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Abstract: The main purpose of this article is to study the features of the structure and spectral
brightness characteristics of pulsed emitting discharges of the magneto plasma compressor type
in dense gases over a wide range of energy–power parameters. A numerical simulation of plasma
dynamic magneto plasma compressor discharge in gases is carried out. Different quasi-stationary
regimes have been studied and the main characteristics have been estimated.
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1. Introduction

Recently, theoretical and experimental studies of non-stationary processes in pulsed
radiation magneto gas dynamic systems have been of great interest. Such systems include
plasma sources of radiation and shock-wave generators, thermonuclear systems, systems
for preliminary electromagnetic acceleration of targets, magneto plasma compressors and
plasma accelerators, and pulsed plasma dynamic systems for controlling high-speed gas
flows, as well as systems for plasma-stimulated ignition and combustion of fuel mixtures.

The pulse plasma accelerator of the erosion type (magneto plasma compressor
(MPC) [1–3]) in a vacuum, operating in self-focusing mode, is an effective device for
generating flows of emitting plasma with a density of up to 1024 ÷ 1026 m−3 and a tem-
perature of up to 100 kK and higher. On this basis, technical devices can be created that
allow efficient conversion of the electric energy of the storage unit into thermal radiation
of the ultraviolet (UV) and vacuum ultraviolet (VUV) range [4–6]. However, since the
share of kinetic energy in the total energy balance of open vacuum magneto plasma com-
pressor discharges is large, its thermalization methods are of particular interest: collision
of plasma flow with a solid obstacle, counter interaction of high-speed plasma jets, etc.
Magneto plasma compressor discharges in air, argon, and other inert gases with initial
pressures in the range of P0 = 103 ÷ 3× 105 Pa at normal temperature T0 = 300 K have
been experimentally and theoretically studied in a series of works [7–9].

The MPC parameters: the length of the channel (<1 cm), the main electrode assembly
2R1 = (0.8÷ 1.5)× 10−2 m and external electrode 2R2 = (3÷ 10)× 10−2 m, the capacity
C ~ 900 µF, stored energy W0 = CU2

0/2 = 0.3÷ 500 kJ, the discharge current 5–100 µs, and
the amplitude of the current Jm ≈ 100÷ 2000 kA.

Theoretical and numerical modelling of magneto plasma compressor discharges is
a necessary stage of research which allows quantification of the parameters and internal
structure of discharge plasma, giving a correct interpretation of the available experimental
data, allowing optimization of such multi-parameter systems, and determining the pecu-
liarities of plasma modes and parameters in the areas of energy–power and the structural
characteristics of different systems not yet covered by experiments [10–14].
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The earlier work of the authors is devoted to the calculation, description, and justifi-
cation of the mechanisms of energy transfer in the plasma formation of magneto plasma
compressor discharges. The main purpose is to study the features of the structure and
the spectral brightness characteristics of pulsed radiating discharges of the MPC type in
a dense gas over a wide range of energy–power parameters. It should be noted that no
optimization of plasma dynamic processes in the magneto plasma compressor discharge
was carried out in this research.

2. Model of the MPC Discharge and Numerical Solution Method

The goal of this research is the development of a mathematical model as well suited as
possible to the experimental conditions and the systematic numerical study of discharges in
gases for a wide range of variation in basic parameters of the magneto plasma compressor
and the ambient gas environment based on this model. The plasma formation processes
of a magneto plasma compressor discharge in gas are generally three dimensional and
some fluctuations are caused both by spatial and temporal inhomogeneity [15–25]. The full
model is presented in the literature [12,14,19].

In this paper, 3D effects are not taken into account and the mathematical model of the
MPC discharge is presented on the basis of a 2D (axisymmetric) unsteady system of equa-
tions of viscous single-temperature radiation plasma dynamics. The term plasma dynamics
used in the work implies a physical discipline that includes a mathematical description (in
the form of a continuous medium) of plasma dynamics (taking into account the presence of
electromagnetic fields and currents within them), radiation transfer processes in plasma
(over a wide range of wavelengths), and its interaction with solids (electrodes, walls, etc.).

The equation for the capacity is [26]:

1
c2

dLCJ
dt

+ RCJ = Uk,
dUk
dt

= − J
C

where the conditions in the initial moment of time are t = 0, J = 0, Uk(t = 0) = U0,
J—full current; U0 = Uk(t = 0), Uk(t)—initial and current voltage on the C bank, re-

spectively; RC = R0 + Rpl − 1
2c2

dLpl
dt , LC = L0 + Lpl; L0, R0—inductance and resistance

of the external circuit; Lpl = c2

4πJ2

∫
V

H2dV—MPC plasma inductance; Rom = 1
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rk∫
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]

dV—respectively, ohmic, plasma,

and plasma dynamic resistances of the discharge plasma.
The radiation fields for seven spectral groups are calculated according to:

1
J

∂
(
Jqiξ

)
∂ξ

+
1
J

∂
(

Jqiη

)
∂η

+ χicUi = 4χiσiT4,
c
3

∂Ui

∂ξ
+ χiqiξ = 0,

c
3

∂Ui

∂η
+ χiqiη = 0

where Ui(y, z, t)—the energy density, χi—absorption coefficient. Functions of flow limiters
are used in the calculations performed [27,28].

The conductivity coefficient λΣ and viscosity coefficient µΣ [29], the ASTEROID com-
puter system [30], and the Thomas–Fermi model [31] are used for calculations.

In order to solve the radiation transfer equations, the conditions for the absence of
radiation incident from the outside were set at the boundaries of the computational domain,
and a condition for the symmetry of radiation fluxes was set on the axis of symmetry.
In order to determine the magnetic field strength Bϕ(r, z, t) at the left boundary of the
calculated area Γ, the following relations were used: Bϕ = 2Jr

cr2
1

, r ≤ r1; Bϕ = 2J
cr , r ∈ [r1, r2];

Bϕ = 2J
cr

r2
3−r2

r2
3−r2

2
, r ∈ [r2, r3]; Bϕ = 0 , r ∈ [r3, rk].
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The “hyperbolic” (“convective”) part of the equations is:

∂
→
Ui

∂t
+

→
F
(→

Ui+1/2

)
−
→
F
(→

Ui−1/2

)
∆ξ

=
→
F r, ∆ξ = [ξi−1/2 − ξi, ξi+1/2 − ξi]

The reconstructed function Y(ξ), ξ ∈ [−∆ξ/2, ∆ξ/2], is:

Y(ξ) = Fn
i (ξ) = R(ξ)+

+ai[ξ− ξi]
3 + bi[ξ− ξi]

4 + ci[ξ− ξi]
5 + di[ξ− ξi]

6 + ei[ξ− ξi]
7 + gi[ξ− ξi]

8 + hi[ξ− ξi]
9

A part of the “reconstructed” function at time tn is determined by an expression of the form:

R(ξ) =

=
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These are the first coefficients of the decomposition of the function Y(ξ) into a truncated
Burman–Lagrange series [32]. Obviously, the accuracy of the approximation (using the main
part R(ξ)) of the “reconstructed” function Y(ξ) depends on the order of accuracy (approxi-
mation error) of the recovery of the values of the derivatives (∂Y/∂ξ)i and

(
∂2Y/∂ξ2

)
i
.

The function Y(ξ) satisfies the conditions of smooth conjugation:

Fn
i (ξi−1) = Yn

i−1, Fn
i (ξi+1) = Yn

i+1, dFn
i (ξi−1)/dξ = Yn

ξ,i−1, dFn
i (ξi+1)/dξ = Yn

ξ,i+1

as well as the condition of conservativeness of the reconstructed function Y(ξ):

1
∆ξ

+
∆ξ
2∫

− ∆ξ
2

Yn
i (ξ)dξ = Y(ξi)

For the reconstructed function Y(ξ), the following relations (Leibniz formula) should
be used:
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]∣∣∣∣
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where
•

W—derivative of the W function [32,33]
An adapted computational grid and a curved coordinate system (ξ,η) were created

based on the methodology described in [34,35]. The diffusion approximation of the ra-
diation transfer equation was solved in the work using a modification of the alternately
triangular method with conjugate gradients [36].

The “hyperbolic” (“convective”) parts were tested [32,37] and implemented in a single-
diaphragm aerodynamic shock tube of GUAT IPMeh RAS. The other calculations were
performed in [34,35,38,39].

3. Electrical Parameters and Power Regimes for Discharge

The most important feature of the electrical efficiency dependence on the average

power ηel(Pel1) =
t1∫
0

Rпл(t)J2(t)/W0dt is a relatively weak influence of Pel1 (Pel1—the aver-

age electrical power released in the MPC discharge plasma during the first half-cycle of
the current) on ηel: an increase in Pel1 by two orders leads only to an insignificant decrease
(10÷ 15%) ηel1, in contrast to discharges with the ohmic mechanism of plasma heating. At
identical power parameters of the storage geometry magneto plasma compressor electric
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efficiency, ηel increases (with simultaneous growth of Rpl =
1
t1

t1∫
0

Rpl(t)dt (here and further,

the sign from above “–” means averaging over time t) and a reduction in the discharge
current amplitude) with a decrease in the density ρ0 of the surrounding gas. Both men-
tioned facts testify to the manifestation and significant influence on Rpl and ηel of energy
dissipation in the electric discharge systems under consideration.

Ponderomotor forces are the forces acting on plasma in the magnetic and electric field.
There is an electromagnetic (ponderomotor) force (for a thin conductor, this expression
corresponds to the Bio–Savard law) for plasma generation in the MPC discharge (for the
case of magnetic permeability).

The question about the role of energy dissipation in magneto plasma compressor
discharges is one of the key ones and needs to be considered independently. The calculated
value of effective plasma load resistance can be represented as:

Rpl(t) =
1

J2(t)

∫
V

→
j
→
EdV = Rom(t) + Rpldyn

where Rom(t) is the value of that part of the total effective resistance, which is associated
with the process of ohmic heating of the plasma, Rpldyn(t) determines the nature of energy
dissipation, caused by processes of transformation of electromagnetic energy into the
work of ponderomotive forces, i.e., it is responsible for the plasma dynamic mechanism of
plasma heating.

All systematic investigations reveal one dimensionless criterion, the value of the ratio
λR = Rom/Rpl will mainly depend on its value. This regime parameter is:

Am =

(
pm(z = 0, tm)

ρ0D2

)1/2

where pm(z = 0, tm) is the pressure of the magnetic field for (z = 0, tm), and ρ0D2 is the
full velocity of the gas flow coming up onto the shock wave.

As numerical simulations have shown, the average (during the first half-cycle of
the current) velocity D of the head shock wave in the axial direction is satisfactorily
approximated by the expression:

D = KD

(
Pel1

ρ0πr2
2

)1/3

where KD is a relatively weak (~1 for 107–1010 W, ρ0 = 10−2 kg/m3) function of Pel1 and ρ0.
The defining parameter Am can be written as:

Am =
µ1/2

0 Γm

KD

(
J3
m

ρ1/2
0 Pel1

)1/3

where Γm = (πr2)
1/3f(r2/r1)/

(
2
√

2πr1

)
is the geometric factor.

The Am values for some typical design variants of the magneto plasma compressor
(with internal radius 0.8 × 10−2 m and external radius 5 × 10−2 m) in Ar are presented in
Table 1. A generalized interpolation of the dependence λR on the parameter Am, calculated
by equation, shown in Figure 1 (icons show some calculated values of the parameters

λR =
−
Rom/

−
Rpl and λE =

−
Ekin(tm)/

−
Eint(tm)).
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Table 1. Mode parameter Am dependent on gas pressure p0 and parameters of the power storage
magneto plasma compressor discharge.

p0, MPa C, µF U0, kV W0, kJ Am

10−3

28.6
10 1.43 0.6
30 12.9 0.9
50 35.7 0.93

750
2 1.5 0.48
5 9.37 0.78

10 37.5 0.91

10−2
28.6

10 1.43 0.3
30 12.9 0.65
50 35.7 0.76

750
5 9.37 0.6

10 37.5 0.85

10−1

28.6
30 12.9 0.36
200 571 0.95

750
2 1.5 0.25
5 9.37 0.4

10 37.5 0.54
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As can be seen, the role of the ohmic energy dissipation mechanism is significant over
practically the whole range of power modes of magneto plasma compressor discharge and
the surrounding gas densities.

At values of Am < 0.3–0.4, the ohmic resistance share in the total plasma load resistance
is the main one (λR ≥ 0.8), and therefore it can be argued that the main mechanism of
plasma heating in such modes is Joule heating. With an increasing Am parameter, i.e., an
increasing discharge current amplitude Jm and a decreasing gas density ρ0, a monotonic
decrease in λR is observed.

For regimes characterized by values of Am > 0.8, the part of ohmic resistance is
relatively low (λR = 0.2–0.4), and the plasma dynamic mechanism of plasma heating of the
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magneto plasma compressor discharge becomes predominant. In the range of Am = 0.4–0.8,
the role of both mechanisms of plasma heating of the magneto plasma compressor discharge
is commensurable.

These results show that the value of the Am parameter essentially defines the mode
of IGC discharge plasma heating and, therefore, it can be called a mode parameter. In the
region of Am < 0.3–0.4, there is an ohmic mode of heating; in the region of Am > 0.8, there is a
plasma dynamic mode of heating; and at Am ≈ 0.4–0.8, there is a transitive mode (Figure 1).
According to equation, the parameter Am value depends on the main electric parameters
of the discharge circuit and gas density as parameter Am ∼ (CW0/ρ0LC)

1/6, and plasma
heating mode control can be most effectively achieved by increasing the capacity of power
storage C and the initial charging voltage U0 (Am ∼ (CU0)

1/3), as well as by reducing the
gas density ρ0.

As the numerical simulations show, according to the proposed classification, dis-
charges in rarefied spheres (ρ0 < 0.1 kg/m3) and a high level of power storage capacity (for
C = 28.6 µF: U0 > 30 kV, C = 750 µF: U0 > 5 kV) can be attributed to the plasma dynamic
modes of plasma heating of magneto plasma compressor discharges. At atmospheric
(and higher) pressures (ρ0 > 1 kg/m3), the implementation of modes with a significant
predominance (λR < 0.2–0.3, Am > 0.8) of the plasma dynamic heating mechanism is only
possible at high values of U0 (for example, for P0 = 0.1 MPa: at C = 28.6 µF: U0 > 100 kV; at
C = 750 µF: U0 > 20 kV).

4. Plasma Dynamic Parameters for Discharge in Magneto Plasma Compressor

The performed numerical simulation of erosive magneto plasma compressors has
revealed the complex self-consistent nature of the processes of energy transfer from storage
to plasma and the processes of erosive plasma formation, the dynamics of acceleration,
the interaction of light erosive plasma streams between themselves and the surrounding
gas, and, finally, the processes of transformation of energy W1 dissipated in plasma into
internal Eint and kinetic Ekin energy and into broadband EsΣ radiation energy, escaping
from discharge plasma into the surrounding gas medium (in the “transparency” win-
dow). The character of the energy interconversions of the discharge is connected with the
mechanism of energy dissipation of the storage device into plasma load and depends on
the mode parameter Am. The dependence of the ratio of the total kinetic plasma energy

Ekin(tm) =
∫
V

(
ρ

(→
V
)2

/2

)
dV to the total internal energy Eint(tm) =

∫
V

edV (calculated at

the moment of time tm of the discharge current maximum), i.e., λE = Ekin(tm)/Eint(tm)
from value Am is presented in Figure 1 (for different energy power modes and densities of
ambient gas; calculated values of λE are marked).

The approximation curve λE(Am) is a monotonically increasing function showing that
the fraction of kinetic energy of plasma formation in relation to the internal one increases
with the transition of plasma heating mode from an ohmic (λE < 0.15, Am < 0.4) to a plasma
dynamic (λE = 0.3–0.5, Am > 0.8) regime. In other words, upon realization of the plasma
heating, a significant portion (in the limit of parameters Am → 1, λE → 1) of the energy
input to the plasma is converted into kinetic energy of the moving erosive plasma and
shock-compressed gas (plasma).

In the region of magneto plasma compressor parameters corresponding to the ohmic
heating mechanism (Am < 0.4), the main part of the energy is concentrated into the internal
energy of the erosive plasma, the kinetic energy of which is small due to the relative
smallness of the accelerating ponderomotive forces. In the transition region where the joint
action of ohmic and plasma dynamic regimes is carried out, the parameter Am ≈ 0.4–0.8
and the share of the total kinetic energy of the plasma in relation to the internal one is
significant (λE = 0.2–0.4).

In more powerful modes (i.e., at high values of discharge current amplitude Jm in
the transition regime) and/or at a decrease in ambient gas density ρ0, the corresponding
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parameter Am = 0.4–0.8 (ohmic–transient operation regime for discharge in the magneto
plasma compressor).

The strong gas dynamic shock wave in the surrounding gas (SWG) propagation
velocity in the near-edge zone is higher than the SWG velocity in the peripheral zone. The
transient regime has a shock front axial coordinate in the axial region; its value, by the time
of the discharge current maximum, is about the size of the magneto plasma compressor
midpoint, i.e., zm ≈ Dtm ≥ 2r2. Velocity lines have shown in Figure 2.
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Figure 4 contains the level lines for Alfvén velocity (km/s) and velocity modulus
(km/s) at current J = 353 kA for the magneto plasma compressor parameters C = 750 µF,
and U0 = 10 kV, R1 = 0.8 × 10−2 m, and R2 = 5 × 10−2 m for argon.
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R2 = 5 × 10−2 m) with characteristics C = 750 µF, U0 = 10 kV for Ar.

In the generalized interpolation (according to the results of all calculations), the depen-
dence λR value on the Am parameter shows that the role of the ohmic energy dissipation
mechanism is significant over almost the entire range of discharge power regimes in the
magneto plasma compressor and the ambient gas densities.

5. Comparison of the Results of Calculations of MPC Discharges in Gases with
Experimental Data

The parameters of the device were the following: C = 30–900 µF, U = 2–200 kV, an
argon and air environment, p = 0.01–0.25 MPa.

First of all, we note a satisfactory (5–10%) coincidence with the experiment of electrical
parameters (amplitudes, degree of attenuation, and duration of half-periods) of the pulses
of discharge current and voltage on the electrodes for all of the energy–power modes
studied in the experiment.

In order to illustrate what has been said, Figure 5 shows the graphical dependences of
the experimental [15,16] and calculated basic electrical parameters of the MPC discharge
(C = 750 µF, U = 5 kV) on the density of gas (Ar). Here, the energy is supplied to the plasma
in first half-cycle of MPC discharge.

The dynamics of changes in the position of the external boundaries of the discharge
over time in all MPC power modes, both in calculations and in experiments, satisfactorily
coincide. The dynamics of the changes in the velocity of the head of the shock wave in
the gas in the direction of the discharge axis are quantitatively close (as well as in the
experiment, there is a movement with acceleration at the phase of growth of the discharge
current of the first half-period), and there is a dependence of the average (one half-period)
velocity of the shock wave in the gas on the average electrical power, the geometry of the
electrodes, the density of the surrounding gas, etc. Thus, in Figure 6, the experimental
and calculated graphical dependences of the average velocity of the SW boundary of the
MPC discharge on the Ar density are presented. It can be seen that the experiment and
calculated results over the entire studied range of characteristics coincide with an accuracy
no lower than 20%.
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Figure 6. Velocity of the SW boundary of discharge along the MPC-discharge axis (C = 750 µF,
U = 5 kV), depending on the density of the surrounding gas (argon): 1—experimental data [15,16];
2—calculation.

The integral radiative characteristics of MPC discharges are both quantitatively and
qualitatively consistent with experimental data [15,16]. Thus, we note that, as in the
experiment, the calculations revealed the optimal radiation mode when the integral light
output ηΣm(Am) is at a maximum. At the same time, the level of the calculated maximum
values of light output ηΣm coincides with the experimental values. Also consistent with
the experiment is the fact established by calculation that the type of gas has a rather weak
effect on the integral radiative efficiency.

The results of calculations of spectral-brightness characteristics of MPC in general
satisfactorily coincide with experiments.

The calculated spectral energy distributions of MPC discharge radiation in gases,
depending on the gas density ρ0, average electrical power Pel1, and the type of gas (see
Table 2), also correspond to experimental data [15,16].
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Table 2. Relative distribution of radiation energy in the MPC discharge spectrum (%).

Gas Argon Air

Spectral
Interval, eV

MPC Parameters

C = 750 µF, U = 5 kV C = 750 µF,
U = 10 kV

C = 750 µF,
U = 10 kV

P = 10−1 atm,
Am = 0.6

P = 10−2 atm,
Am = 0.8

P = 10−2 atm,
Am = 0.85

P = 10−2 atm,
Am = 0.85

0.1 ÷ 3.14 20 20 20 40

3.14 ÷ 5.98 30 20 15 50

5.98 ÷ 11.62 50 40 35 10

>11.62 – 20 30 –

At the same time, in the visible range, the “half” duration of the radiation pulse is of
the same order as the time of the discharge period and more. The maximum brightness
temperature MPC, which occur at times close to the maximum power of the power supply,
in calculations and experiments approximately coincide with each other for all of the
studied power modes.

As an example, Figure 7 shows the experimental [15,16] and calculated values of the
maximum brightness temperature of the MPC in argon and air, depending on the density
of the gas (at fixed C = 750 µF, U = 5 kV) and the specific electrical power (at a fixed
ambient density).
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spectrum (∆λ = 186 ÷ 200 HM) of MPC discharge with C = 750 µF, U = 5 kV: 1—Ar; 2—air
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The presented results allow us to report a fairly satisfactory (∼20÷ 30%) correspon-
dence of the experimental and calculated data.
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6. Conclusions

Herein, a numerical simulation of plasma dynamic magneto plasma compressor
discharge in gases was carried out. A numerical simulation of erosive magneto plasma
compressors was carried out, which revealed the complex self-consistent nature of energy
transfer processes from storage to plasma; the processes of erosive plasma formation,
the dynamics of acceleration, and the interaction of light erosive plasma flows between
themselves, as well as the surrounding spatial distributions of plasma parameters for ohmic
and transient heating modes, were obtained. From the generalized interpolation (according
to the results of all calculations), the dependence value on the parameter shows that the role
of the ohmic energy dissipation mechanism is significant over almost the entire range of
discharge power modes in the magneto plasma compressors and the ambient gas densities.

Further directions of work on the study of the magneto plasma compressor include:

- the possibility of adding new force factors (in addition to the forces of inertia and
magnetic field) to increase the efficiency of the magneto plasma compressor;

- establishing the dependence of the main parameters of plasma flows (density, plasma
temperature, velocity, energy content) on pressure, type of working gas, and dis-
charge energy;

- optimization of the MPC design and its power supply system in order to reduce its
weight and dimensions and increase efficiency.

Author Contributions: Conceptualization, S.V.R.; software, V.V.K.; validation, V.V.K.; writing—original
draft preparation, S.V.R. and V.V.K.; writing—review and editing, S.V.R. and A.Y.V.; project adminis-
tration, S.V.R. All authors have read and agreed to the published version of the manuscript.
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