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Abstract: Traffic congestion is a significant problem that adversely affects the economy, environment,
and public health in urban areas worldwide. One promising solution is to forecast road-level
congestion levels in the short-term and long-term, enabling commuters to avoid congested areas
and allowing traffic agencies to take appropriate action. In this study, we propose a hybrid deep
neural network algorithm based on High-Resolution Network (HRNet) and ConvLSTM decoder
for 10, 30, and 60-min traffic congestion prediction. Our model utilizes the HRNet’s multi-scale
feature extraction capability to capture rich spatial features from a sequence of past traffic input
images. The ConvLSTM module learns temporal information from each HRNet multi-scale output
and aggregates all feature maps to generate accurate traffic forecasts. Our experiments demonstrate
that the proposed model can efficiently and effectively learn both spatial and temporal relationships
for traffic congestion and outperforms four other state-of-the-art architectures (PredNet, UNet,
ConvLSTM, and Autoencoder) in terms of accuracy, precision, and recall. A case study was conducted
on the dataset from Seoul, South Korea.

Keywords: traffic congestion; deep learning; big data; recurrent HRNet

1. Introduction

Traffic congestion is a real problem that affects urban areas around the world due to
rapid urbanization and desire for private travel [1]. It occurs when demand exceeds the
existing road system’s capacity, causing the traffic to slow down or come to a complete halt.
The consequences of traffic congestion are far-reaching and include increased commute
times, energy consumption, environmental degradation, and traffic accidents [2–4]. Ac-
cording to a report by the Texas A&M Transportation Institute, traffic congestion costs the
US economy approximately $166 billion USD per year in lost productivity and increased
fuel cost. In China, traffic congestion contributes to additional air pollutants such as PM2.5,
and O3, leading to increased rates of premature mortality [5]. Furthermore, the World
Health Organization’s report on road traffic crashes shows that the deaths of approximately
1.3 million people around the world each year are linked to congestion [6]. Therefore,
managing traffic congestion is a crucial area of study, and scholars from various disciplines
are working on preventing congestion by analyzing big data using artificial intelligence [7]
to improve the current scenario.

The intelligent transportation system (ITS) is an efficient and robust traffic manage-
ment system that integrates a variety of advanced technologies [8,9] and has improved
the traffic congestion problem. A crucial component of ITS is the predictive model, which
estimates traffic patterns [10,11] and predicts short- or long-term traffic conditions [12–14]
using traffic data such as traffic speed, flow volume, and congestion levels. Previous

Appl. Sci. 2023, 13, 5512. https://doi.org/10.3390/app13095512 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095512
https://doi.org/10.3390/app13095512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0002-0029-0119
https://orcid.org/0000-0002-4608-0304
https://orcid.org/0000-0003-0150-0480
https://doi.org/10.3390/app13095512
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095512?type=check_update&version=2


Appl. Sci. 2023, 13, 5512 2 of 16

research on traffic prediction has mainly relied on data from fixed sensors (such as road
sensors, inductive loops, or traffic cameras) installed on road networks or from vehicle
networks, including VANET or Floating Car systems. In [15], traffic-flow data from human-
driven vehicles at road intersections was used to predict and model the road traffic flow
pattern using an Artificial Neural Network. In [16], several simulation studies were con-
ducted based on real vehicle networks and intelligent traffic communication systems to
streamline the traffic density and reduce traffic congestion using wireless communication
technologies such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-
to-everything (V2X). However, acquiring and using such data and technologies can be
costly and often requires special permission.

In recent years, public web services such as Google Traffic [17], Bing Maps [18], Seoul
Transportation Operation and Information Service (TOPIS) [19], and Biadu Maps [20] have
started providing road-level traffic information. These web services are publicly accessible,
pre-processed, and provide traffic information as a map for almost all the cities in the world,
but only a few studies have utilized this type of data. In the past, the curse of dimensionality
posed a challenge, as predicting traffic patterns involves processing series of images, which
could be computationally expensive. However, the significant increase in computing power
in recent years has made using this type of data for traffic prediction feasible.

Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM) and
Convolutional LSTM (ConvLSTM) are well-known for their capability to learn temporal
relationships across sequential data and have shown promising results in various applica-
tions such as recognition [21], translation, and time-series prediction [22,23]. Convolutional
Neural Networks (CNNs) are well known for their ability to extract features from im-
age or video datasets. Many existing CNN-based algorithms are designed to go from
high-resolution to low-resolution and progressively recover the original resolution using
upsampling operations, which can limit their ability to capture fine-grained details and
lead to suboptimal performance. In contrast, the Deep High-Resolution Network (HRNet),
introduced in [24], adopts a unique approach for visual representation learning. HRNet
starts with a high-resolution convolution stream and gradually adds high-to-low resolution
convolution streams one by one, connecting multi-resolution streams in parallel and con-
ducting repeated multi-resolution fusions to capture fine-grained details. This approach
allows HRNet to capture more comprehensive information and achieve better performance.

Inspired by the success of HRNet and ConvLSTM neural networks in computer vision,
this paper presents an approach for learning comprehensive features from sequential traffic
images. Our approach is based on the HRNet backbone, followed by a ConvLSTM-based
decoder that generates the traffic forecast map. The main contributions of the paper are
as follows:

• We introduce a new prediction model called Recurrent High-Resolution Networks
(RHRNet), which consists of HRNet as a backbone and a ConvLSTM-based decoder.

• The proposed architecture leverages the advantages of HRNet, which maintains high-
resolution features along with low-resolution features throughout the network in
parallel, plus a ConvLSTM-based decoder to learn the spatio-temporal relationships of
all resolution feature maps from HRNet, and aggregates these features into a unified
high-resolution forecast.

In this section, we describe the background and motivation of the study. The rest of the
paper is structured as follows: in Section 2, we present the literature review of related work
on traffic congestion. In Section 3, we describe the methodology, including the problem
statement and architecture design. In Section 4, we present the data description, the metrics
used for training and testing the algorithm, and comparison models. In Section 5, we
provide details on the proposed model architecture and performance comparison. Finally,
in Section 6, we present the conclusion of our study and discuss future directions for traffic
congestion prediction research.
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2. Related Work

In the past, researchers typically used a parametric approach, which was a data-
driven method that emphasized creating statistical and mathematical models for examining
time-series relationships within traffic data. The researchers believed that linearity and
stationarity were sufficient for predicting future trends in traffic data and used techniques
such as the historical average model [25] and error component model [26]. Later, the
ARIMA model was introduced, but it has limitations, including a focus on mean values
and an inability to predict extremes. Other models, such as seasonal ARIMA [27] and
Kalman filter models [28], require large historical datasets and are sensitive to changes in
traffic data.

The limitation in parametric approaches led researchers to explore nonparametric
models such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Bayesian
Network (BN), and Artificial Neural Network (ANN). Nonparametric models rely on
training data to determine the model structure and the number of parameters. KNN
searches for similar data points in the historical database to predict traffic flow while SVM
models [29] use the principle of structural risk minimization and are well suited for small
samples and high-dimensional nonlinear data. Various SVM-based models, including
seasonal SVM, least-square SVM [30], online-SVM [31], and wavelet-SVM [32], have been
developed to overcome issues such as overfitting and local minima. BN in [33,34] considers
the causal relationship between random variables and can handle incomplete data through
message-passing. All the above-mentioned work requires significant domain knowledge
and feature engineering. However, the ANN model in [35] shows its capability to work with
multi-dimensional data without any feature engineering and can introduce non-linearity in
the learning process but lacks satisfactory performance due to its shallow hidden layers.

Other researchers have shifted their focus towards the Deep Neural Networks (DNNs)
including RNN and hybrid architecture to predict the traffic information. Recurrent neural
networks such as LSTM directly learn the temporal relations from the sequential data and
ignore the spatial information. They have been used for various traffic-related applications
such as traffic speed prediction [36], traffic flow prediction [22,37], and traffic congestion
prediction [38]. In [39], the researcher uses the LSTM network to predict the road-based con-
gestion information for few roads; the data was collected from an online source. In [37], the
researcher presents the LSTM network in a predictive framework based on the correlated
traffic data, i.e., the data recorded simultaneously from the different regions of the same
transportation networks, which enables the incorporating of both temporal and spatial
correlations in the data. In [14], the researcher presents an autoencoder-based architecture
that learns temporal information to predict the short-term traffic forecast, however, this ap-
proach does not incorporate spatial relation learning. The authors unnaturally compressed
the larger traffic map resolution to fit in their computing model; the compressed image was
not visually intuitive, and a lot of road information was lost. The authors in [40] introduce a
hybrid model by combining KNN-LSTM; the model mines spatio-temporal relationships by
selecting similar neighbors in the region and accounting for temporal variability to predict
the traffic flow. In [41], the author designs an advanced traffic congestion early-warning
system based on an extreme learning machine combined with a modified multi-objective
dragonfly optimization algorithm.

In [42], the researcher proposes a LC-RNN model, where the LC part uses look-up con-
volutional operations to extract the spatial information from the adjacent road and recurrent
layers to learn the temporal pattens. In [43], the research presents an SCRN model, a com-
bination of CNN and LSTM neural networks, to extract spatial and temporal relations to
predict the traffic speeds of 278 road links. In [44], the researcher proposes a PCNN model,
which uses vehicle passage records from the surveillance cameras on roads, to predict the
short-term traffic congestion. In [45], the authors propose a spatial–temporal complex graph
convolution network (ST-CGCN) to predict traffic. The authors first generate a complex
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correlation matrix for spatial and temporal feature and then feed it to a 3D convolution
operator followed by LSTM. In [46], the author presents a traffic congestion prediction with
bilateral alternation of a spatiality and temporality (TCP-BAST) algorithm. The algorithm
first captures spatial correlation based on graph attention networks, then captures temporal
correlation using masked attention networks, and finally predicts traffic congestion on
multiple road sections. In [47], the author presents a city-wide traffic congestion prediction
based on data from TOPIS using a hybrid neural network based on CNN, LSTM and
Transposed CNN which incorporates both spatial and temporal features, in which the CNN
operation learns the spatial information and LSTM learns the temporal information.

In contrast to [42–46], where the authors had to go through a complex process to
incorporate spatial-temporal features of the dataset into the model, in [47], the author
presents a simple and straightforward algorithm without any complex data-preprocessing
for traffic congestion prediction. Building on the simplistic design presented in [47], in this
study, we replace the initial CNN blocks with the HRNet architecture to learn multi-scale
feature representation of the input dataset and replace the LSTM layer by Convolutional
LSTM layer for learning spatial and temporal information.

3. Methodology

In this section, we first describe the problem statement for the time-series traffic
congestion prediction, then describe our proposed architecture.

3.1. Problem Statement

Let N ∈ {x1, x2, . . . , xn} be n chronological images in a database collected at interval t.
The main objective of this study is to develop a deep neural network F , which is capable of
utilizing p past sequential images to forecast the traffic congestion level of the road network
at the prediction horizon of k. For the ith time-series sample, the input to the network
is Xi =

{
xi−p, xi−(p−1), . . . , xi−1, xi−0

}
, and the corresponding label is Yk

i = {xi+k} ∈ N.
Since we have a label for each input sample, we can use a supervised learning method to
train the model. The model F can be defined as in Equation (1):

Yk
i = F (Xi, θ) (1)

where θ is the model parameter.

3.2. Database

There are numerous online and real-time traffic information providers worldwide,
such as Google Traffic Map [17] and Bing Map [18], which provide traffic information
for nearly all the cities around the world. Baidu Map [20] provides information for all
of China, and TOPIS [19] focuses on Seoul, South Korea. For our study, we obtained the
congestion map from the TOPIS online web service, which provides accurate real-time
congestion levels of the city’s road network. Figure 1a shows the raw image of central
Seoul, South Korea, captured on 20 September 2019, at 15:05, which includes road network,
background, and text. The TOPIS traffic image has three congestion levels: Jam, Slow,
and Free State, where the color ‘Red’ represents the Jam, ‘Yellow’ represents the Slow, and
‘Green’ represents the Free congestion levels. The congestion levels are classified based on
the average speed of vehicles on the road segments, where a speed greater than 25 km/h
is Free, between 10 km/h to 25 km/h is Slow, and lower than 10 km/h is Jam. To extract
the road-level congestion information based on [10], we performed an image-masking
operation. First, we calculated the RGB color boundary for each congestion level and
generated a mask image. Finally, we performed a bitwise operation between the mask
image and raw image to obtain the traffic image with only congestion levels, as shown
in Figure 1b.
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sample of image after masking operation where black color represent the background.

3.3. Proposed Architecture

Most Convolutional Neural Network (CNN)-based architecture for traffic conges-
tion prediction follows a backbone architecture that gradually reduces the spatial size of
the feature maps, using convolutional and pooling operations to progressively go from
high-resolution to low-resolution and then revert back to the original resolution using
upsampling operations such as dilated convolution or bilinear interpolations. However,
this approach results in weak, spatially imprecise results. In this paper, we propose a multi-
scale deep neural network, named the Recurrent Multi-scale High Resolution Network
(RHRNet), which consists of a modified HRNet [25] backbone and a convolutional LSTM
layer (convLSTM)-based decoder. Our backbone is based on modified HRNet [25], which
provides a multi-scale approach for spatial feature representations. It incorporates both
high- and low-resolution feature maps across the network, maintaining high-resolution
feature maps instead of recovering them from low-resolution feature maps. Additionally,
the decoder in our model is based on convLSTM, allowing for the capture of time-series
representations from the spatial features. The detail on the architecture is presented in the
following sub-sections.

3.3.1. Tiny HRNet

Our modified HRNet architecture includes four stages and four resolution levels, like
the original HRNet. However, unlike [25], each stage in our architecture has only two
convolutional layers at each parallel level. This simplified backbone is shown in Figure 2
and is referred to as Tiny HRNet and has significantly reduced complexity compared to
HRNet [25]. The backbone includes a stem, n parallel multi-resolution convolutions at n,
and multi-resolution fusion. The past p chronological traffic images are first concatenated at
the channel dimension, H ×W × F (here, F = 3× p) and fed into the stem, which consists
of two convolution layers, each layer with strides of 2× 2, a kernel size of 3× 3, and a
kernel channel of C to decrease input resolution to H

4 ×
W
4 × C.

Parallel Multi-Resolution Convolution. The output of the stem is fed to the 1st stage of
the Tiny HRNet. The 1st stage has one level (L1) with the feature resolution of output of the
stem. The 2nd stage has two resolution levels (L1 and L2) with the feature maps resolution
of H

4 ×
W
4 ×C and H

8 ×
W
8 × 2C at L1 and L2, respectively. While the resolution is decreased

by one-half on both directions, the channel size of the feature maps is doubled. Similarly,
the 3rd stage has three resolution levels (L1, L2 and L3) with the feature maps resolution
of H

4 ×
W
4 × C, H

8 ×
W
8 × 2C and H

16 ×
W
16 × 4C at L1, L2 and L3, respectively. Likewise, the

4th stage has four resolution levels (L1, L2, L3 and L4) with the feature maps resolution of
H
4 ×

W
4 × C, H

8 ×
W
8 × 2C, H

16 ×
W
16 × 4C, and H

32 ×
W
32 × 8C at L1, L2, L3 and L4, respectively.

All the convolutional layers in the Tiny HRNet use a 3× 3 kernel size and have a stride of
1× 1, and a convolutional layer with 2× 2 kernel size and 2× 2 stride is used for feature
map reduction.
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Figure 2. Backbone architecture of proposed RHRNet model. The figure shows the tiny-HRNet
bone architecture with four parallel multi-scale features map. The backbone is made up of four
stages, with nth stage having ‘n’ level of parallel sub-networks. Each sub-network has the same
feature map resolution and channel size throughout the network. The sub-networks are represented
by different colors. The forward arrow represents 3 × 3 convolution operation, downwards ar-
row represents downsampling operation, and upward arrow represents upsampling process using
bilinear interpolation.

Multi-Resolution Fusion. The multi-resolution fusion is employed when the network
progresses from one stage to the next. The use of multi-scale feature fusion is motivated by
the fact that single-scale feature maps may not be sufficient to capture all the information,
particularly when objects in the image vary in size. Fusing feature maps across multiple
scales allows the network to learn from fine-grained and coarser features, which leads to
more spatially precise results. The feature maps of all levels in a particular stage are fused to
generate the next stage. Since the resolution of the feature maps varies at different resolution
levels, the first step involves aligning these feature maps. Specifically, we aim to convert
the resolution of each level in the current stage to match the feature map resolution of the
target level in the next stage. This alignment process involves performing convolutional
downsampling to decrease the resolution of high-resolution feature maps and bilinear
upsampling operations to increase the resolution of lower-resolution feature maps. Finally,
we concatenate all the feature maps obtained from the previous step.

Figure 2 provides an example of multi-resolution fusion when transitioning from stage
3 to the feature map resolution level L2 of stage 3. Stage 3 comprises three levels (L1, L2
and L3) with feature map resolutions that differ from the target level. We first transform
the misaligned feature maps of stage 3. We reduce the feature map of L1 by performing
convolutional down-sampling using a 2× 2 kernel size with a 2× 2 stride. We increase
the feature map resolutions of L3 by performing a bilinear interpolation followed by a
convolution layer with a kernel size of 1× 1 and stride of 1× 1 to match the feature map
resolution of the target level. Finally, we concatenate all the obtained feature maps. Similar
operations are performed for all other multi-resolution fusion layers.

3.3.2. Decoder Module

Our decoder module is designed to learn time-series representations for each resolution-
level feature map from the 4th stage of the backbone and fuse them together to generate the
accurate traffic congestion prediction. Figure 3 shows the decoder architecture. It consists
of a stack of two convLSTM layers for each resolution level, followed by a multi-resolution
fusion layer that generates a single output with a feature map of resolution equals to level
L1. After fusion, the feature maps are combined with low-level features from the stem and
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finally are followed by two convolution transpose layers to generate the original-resolution
traffic prediction roadmap.
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Figure 3. ConvLSTM-based decoder module. The output from all four levels of the backbone is fed
to the decoder block where two ConvLSTM are performed. After that, at first, low-resolution feature
maps are upsampled to match with the L1 feature map and then concatenated to obtain 480 channels.
The channel size is then reduced to 32 using 1 × 1 convolution operation and concatenated with
L1 feature map from end of backbone. This is followed by a 3 × 3 convolution and two transpose
convolutions to obtain the original input image resolution with four channels, one for each class (Jam,
Slow, Free, and background).

4. Experiment
4.1. Data Source

In this study, we used the road traffic congestion data in the form of a roadmap, which
was obtained from our previous work [47,48], as shown in Figure 1. The data was collected
by taking snapshots of traffic congestion maps from the open-source online web service,
Seoul Transportation Operation and Information Service (TOPIS). This dataset includes
information on the congestion levels (Jam, Slow and Free) of each road, represented by
the colors red, yellow, and green, respectively. The dataset covers the traffic information
of central Seoul, South Korea, with each snapshot image sized at 192× 448, covering a
geographical area of 7.5 km × 17 km (with a scale of 1 cm = 1.3 km).

According to our previous research [48], the stochastic congestion maps of Central
Seoul indicate a high likelihood of congestion between 09:00 to 21:00 h and a low like-
lihood in other hours. Additionally, all road networks experience congestion between
18:00 to 21:00 h, and forecasting alternate routes is not an effective method for traffic man-
agement during that period. Instead, congestion pricing, traffic redirect, or no-entry to
heavy vehicles can be utilized. In contrast, from 09:00 to 12:00 h, the road networks are
moderately congested, and the traffic forecasting method could be a more effective method.
Thus, in this study, we focused on predicting traffic congestion levels during the morning
peak hours from 07:00 to 12:00 on weekdays. The data was collected every 5 min from
19 September 2019 to 31 December 2019, resulting in a total of 104 days. However, However,
for 26 days, either data was missing or only partially collected, and therefore these days
were removed from the database. The training set consists of data from 19 September
to 25 November, the validation set consists of data from 25 November to 30 November,
and the remaining data from 1 December to 31 December are used for testing the trained
model. Further details on data source, acquisition and preprocessing can be found in our
previous work [47,48].
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4.2. Metrics and Simulating Parameter

In order to demonstrate the effectiveness and superiority of the proposed RHRNet
architecture, we compared it to baselines such as UNet as well as state-of-the-art works
including convLSTM [47] Autoencoder [14,47]. The details on these architectures are
presented in Section 4.3. RHRNet was trained using categorical cross-entropy loss, as
shown in Equation (2), and its performance was evaluated using three metrics, outlined in
Equations (3)–(5):

L
(
y, y′

)
= −

c

∑
i

yi
(
log
(
y′i
))

(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where y represents the ground truth label, y′ represents the predicted value, c denotes the
number of categories (Background, Jam, Slow and Free congestion levels), TP, TN, FP, and
FN denote True Positive, True Negative, False Positive, and False Negative, respectively

All the aforementioned models were trained on a real-world traffic congestion data.
We utilized the Adaptive Moment Estimation (Adam) optimizer with a learning rate of
1× 10−4 a learning rate decay rate of 0.95, a variable moving average decay of 0.999, and
a batch size of 8. The models were implemented in Python 3.7 language using the Keras
deep learning library and trained on an Ubuntu 18.04.4 machine equipped with NVIDIA
TITAN Xp Graphics Cards.

4.3. Model Training

The proposed architecture’s training process is summarized in Algorithm 1. Input
constraints for training the model are the traffic congestion dataset, the number of past
image sequences, and the traffic congestion prediction horizon, as shown in Line 1. The
learning rate is a hyperparameter described in Line 2. The input sequence and output label
for training the model using gradient-descent backpropagation and Adam optimization
algorithm are generated in lines 4 to 9. We use the ‘HeUniform’ distribution to initialize the
parameters of the traffic congestion prediction, as shown in line 10. Next, we randomly
select a mini batch of training instances Sb from the set S, as in line 12 and minimize the loss
for the mini batch. The process is repeated until predefined stopping criteria are satisfied,
as in lines 11 to 14. After the iteration is complete, an optimal set of parameters θ that
represents the prediction model F is generated, as in line 14.

4.4. Comparison Model

In our study, we evaluated the effectiveness of RHRNet by comparing it to four other
models: PredNet [47], ConvLSTM [47], Autoencoder [14,47], and UNet [47,48], as well as a
baseline that calculates the performance gap between the input and ground truth images.
PredNet [47] is made up of 30 layers, including 12 convolutional layers, five downsampling
layers, five upsampling layers, four LSTM layers, and one flatten, reshape, input, and
output layers. The convolutional, downsampling, and upsampling layers all use ReLU
activation with a dropout of 0.1 and batch normalization, while the LSTM layer has a
0.2 dropout. ConvLSTM has six layers with a configuration of [48, 36, 24, 24, 12, and 4],
using filter size (3× 3), strides (1× 1), and zero padding. Each layer, except the last one,
has ReLU activation, 0.1 dropout, and a batch normalization layer, while the last layer
uses softmax activation. For the Autoencoder, we followed the literature [14] and used the
configuration [512, 384, 256, and 128], with ReLU activation for each layer. We changed
the last layer’s sigmoid activation to softmax activation and the loss function to categorical
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cross-entropy for fair comparison. For the UNet [47,48], we used the same architecture as
the PredNet without the recurrent layer between the convolutional encoder and decoder,
and we trained the model with the same hyper-parameters as PredNet.

Algorithm 1: Training process of RHRNet
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5. Result and Analysis
5.1. Model Implementation

In our previous experiment [47], we tested the PredNet model using input sequences
of nine, 11, 12, and 13 traffic images to predict congestion levels for 10-, 30-, and 60-min
horizons. We found that using an input sequence of 12 images yielded the best results on
the validation dataset. Therefore, in this work, we fixed the past sequence to be 12 images
for all experiments. To prepare the input for the network, we concatenated the 12 images
at the channel dimension to create a 192 × 448 × 36 input tensor, which was then passed
through the stem to reduce the resolution to 48 × 112 × 32. The feature maps generated
by the Tiny HRNet backbone had sizes of 48× 112× 32, 24× 56× 64, 12× 28× 128, and
6× 14× 256 at resolution levels L1, L2, L3, and L4, respectively. The output of the decoder’s
convLSTM layer had the same resolution as the backbone’s output, and they were fused
to generate a feature map size to 48× 112× 480. A 1× 1 convolutional layer was used to
reduce the number of feature maps to 48× 112× 256, which was then concatenated with
a low-level feature map from the stem to yield feature maps of 48× 112× 288. Finally,
two convolution transpose layers of 2× 2 kernel size and 2× 2 were added to restore the
feature map to its original size with four channels, i.e., 192× 448× 4.

5.2. Performance Comparison
5.2.1. Performance Comparison on Training Dataset

In Table 1, our proposed model’s performance is compared to the other-state-of-the-art
models (such as PredNet, UNet, ConvLSTM, and Autoencoder) on a training dataset. The
comparison is made in terms of precision, recall, and accuracy at prediction horizons of
10, 30, and 60 min, respectively. Due to a class imbalance in background and congestion
level classes and variations in the number of pixels for each road segment, evaluating the
model’s performance based on entire pixels or the road segments can lead to inaccurate
results. Therefore, in this study, we opted to evaluate the model’s performance based on
a single value from each road segment. On the training dataset, for prediction horizons,
beyond 1 h, the performance of the model decreases drastically; therefore, in this study, we
choose to present our results up to prediction horizons of 1 h.
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Table 1. Performance comparison on training dataset for the prediction horizons of 10, 30, and 60 min.
The best result is marked in bold.

P.H Precision Recall Accuracy

R.H P.N U.N C.L A.E R.H P.N U.N C.L A.E R.H P.N U.N C.L A.E

10 0.898 0.872 0.844 0.836 0.766 0.887 0.857 0.826 0.812 0.726 0.928 0.884 0.862 0.857 0.772
30 0.866 0.849 0.822 0.821 0.719 0.871 0.853 0.797 0.810 0.712 0.886 0.860 0.847 0.839 0.754
60 0.856 0.847 0.804 0.746 0.730 0.853 0.846 0.701 0.731 0.705 0.867 0.842 0.821 0.757 0.749

P.H: Prediction Horizons; R.H: Recurrent HRNet; P.N: PredNet; C.L: ConvLSTM; A.E: Autoencoder.

Our proposed HRNet outperforms all other models for all three prediction horizons
and all three performance metrics. Specifically, RHRNet showed an improvement of
approximately 3% in precision for 10- and 30-min prediction horizons and around 1% for
the 60-min prediction horizon, compared to the next-best model, PredNet. Moreover, the
proposed model showed a gain of around 3% in recall for the 10-min prediction horizon
and around a 1–2% gain for the 30- and 60-min prediction horizon, compared to PredNet.
In term of accuracy, the proposed model demonstrated a 4% improvement for the 10-min
prediction horizon and was approximately 2% better for the 30- and 60-min prediction
horizons compared to the next-best model, PredNet. Based on performance metrics from
Table 1, the models are ranked as follows, from high to low: proposed RHRNet, PredNet,
UNet, ConvLSTM, Autoencoder.

5.2.2. Performance Comparison on Testing Dataset

Table 2 presents the hourly road-wise accuracy performance of our proposed model
and four other state-of-the-art neural networks on the testing dataset from December 3
to December 10, between 08:00 to 11:00. Our proposed model outperforms other state-
of-the-art models by a large margin. Specifically, for the 10-min prediction horizon, our
proposed RHRNet demonstrates an average gain of approximately 4% compared to the
next best model, PredNet and an average gain of 6–15% compared to other methods. For
30-min prediction horizons, our proposed model achieves an increment in accuracy of
2–13% compared to other compared models. Similarly, for the 60-min prediction horizons,
our proposed model attains an average improvement of 1.5–15% compared to other state-
of-the-art models.

Figure 4 presents a comparison of road-wise prediction accuracy on 3 December 2019
between 08:00 to 12:00, at 5-min intervals. The proposed RHRNet model is compared
to other state-of-the-art models such as PredNet, UNet, ConvLSTM, and Autoencoder,
and with the prediction baseline. Figure 4a shows the road-wise accuracy comparison
at a prediction horizon of 10 min. From the line chart, we can see that the proposed
RHRNet achieves higher accuracy compared to all other models for almost all the testing
timeline, reaching the highest value of 95% at 11:15, followed by the PredNet. The UNet
and ConvLSTM have much lower performance that RHRNet but have similar performance
to one another, while the Autoencoder performance is closer to the baseline. Similarly,
Figure 4b shows the road-wise accuracy comparison at a prediction horizon of 30 min.
This chart shows similar trends as in Figure 4a, with RHRNet achieving better accuracy
followed by PredNet. The UNet and ConvLSTM show similar performance but are lower
than the proposed model, while Autoencoder performance is much closer to the baseline.

Table 2 and Figure 4 demonstrate that the RHRNet performs better in terms of accuracy
than other state-of-the-art traffic congestion prediction models. However, it is uncertain
whether the trained model can represent other congestion levels better. To address this,
Figure 5 presents a comparison of precision and recall metrics on the testing dataset with
respect to PredNet, UNet, ConvLSTM, and Auto-encoder. Quartiles Q1, Q2, and Q3 are
shown in the Figure 5, with the mean value indicated by a cross, and the range of the data
distribution shown by lines above and below the quartiles. Figure 5a shows the precision
and recall comparison for 10-min prediction horizons. All three congestion levels, namely
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Jam, Slow, and Free, demonstrate significantly higher performance in both precision and
recall metrics, followed by PredNet. The prediction distribution range for the proposed
RHRNet is smaller compared to all other models, with the autoencoder having the largest
range. Similar results can be seen for 30-min and 60-min prediction horizons in Figure 5b,c,
respectively. In both cases, the proposed RHRNet shows higher precision and recall results,
followed by the next best model, PredNet.

Table 2. Road-wise accuracy comparison on testing dataset for the prediction horizons of 10, 30, and
60 min. The best result is marked in bold.

Date
P.H 10 Minutes 30 Minutes 60 Minutes

Time R.H P.N U.N C.L A.E R.H P.N U.N C.L A.E R.H P.N U.N C.L A.E

12-03

08:00 0.8784 0.8735 0.8336 0.8359 0.7709 0.8653 0.8541 0.8463 0.8296 0.7063 0.8522 0.8293 0.7770 0.7302 0.6978
09:00 0.9142 0.8726 0.8496 0.8236 0.7845 0.8220 0.8294 0.8180 0.8357 0.7292 0.8150 0.8293 0.7930 0.7118 0.7263
10:00 0.8732 0.8793 0.8231 0.8554 0.7936 0.8688 0.8500 0.8210 0.8286 0.7514 0.8529 0.8489 0.8222 0.7341 0.6954
11:00 0.9261 0.8784 0.8344 0.8490 0.7748 0.8439 0.8347 0.8120 0.8361 0.7164 0.8475 0.8375 0.8160 0.7447 0.6882

12-04

08:00 0.8888 0.8716 0.8279 0.8264 0.7605 0.8550 0.8340 0.8369 0.8250 0.7232 0.8386 0.8407 0.8281 0.7638 0.7041
09:00 0.8952 0.8743 0.8430 0.8417 0.7466 0.8667 0.8243 0.8284 0.8212 0.7338 0.8863 0.8400 0.8083 0.7425 0.6935
10:00 0.9176 0.8639 0.8120 0.8412 0.7699 0.9070 0.8437 0.8265 0.8296 0.7227 0.8651 0.8400 0.8225 0.7512 0.6908
11:00 0.9112 0.8716 0.8763 0.8427 0.7630 0.8321 0.8383 0.8441 0.8282 0.7152 0.8435 0.8317 0.7881 0.7408 0.7162

12-05

08:00 0.9094 0.8714 0.8461 0.8320 0.6998 0.8263 0.8301 0.8246 0.8344 0.7355 0.8384 0.8194 0.8474 0.7239 0.6908
09:00 0.9083 0.8473 0.8339 0.8536 0.7942 0.8500 0.8262 0.8364 0.8265 0.7329 0.8464 0.8358 0.7898 0.7348 0.6882
10:00 0.9572 0.8677 0.8432 0.8398 0.7884 0.8669 0.8420 0.8442 0.8217 0.7203 0.8232 0.8230 0.7943 0.7415 0.6949
11:00 0.8909 0.8645 0.8023 0.8349 0.7527 0.8534 0.8335 0.8213 0.8187 0.7237 0.8430 0.8354 0.8089 0.7215 0.7068

12-06

08:00 0.8992 0.8576 0.8164 0.8238 0.7976 0.8413 0.8262 0.8173 0.8105 0.7208 0.8232 0.8335 0.8207 0.7430 0.6995
09:00 0.8863 0.8662 0.8713 0.8373 0.7692 0.8375 0.8369 0.8281 0.8190 0.7338 0.8277 0.8402 0.8029 0.7075 0.6459
10:00 0.8863 0.8762 0.8325 0.8373 0.7104 0.8575 0.8371 0.8237 0.8311 0.7324 0.8597 0.8303 0.8341 0.7568 0.6560
11:00 0.9197 0.8788 0.8180 0.8419 0.6973 0.8671 0.8566 0.8432 0.8344 0.6886 0.8442 0.8358 0.8271 0.7447 0.7089

12-07

08:00 0.9095 0.8703 0.8279 0.8456 0.7213 0.8608 0.8226 0.8231 0.8190 0.6664 0.8536 0.8286 0.7982 0.7300 0.6989
09:00 0.8863 0.8628 0.8535 0.8354 0.7693 0.8712 0.8313 0.8387 0.8335 0.6635 0.8398 0.8337 0.7782 0.7275 0.7075
10:00 0.8774 0.8757 0.8487 0.8284 0.6964 0.8725 0.8386 0.8461 0.8361 0.7309 0.8688 0.8378 0.7805 0.7522 0.6838
11:00 0.9123 0.8885 0.8313 0.8335 0.8078 0.8975 0.8282 0.8042 0.8139 0.7157 0.8532 0.8390 0.7865 0.7290 0.6839

12-08

08:00 0.9226 0.8631 0.8496 0.8320 0.7830 0.8616 0.8347 0.8352 0.8185 0.7329 0.8411 0.8356 0.8088 0.7063 0.7065
09:00 0.9376 0.8521 0.8273 0.8300 0.7627 0.8866 0.8347 0.8322 0.8185 0.7329 0.8509 0.8457 0.8198 0.7389 0.7048
10:00 0.8842 0.8587 0.8502 0.8698 0.7764 0.8437 0.8323 0.8295 0.8127 0.7200 0.8292 0.8346 0.7846 0.7135 0.6986
11:00 0.8637 0.8535 0.8673 0.8608 0.7473 0.8375 0.8301 0.8296 0.8306 0.7167 0.8225 0.8421 0.8125 0.7140 0.7188

12-09

08:00 0.8751 0.8616 0.8469 0.8260 0.7022 0.8699 0.8484 0.8388 0.8014 0.7278 0.8553 0.8371 0.8241 0.7539 0.6978
09:00 0.8903 0.8708 0.8399 0.8341 0.7546 0.8464 0.8279 0.8146 0.8397 0.7312 0.8339 0.8404 0.7763 0.7471 0.7162
10:00 0.8999 0.8711 0.8279 0.8494 0.7300 0.8555 0.8221 0.8234 0.8006 0.7442 0.8612 0.8346 0.8390 0.7331 0.7101
11:00 0.8842 0.8793 0.8543 0.8242 0.7827 0.8661 0.8303 0.8259 0.8282 0.7220 0.8523 0.8349 0.8089 0.7394 0.6989

12-10

08:00 0.9176 0.8676 0.8541 0.8441 0.8029 0.8574 0.8547 0.8466 0.8270 0.7396 0.8442 0.8385 0.8215 0.7065 0.7152
09:00 0.8991 0.8560 0.8295 0.8313 0.7768 0.8322 0.8344 0.8417 0.8352 0.7150 0.8218 0.8385 0.7930 0.7176 0.6915
10:00 0.8958 0.8588 0.8332 0.8455 0.7587 0.8402 0.8422 0.8397 0.8423 0.7478 0.8412 0.8363 0.8125 0.7256 0.6903
11:00 0.9012 0.8522 0.8480 0.8675 0.7700 0.8784 0.8378 0.8356 0.8405 0.7338 0.8651 0.8274 0.8217 0.7430 0.7060

Average 0.9004 0.8674 0.8390 0.8398 0.7599 0.8572 0.8359 0.8304 0.8259 0.7227 0.8448 0.8355 0.8075 0.7335 0.6979

P.H: Prediction Horizons; R.H: Recurrent HRNet; P.N: PredNet; C.L: ConvLSTM; A.E: Autoencoder.
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Figure 4. Road-wise accuracy for traffic congestion prediction on 3 December 2019. (a) Prediction
accuracy for prediction horizon of 10 min. (b) Prediction accuracy for prediction horizon of 30 min.
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Figure 5. Road-wise recall and precision comparison for traffic congestion prediction on 3 December
2019. (a) Prediction precision and recall for prediction horizon of 10 min. (b) Prediction precision and
recall for prediction horizon of 30 min. (c) Prediction precision and recall for prediction horizon of
60 min. (d) Color code for traffic congestion prediction models.

6. Conclusions

Traffic congestion is a critical issue that affects various areas, including transportation
mobility, physical and mental health, economic growth, and the environment. Therefore,
predicting traffic congestion is an important area of research that has the potential to allevi-
ate congestion-related issues. Traffic authorities can utilize traffic congestion predictions to
improve transportation efficiency and safety by providing users with up-to-date informa-
tion on roads and adjusting road infrastructures to redirect traffic and prevent congestion.
Similarly, commuters, logistic companies, and emergency response teams can leverage
traffic forecasts and road conditions to schedule their routes through non-congested regions.

In this study, we provide a comprehensive review of various techniques for predicting
traffic congestion, including statistical models, machine learning, and hybrid approaches.
Additionally, we propose a deep neural network architecture, RHRNet, which uses image
data from the TOPIS website to predict city-wide traffic congestion. The proposed RHRNet
model utilizes a tiny-HRNet backbone that leverages a multi-scale feature extraction tech-
nique to learn better spatial feature representations, and a ConvLSTM-based decoder that
learns time-series feature representation and aggregates all the multi-scale feature maps
to obtain accurate prediction results. Moreover, we utilize an inexpensive data collection
method by capturing images from the open-source TOPIS website for the central Seoul
region. We conducted experiments on several state-of-the-art (SOTA) deep learning ar-
chitectures, including PredNet, UNet, ConvLSTM, and Autoencoder, and compared their
performance with our proposed RHRNet. Our investigation shows that the RHRNet model
outperforms the others in terms of accuracy, precision, and recall for all three prediction
horizons (10, 30, and 60 min) compared to all others. Specifically, RHRNet achieved an
approximately 4%, 2.5%, and 1.5% improvement in accuracy over the next-best model
PredNet, for the 10-, 30-, and 60-min prediction horizons, respectively. Similarly, RHRNet
outperforms other SOTA models by a large margin in terms of precision and recall for
all three congestion categories (Jam, Slow, and Free) across all prediction horizons. The
superior results obtained by the proposed RHRNet demonstrate that by incorporating
multi-scale information for feature extraction and employing recurrent neural network-
based decoder the model can effectively learn from historical traffic patterns and make
accurate predictions.
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Although the findings of this study are promising, there is still room for enhancing the
computational efficiency of the model. In the current dataset, a significant portion comprises
background information, and computational resources are being wasted on learning them.
In the future, we intend to eliminate the background information from the dataset to
improve the efficiency of the model. Furthermore, incorporating external factors such as
weather information could enhance the prediction accuracy of the model. Additionally,
incorporating a Vision Transformer as a backbone, given its recent success in computer
vision tasks, may potentially enhance the performance of the model in future studies.
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