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Abstract: The aim of this paper is to determine the particle size composition of the wood particles
obtained from CNC milling the chipboard using an experimental optical granulometric method.
Composite materials (chipboard) are the most-used materials in the woodworking and furniture
industries. The proposed optical method of measuring particles’ dimensions is compared to the
sieving technique. The researched experimental method allows for the determination of not only the
size of the fraction of an individual particle’s fraction but also more detailed information about the
analyzed wood dust emission, for example, the largest and smallest dimension of each single particle;
its circularity, area, perimeter, eccentricity, and convex hull major and minor axis length; or the color
of the particle.

Keywords: wood particles; optical analysis; MATLAB

1. Introduction

Machining is one of the highly used processes in modern-day industrial applications,
with increasing demands from customers all over the world in areas such as transportation,
medicine, surgery, automobiles, space, aeronautics, etc. [1]. The development of industry
and the economy puts pressure on the speed of production for products and goods. In
addition to the advantages, this trend also has many negative aspects, for example, the
excessive production of waste material that can largely be recycled. Waste in the form of
particles is also generated during the production of semi-finished products. This is mainly
particles and dust, which must be removed so that they do not affect the production process
and the operators.

In the specialist literature, sawdust is characterized as a polydisperse bulk material
consisting of coarse and medium-coarse fractions, i.e., a bulk material with grain sizes
above 0.3 mm, while the proportion of finer fractions with smaller chip sizes is not excluded.
According to the classification indicators of bulk materials stated in STN 26 0070, sawdust
is classified as B-45UX i.e., a fine-grained loose mass (0.5 ÷ 3.5 mm) that is hygroscopic,
and low-flowing and an abrasive mass with a tendency to clump [2].

Sawdust can be used as a secondary raw material. It is one of the starting raw materials
for the production of agglomerated chip materials and the chemical processing of wood,
a valuable raw material for energy use by direct combustion, and the basic raw material
for the production of dimensionally and energetically homogenized fuel (briquettes and
pellets) [3].

The carcinogenic risk to humans posed by occupational exposures to wood dust and
formaldehyde needs to be evaluated, since a number of occupational situations that involve
exposure to wood dust also entail exposure to formaldehyde, such as in plywood and
particleboard manufacturing, furniture- and cabinet-making, and parquet floor sanding
and varnishing. The highest occupational exposures were noted to occur in wood furniture
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and cabinet manufacturing, especially during machine sanding and similar operations, in
the finishing departments of plywood and particleboard mills, and in the workroom air of
sawmills and planer mills near chippers, saws, and planers. Citing findings from several
recent well-designed case-control studies, this study concludes that occupational exposure
to wood dust is causally related to adenocarcinoma of the nasal cavities and paranasal
sinuses [4–6].

Wood processing into a final product is a very complex technological process. The
main aim of wood processing is to create a workpiece with the required shape, dimensions,
and surface quality [7]. One of the most-used methods of woodworking is milling [8–13].
The quality of the processed surface by milling is affected by various factors, such as the
cutting conditions, the blunting of the tool, and the appropriately chosen tool [14–18]. In
the case of the wear of the tool during a long period of milling, the vibration frequency may
increase, resulting in a decrease in the quality of the milled surface. Tool wear is affected
by many factors including the workpiece material, cutting parameters, tool geometry and
materials, tool temperature, and cooling methods. All these parameters affect the service
life of the tool [19–21].

Currently, the chipboard production is a priority direction in the development of the
woodworking industry. Particle board (chipboard) is a material used in the production of
cabinet furniture and construction. The popularity of chipboard is also due to the fact that
manufacturers of this board material are trying to introduce the promising developments of
scientists, to keep up with the times [22,23]. The technology for the production of particle
boards is a complex process including a number of important operations. The quality
indicators of the finished product largely depend on it. For this reason, we chose this
material as the material for our experiment. In addition to the purely technological aspects,
the environmental safety of chipboard production is the most relevant, which is reflected in
the modern patent, scientific, and technical literature. Chipboard is composed of particles
and thin slivers of wood that are made by cutting the wood feedstock with rotating knives
and shearing the wood into small elements. The characteristics of chipboard are its low cost,
its high thickness, and the capability to manufacture large-dimension boards. Chipboard
manufactured from waste materials has an extra carbon offset value, making a contribution
to a sustainable environment.

Particleboard is a composite panel product consisting of cellulosic particles of various
sizes that are bonded together with a synthetic resin or binder under heat and pressure. Par-
ticle geometry, resin levels, board density, and manufacturing processes may be modified
to produce products suitable for specific end uses. At the time of manufacture, addi-
tives can be incorporated to impart specific performance enhancements including greater
dimensional stability, increased fire retardancy, and moisture resistance.

Today’s particleboard gives industrial users the consistent quality and design flexibility
needed for fast, efficient production lines and quality consumer products. Particleboard
panels are manufactured in a variety of dimensions and with a wide range of physical
properties that provides maximum design flexibility for specifiers and end users.

2. Materials and Methods
2.1. CNC Machine

The experiments were carried out on a 5-axis CNC machining center SCM Tech Z5
manufactured by the company SCM Group, Rimini, Italy.

The basic technical parameters of the machining center given by the manufacturer are
provided in Table 1.
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Table 1. Technical and technological parameters of CNC machining center SCM Tech Z5.

Parameter Range

Userful desktop 3050 × 1300 × 300 mm
X-axis speed 0–70 m·min−1

Y-axis speed 0–40 m·min−1

Z-axis speed 0–15 m·min−1

Vector rate 0–83 m·min−1

Revolutions 600–24,000 rpm
Power 11 kW

Maximum tool diameter D = 160 mm
Maximum tool length L = 180 mm

2.2. Tool Parameters

A diamond shank cutter tool with two rows of cutting diamond blades (Diamond
Router Cutter Economic Z2 + 1 − D18 × 26L85S = 20 × 50) was used, manufactured by
IGM Tools and Machines (Figure 1). The basic technical and technological parameters given
by the manufacturer are provided in Table 2. This tool was chosen for its frequent usage in
small woodworking companies due to its high tool lifetime and relatively low cost [24–26].
The cutter was used in previous experiments. The usage time was approximately 120 min.
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Figure 1. Diamond Shank Cutter Economic Z2 + 1 − D18 × 26L85.

Table 2. Technical parameters of the milling tool.

Name Working
Diameter D (mm)

Working Length L
(mm)

Diameter of
Chucking Shank

S (mm)

Number of
Cutting Blades

Material of
Cutting Edges

Router Cutter
Economic Z2 + 1 18 26 20 2 + 1 HW Diamond

2.3. Milling Wood Samples

A pressed chipboard was used as a sample for milling. The sample had a raw sur-
face without processing, moisture content of 9.5%, and panel density of 600–640 kg·m3.
Samples of particleboard blanks with the following dimensions, thickness t = 18 mm,
width w = 300 mm, and length l = 500 mm, were used in the experiment. The specimens
were machined by cylindrical, circumferential milling through the entire thickness, with a
diamond shank milling cutter with the following technological parameters: constant depth
of cut e = 4 mm; rotation speed of spindle with cutting tool n = 18.000 rpm; feed speed
vf = 4, 6, and 8 m·min−1. For each combination of parameters, six specimens in total were
collected. The conventional milling (up-milling) method was used for the experiment.

The sawdust obtained during milling was then scanned using a Nikon D5200 camera.
This camera was placed on a tripod above the scanned area. The shooting lens was a
standard camera lens, Nikon AF-S Nikkor 18–55 mm f/3.5–5.6 GDX VR II (Nikon, Bangkog,
Thailand). This lens is designed for use with Nikon’s DX-format single-lens reflex cameras.
A 3× zoom covers the commonly used focal length range of 18–55 mm and a Silent Wave
Motor (SWM) from Nikon offers quiet autofocus. Its view angle is 76–28◦50′.
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During scanning of the measured sawdust, particles may overlap each other. In this
case, the overlapping sawdust would be evaluated as one particle, which would introduce
an error into the measurement. So that the sawdust in the sample does not overlap, the
particles are separated from each other during the scanning itself using a vibrating table
(Figure 2).
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Figure 2. Vibrating table for separating wood particles.

The vibrating table was assembled from two steel plates, which are connected by four
springs. The springs were placed in the corners of the plates and fixed by welding. On the
bottom of the upper plate, there is an eccentric electric motor in the middle, the movement
of which creates an oscillating movement by the upper plate. The speed of the motor and,
thus, the strength of the vibrations are adjusted by regulating the supply voltage for the
motor. A simple circuit with an LM317 regulator was used as a voltage regulator (Figure 3).
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Figure 3. Circuit for voltage regulation. LM317 pins: 1: Adjust; 2: VOUT; 3: VIN.

LM317 is a monolithic integrated circuit in TO-220 packages intended for use as a
positive adjustable voltage regulator. It is designed to supply more than 1.5 A of load
current, with an output voltage adjustable over a range from 1.2 to 37 V. The nominal
output voltage is selected by means of a resistive divider, making the device exceptionally
easy to use and eliminating the stocking of many fixed regulators. The input voltage for
the controller was 12 VDC voltage from the main adapter. The output voltage from the
regulator ranged from 1.25 to 11.3 V. This voltage powered the eccentric motor in the
vibrating table.

The particles were scanned with the following parameters (Table 3):
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Table 3. Shooting parameters.

Parameter Value

ISO sensitivity 100
Shutter speed 6.0 s

Aperture f/5.6
Focal length 55 mm

Effective pixels 24.2 Mpix
Sensor format APS-C

Image sensor type CMOS

Scanning of the samples was carried out in low light so that the shadow of the particles
was not visible. Therefore, images were recorded with a long exposure, 6 to 15 s.

A sample of an image with analyzed particles is shown in Figure 4.
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Images of sawdust taken in this way were subsequently analyzed in the MATLAB
program (MathWorks, Natick, MA, USA), using the proposed program (Figure 5).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 15 
 

Table 3. Shooting parameters. 

Parameter Value 
ISO sensitivity 100 
Shutter speed 6.0 s 

Aperture f/5.6 
Focal length 55 mm 

Effective pixels 24.2 Mpix 
Sensor format APS-C 

Image sensor type CMOS 

Scanning of the samples was carried out in low light so that the shadow of the parti-
cles was not visible. Therefore, images were recorded with a long exposure, 6 to 15 s. 

A sample of an image with analyzed particles is shown in Figure 4. 

 
Figure 4. Image with analyzed particles. 

Images of sawdust taken in this way were subsequently analyzed in the MATLAB 
program (MathWorks, Natick, MA, USA), using the proposed program (Figure 5).  

 
Figure 5. Proposed MATLAB program for wood particles’ analysis. 

The text block of the displayed required information was mainly used for the design 
of the application for listing certain information, for example, the value of the content of 

Figure 5. Proposed MATLAB program for wood particles’ analysis.

The text block of the displayed required information was mainly used for the design
of the application for listing certain information, for example, the value of the content of
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the test object. During the experiment, the total number of found objects in the currently
analyzed image was written into this block.

The “Analysis” button was designed for quick analysis of measured data, such as a his-
togram of detected particle areas. However, it was not used in the experiment; all analyses
were performed in the program Statistica (TIBCO Software Inc., Arlington, VA, USA).

The program works according to the following algorithm (Figure 6).
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Figure 6. Program algorithm.

First, an image with a reference distance is opened, which helps to determine the
scale of the conversion from digital image to the metric system. This step is important
to accurately determine the dimensions. The MATLAB program detects all dimensions
from the digital image; therefore, the measured values are in pixels. For the conversion to
metric dimensions, a conversion coefficient is found. To calculate it, a known distance is
scanned in the first opened photo. In the experiment, an office ruler was used. In this ruler,
2 points with a known distance were selected by clicking the mouse. When clicked, the X Y
coordinates of the given points were determined, and the distance between the points in
pixels was calculated using relationship (1).

DistPx =

√
(X2 − X1)

2 + (Y2 −Y1)
2 (1)

where

DistPx—distance between the selected points in pixels;
X1, Y1—coordinates of the first selected point;
X2, Y2—coordinates of the second selected point.

From this distance in pixels in the image and from the known distance on the ruler,
the conversion coefficient is then calculated according to relationship (2):

Con.Coe f =
Distmm

DistPx
(2)

where

Con. Coef —conversion coefficient;
Distmm—known distance in metric system (mm);
DistPx—known distance in pixels.
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Subsequently, the analyzed image is opened, in which it is necessary to select the
background color of the sawdust, which depends on whether there are light wood particles
on a black background or dark wood particles on a white background. These combinations
are suitable for the contrast between the searched sawdust and the background, so that they
can be easily identified. In the case of a background with a similar color to the searched
objects, particles may be incorrectly assigned to the background, or false objects may be
created [27,28].

For next analysis, this image is converted into binary form using a function:

im2bw(I, graythresh(I)) (3)

where I—a variable representing the loaded image.
Function im2bw converts the input image to a binary form, in which the pixels

belonging to the sawdust have the value of 1 (white), and the other pixels have a value of
0 (black). The decision level for this transfer is calculated using a function: graythresh(I).
This computes a global threshold T from grayscale image I, using Otsu’s method. Otsu’s
method chooses a threshold that minimizes the intraclass variance of the thresholded black
and white pixels [27–29]. During this binarization, fictitious holes may be created, due to
the structure of the sawdust. These are subsequently removed using a function:

imfill(BW,’holes’) (4)

where

BW—input binary image;
‘holes’—parameter of the imfill function.

Function imfill(BW,’holes’) fills holes in the input binary image BW. Using parameter
‘holes’, only holes in objects are removed (Figure 7). Hole is a set of background pixels that
cannot be reached by filling in the background from the edge of the image.
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In a binary image modified this way, the dimensional characteristics of the sawdust
are subsequently detected by pressing the “Measurement” button.

It is possible to determine the dimensional parameters of the sawdust in the digital
image modified in this way. The following functions were used in the MATLAB program
to determine sawdust parameters:

regionprops(BW, properties)
bwferet(BW, properties)

(5)

where

BW—input binary image;
properties—specified, required calculated properties.

Using the regionprops function, the required properties of the found particles are
calculated. The list of these characteristics is specified as Properties in the function region-
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props. To measure the dimensions of the sawdust, the following were determined: Area,
Perimeter, Centroid, Orientation, and Circularity.

Function bwferet measures the Feret properties of objects in an image and returns the
measurements in a table. The input properties specify the Feret properties to be measured
for each object in input binary image BW. The measured Feret properties include the major
and minor axis length, Feret angles, and endpoint coordinates of Feret diameters.

The Feret properties of an object are measured by using boundary points on the
antipodal vertices of the convex hull that encloses that object (Figure 8).
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Area of individual sawdust is determined with a parameter ‘Area’. This parameter
counts all pixels belonging to individual sawdust in the binary image.

The Perimeter measurement of sawdust is determined using a parameter ‘Perimeter’.
Function regionprops computes the perimeter by calculating the distance between each
adjoining pair of pixels around the border of the region.

The position of the center of sawdust is determined by a parameter ‘Centroid’, which
detects the horizontal and vertical coordinates of the position of the center of particle in
the image.

The rotation of sawdust in the image is detected by a parameter ‘Orientation’. This
represents an angle between the x-axis and the major axis of the ellipse that has the same
second moments as the region, returned as a scalar. The value is in degrees, ranging from
−90◦ to 90◦ [27,28].

Roundness of objects is returned as a structure with parameter ‘Circularity’. The
structure contains the circularity value for each object in the input image. The circularity
value is computed as

4·Area·π
Perimeter2 (6)

Since MATLAB detects dimensional information about found objects in pixels, the
obtained information is converted to metric system. This is accomplished by multiplying
the perimeter and the min and max dimension data by the conversion coefficient that was
calculated at the beginning of the measurement. Particle area data are multiplied by the
square of the coefficient. The circularity parameter is not recalculated by this coefficient
because it is a relative quantity. The measured data are sent to an Excel table. The data
modified in this way are saved in an Excel table using the “xlswrite” function. The data can
be further processed in the Excel program. We exported these data to the program Statistica.
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3. Results

The proposed program allows for the measurement of the dimensions of each individ-
ual particle. A sample of the determined dimensions is displayed in Figure 9.
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The found dimensions were analyzed by one-way ANOVA in the Statistica program
(TIBCO Software Inc., USA). Figure 10 shows the weighted means of the area of the
analyzed sawdust for individual feed speeds.
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Figure 10. Weighted mean of dimensional characteristics of the analyzed sawdust: (a) sawdust area;
(b) sawdust perimeter.

As shown in Figure 10, the area and perimeter of the sawdust are changing with
different feed speeds. The smallest particles were formed by milling with the smallest feed
speed. By increasing the feed speed, the size of the generated sawdust also increased. The
largest sawdust was created at a feed speed of vf = 6 m·min−1.

The weighted means of the major and minor axes are shown in Figure 11.
To measure by area and perimeter, the major and minor axis dimensions were recorded

at a feed speed of 4 m·min−1. At higher feed speeds, the dimensions were larger. The
largest sawdust dimensions were recorded at a feed speed of 6 m·min−1.
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Figure 11. Weighted mean of the largest and smallest dimensions of the analyzed sawdust.

The statistical significance of the detected parameters in the change in speed was
determined using Duncan’s test (Table 4).

Table 4. Duncan’s test of areas.

Feed Speed {1} {2} {3}

4 m·min−1 0.000011 0.000009
6 m·min−1 0.000011 0.011701
8 m·min−1 0.000009 0.011701

Table 3 shows that the change in feed speed is statistically significant because the
probability of the similarity of the datasets is less than 5%.

Using the described method of determining the sawdust dimensions, it is also possible
to determine the roundness of objects (Circularity). For a perfect circle, the circularity value
is 1.

As shown in Figure 12, the shape of the sawdust is similar to a circle in the sample.
For small particles, however, the circularity increases, which is due to the fact that these
small particles have a needle-like shape. They have a small area but a larger perimeter. For
larger particles, the roundness is smaller because these particles have a shape similar to a
circle. The analysis of the variance of the circularity is shown in Figure 13.
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Figure 13. Analysis of variance of circularity.

For a comparison with the sieve analysis, the obtained results were converted from
the percentage representation of the sawdust to an area corresponding to the sieves with
fractions: 2, 1, 0.5, 0.25, 0.125, 0.063, 0.032, and less than 0.032 mm. Figure 14 shows
the results.
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Figure 14. The percentage of individual sawdust fractions.

Figure 14 shows that the largest share of the sawdust was from the fractions 0.25
and 0.5 mm. The major factions (2 a 1 mm) had a small share, approximately 5% at each
feed speed.

4. Discussion

An optical analysis of the sawdust and other small materials encounters the problem
of overlapping particles during scanning. When several particles overlap each other, such
a cluster is typically identified as one separate particle. This problem can be solved using a
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vibrating table, on which the particles of re ias separated from each other using vibrations
before scanning.

Another problem can be capturing all the particles for analysis. The particles’ removal
efficiency during CNC machining of the particleboard highly depends on the operation type
realized by the CNC center as well as the machining pathway [32,33]. For pocketing, the
quantity of particles that remained on the panel after routing was negligible and, therefore,
the exhaustion efficiency was near 100%. For milling, however, it was at the level of 87%,
which was not satisfying. In this study, a particle size analysis of the sawdust was also
performed. It showed that the wood particles left over on the machine and around it were
not smaller than 0.1 mm. The efficiency of the wood particles’ removal decreased with the
particles’ size increase.

It is possible to identify the effect of shear force on the proportion of the smaller
particles within the fine fractions in terms of the influence of the physical and chemical
properties of sawed and sanded material, as well as the shape, the dimensions, the sharp-
ness of cutting tools, and technological factors. A feed rate reduction means a decrease in
the nominal thickness of the particle, and, thus, the particles move between finer fractions.
This fact was also confirmed by other studies [34–36]. The formation of dust particles can
occur in all open places of machines as well, especially on the premises of CNC machines
as a result of maintenance, repairs, cleaning, inspections, tool changes, etc. [30,31,37–39].

This paper is based on the standard scientific methodologies for the evaluation of
particles from the wood milling process, which are accepted for their scientific capacities,
but, at the same time, we consider it necessary to discuss this topic from the point of view
of objectivity and in the context of the stated findings.

As Kminiak (2021) wrote, it is very difficult to determine the content of the finest dust
particles. This content may not be captured by the camera due to the complicated shape
of the particles, leading to a possibly incomplete data analysis. Therefore, a smaller focal
length camera or a microscope should be used for wood dust with a larger dimensional
span. Only then is it possible to detect and quantify the content of the finest dust particles
and, thus, to estimate the occupational health risks accordingly [40,41].

One of the ways to improve the chips’ geometric measurement is to use the optical
method, which was proposed by Sandak et al. (2005) and also by Palubicki et al. (2007).
This method has many advantages, since it is simple and fast, does not use very expensive
equipment, and has high accuracy [42,43].

5. Conclusions

This research demonstrated the possibility of a more complex analysis of sawdust
using the proposed program. In the commonly used methods, for example sieve analyses,
the result is only the percentage representation of the size of the individual fractions
compared to the total sample [44,45]; thus, the described method allows for obtaining
more information about the measured sawdust sample. The dimensional characteristics
are determined for each individual particle.

During the analysis of the particles generated during the milling process at different
feed speeds, it was found that the smallest particles are generated at a feed speed of
4 m·min−1. The largest sawdust particles were generated at a feed speed of 6 m·min−1.
In order to reduce health risks during milling, it is, therefore, not advisable to use low
feed speeds. They produce smaller chips and dust that could endanger the health of the
operating personnel.

The formation of fine wood dust particles represents a significant occupational hazard
to the health and safety of workers. The results obtained can be used for optimizing the
technological programs of CNC milling machines, thus reducing the occupational exposure
to harmful wood dust emissions in the wood processing industry.

The improvement of the work environment in wood processing and furniture enter-
prises, by adopting adequate occupational safety and health practices, is desirable not only
from the perspective of workers but also because it contributes substantially to labor pro-
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ductivity by enhancing workers’ motivation, increasing competitiveness, and promoting
economic growth.

During particle scanning, this method was found to be quite time-consuming. This was
mainly due to the dark contrasting background of the sawdust. For further experiments, it
would be more appropriate to provide light under the sawdust, which would speed up the
scanning. Moreover, the particles illuminated in this way would have sharper contours.

In this experiment, a standard lens for a Nikon camera was used. Its maximum focal
length is 55 mm. For further research, we plan to try other lenses with longer focal lengths
as well as other cameras with extra-long focal lengths. A longer focal length allows for
shooting at a smaller view angle. Therefore, the investigated particles scanned in this way
should have clearer details.
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