygen [30]. Evidently,
the intensity of defected oxygen peak is significantly enhanced over lattice oxygen for
activated coal gangue. The result suggested that abundant oxygen vacancies are created
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in non-stoichiometric SiOX, which could further improve the electrochemical activity of
coal gangue [31]. As shown in Table S1 (Supporting Information), the Si/C and Si/O
ratio in activated coal gangue is higher than those in crushed coal gangue, suggesting
the acid-alkali activation treatment could remove the impurities of gangue and retain
silica-based compounds. Besides, the Si/O atomic ratio is more than 1/2 by compared by
that of stoichiometric SiO2, which indicating that more oxygen vacancies is exposed on
the surface of coal gangue after acid-alkali activation treatment. On the basis of the SEM,
XRD, and XPS analyses, it could be concluded that the amorphous hybrid SiCX/SiOX with
rich oxygen vacancies is successfully formed in situ on the surface of coal gangue after
acid–alkali activation treatment.
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3.3. The Performance of Activated Coal Gangue in LOBs

The 2032-coin-type LOBs were assembled to examine the actual electrocatalytic per-
formance of the activated coal gangue. As shown in Figure 5a, the battery configuration
is composed of a gangue-based cathode, a diaphragm, and a lithium anode. The gangue-
based cathode plays a dual role as the electrochemical reaction area and the storage area
of the discharge product lithium peroxide (Li2O2) in the cycling process of LOBs. The
activity of the gangue-based cathode has been the key to the development of LOBs. The
full charging–discharging curve in Figure 5b shows that activated coal gangue delivers
a superior specific discharge capacity (9156 mAh g−1) and a small discharge overvoltage
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(0.17 V) at median discharge capacity. Impressively, the activated coal gangue showed
a low charge overvoltage (0.95 V) at median charge capacity, which contributed to pre-
venting the side decomposition of the organic electrolyte, thus improving the durability of
LOBs. The existence of the SiCX/SiOX-activated layer could facilitate the catalytic stability
of coal gangue, resulting in large, specific capacities in LOBs. Moreover, the activated
coal gangue cathode demonstrated an outstanding rate performance in the long cycling
process under different current densities, ranging from 200 to 2000 mA g−1 (Figure 5c).
Notably, the activated coal gangue kept a discharge–charge voltage gap from ~1.51 V
(200 mA g−1) to ~1.96 V (2000 mA g−1). In addition, the activated coal gangue maintained
little numerical difference in the discharge–charge overvoltage (~1.54 V) when returning
to 200 mA g−1. Amazingly, the activated coal-gangue-based cathode could still circulate
stably for more than 300 h at 200 mA g−1, implying that the activated coal-gangue-based
LOBs delivered a splendid practical application in fast charging. In terms of the cycling sta-
bility of LOBs, the activated coal gangue could be maintained for more than 400 h, without
evident degradation, at 200 mA g−1. To sum up, the coal gangue activated by the simple
acid–alkali treatment was a promising cathode catalyst for the LOBs. The electrochemical
performance of activated coal gangue-based cathode in this work and those of reported
typical other catalyst-based cathodes are summarized in Table S2 (Supporting Information).
By comparison, the discharge capacity and cycling stability of activated coal gangue-based
cathode in this work is the best among the catalysts in LOBs.
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To totally clarify the intrinsic mechanisms of the activated coal gangue and understand
the potential influence of amorphous SiCX/SiOX on the cycling efficiencies of LOBs, electro-
chemical impedance spectra (EIS) and XPS were applied (Figure 6). As shown in Figure 6a,
the activated coal gangue demonstrated ohmic resistance (Ro, ~20 Ω), with an evident
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change in all states, but showed distinctly different values in charge transfer resistance (Rct).
In detail, the activated coal-gangue-based LOBs showed a bigger discharge Rct (208.40 Ω)
than that of the charged (145.70 Ω) and pristine states (126.43 Ω). The equivalent circuit
(right in Figure 6a) made it clear that a new interface was formed on the surface of the
gangue-based cathode after the 1st discharge, relating to the formation and loading of the
discharge products. During the subsequent 1st charging process, the discharge products
were completely decomposed, resulting in only one interface resistance in the equivalent
circuit. The high-resolution Li 1s spectra in Figure 6b confirmed that the discharge product
formed on the surface of the gangue-based cathode was lithium peroxide (Li2O2, 54.6 eV).
Fortunately, Li2O2 could be completely decomposed after the following charge. From
the right in Figure 6b, the XPS analysis indicated that the synergistic interaction between
SiCX and SiOX on the surface of the activated coal gangue was beneficial to promote the
formation/decomposition of Li2O2, improving the cycling stabilization of LOBs.
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4. Conclusions

In conclusion, the activated coal gangue with coated amorphous SiCX/SiOX was
firstly synthesized and applied as excellent cathodes for LOBs. The gangue-based cathodes
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exhibited superior specific capacities and superior cycling stabilization. The significant
electrochemical performances of the gangue-based LOBs were verified by photoelectron
spectroscopy:

(i) The amorphous SiCX/SiOX layer formed in situ on the surface of the activated
gangue is conducive to promoting structural stability, providing an adequate void for
product deposition;

(ii) After acid–alkali activation, abundant functional groups and oxygen vacancies were
exposed on the surface of the coal gangue, which could play a key role in improving
the formation/decomposition efficiencies of discharge products (Li2O2) as highly
active electrochemical reaction sites.

This work provided a new application of coal gangue with high electrochemical
catalytic performance in energy storage devices.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app13095551/s1, Figure S1: XRD patterns of the inter-
mediate products; Figure S2: N2 adsorption-desorption isotherms (a) and pore size distributions
(b) of as-prepared samples; Table S1: The atomic content of each element for activated coal gangue
and crushed coal gangue from XPS; Table S2: Comparison of battery performance of activated
coal gangue-based electrode with other reported electrodes. References [32–36] are cited in the
supplementary materials.
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