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Abstract: In recent years, deep learning has revolutionized machine learning and its applications,
producing results comparable to human experts in several domains, including neuroscience. Each
year, hundreds of scientific publications present applications of deep neural networks for biomedical
data analysis. Due to the fast growth of the domain, it could be a complicated and extremely time-
consuming task for worldwide researchers to have a clear perspective of the most recent and advanced
software libraries. This work contributes to clarifying the current situation in the domain, outlining
the most useful libraries that implement and facilitate deep learning applications for neuroscience,
allowing scientists to identify the most suitable options for their research or clinical projects. This
paper summarizes the main developments in deep learning and their relevance to neuroscience; it
then reviews neuroinformatic toolboxes and libraries collected from the literature and from specific
hubs of software projects oriented to neuroscience research. The selected tools are presented in tables
detailing key features grouped by the domain of application (e.g., data type, neuroscience area, task),
model engineering (e.g., programming language, model customization), and technological aspect
(e.g., interface, code source). The results show that, among a high number of available software tools,
several libraries stand out in terms of functionalities for neuroscience applications. The aggregation
and discussion of this information can help the neuroscience community to develop their research
projects more efficiently and quickly, both by means of readily available tools and by knowing which
modules may be improved, connected, or added.

Keywords: deep learning; machine learning; neuroscience; neuroinformatics; open source

1. Introduction

In the last decade, deep learning has taken over most classic approaches in machine
learning, computer vision, and Natural Language Processing (NLP) research, showing
unprecedented versatility and matching or surpassing the performances of human experts
in narrow tasks. The recent growth of deep learning applications in several domains,
including neuroscience, consequently offers numerous open-source software opportunities
for researchers. Mapping available resources can allow for faster and more precise exploita-
tion. Neuroscience is a diversified field on its own, as much for the objects and scales it
focuses on as for the types of data it relies on. The discipline is also historically tied to
developments in electrical, electronic, and information technology. Modern neuroscience
relies on computerization in many aspects of data generation, acquisition, and analysis.
Statistical and machine learning techniques already empower many software packages that
have become de facto standards in several subfields of neuroscience, such as Principal and
Independent Component Analysis (PCA, ICA) in electroencephalography and neuroimag-
ing, to name a few. Concurrently, the rich and rapidly evolving taxonomy of Deep Neural
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Networks (DNNs) is becoming both an opportunity and a hindrance. On the one hand,
currently, open-source deep learning libraries allow an increasing number of applications
and studies in neuroscience. On the other hand, the adoption of available methods is
slowed down by a lack of standards, reference frameworks, and established workflows.
Scientific communities whose primary focus or background is not in machine learning
engineering may be left partially aside from the ongoing Artificial Intelligence (AI) gold
rush. For such reasons, it is fundamental to provide an overview of open-source libraries
and toolkits. Framing a panorama could help researchers in selecting ready-made tools
and solutions when convenient and aid them in pointing out problems and filling in the
blanks with new applications. This work would contribute to advancing the community’s
possibilities, reducing the workload for researchers to exploit deep learning, and allowing
neuroscience to benefit from its most recent advancements.

The rest of the paper is organized as follows: first in the Section 2, a historical per-
spective of the rise of deep learning in the last decade, then, a general presentation of the
vast field of neuroscience followed by a definition of neuroinformatics and the role open
source culture and deep learning would serve in it; subsequently, in the Section 3, the
methodology to collect and present the libraries collection, and the most prominent features
are discussed; the Section 4 shows the tables with libraries information; lastly, discussions
and final remarks are offered to the readers (Sections 5 and 6).

2. Background
2.1. Deep Learning

Deep learning has contributed many of the best solutions to problems in its parent
field, machine learning, thanks to its theoretical and technological achievements that
unlocked its intrinsic versatility. Machine learning is the study of computer algorithms
that tackle problems without complete access to predefined rules or analytical, closed-
form solutions. The algorithms often require a training phase to adjust parameters and
satisfy internal or external constraints (e.g., of exactness, approximation, or generality) on
dedicated data for which solutions might be already known. Machine learning comprises a
wide array of statistical and mathematical methods, including Artificial Neural Networks
(ANNs), biologically inspired systems that connect inputs and outputs through simple
computing units (neurons), which act as function approximators. Each unit implements
a nonlinear function of the weighted sum of its inputs; thus, the output of the whole
ANN is a composite function, as formally intended in mathematics. The networks of
neurons are most often layered and “feed-forward”, meaning that units from any layer
only output results to units in subsequent layers. The width of a layer refers to its neuron
count, while the depth of a network refers to its layer count. The typical architecture
instantiating the above characteristics is the MultiLayer Perceptron [1] (MLP). Universal
approximation theorems [2,3] ensure that whenever a nonlinear network, such as the
MLP, is either bound in width and unbound in depth or vice versa, its weights can then
be set to represent virtually any function (i.e., a wide variety of function families). The
training problem thus consists of building networks with sets of weights so to instantiate
or approximate the function that would solve the assigned task or that represents the input-
output relation. This search is not trivial: it can be framed as the optimization problem
for a function over the ANN weights. Such functions, typically called “loss function”,
associates the “errors” made on the training data to the neural net parameters (its weights),
acting as a total performance score. Approaching local minima of the loss function and
improving the network performance on the training data is the prerequisite to generalizing
on real-world and unseen data. Deep learning is concerned with the use of deep ANNs,
namely characterized by depth, stacking several intermediate (hidden) layers between
input and output units. As mentioned above, with other dimensions being equal, the depth
increases the representational power of ANNs and, more specifically, aims at modeling
complicated functions as meaningful compositions of simpler ones. As with their biological
counterparts [4], depth is supposed to manage hierarchies of features from larger input
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portions, capturing characteristics often inherent to real-world objects and effective in
modeling actual data. Overall, depth is one of the key features that allowed us to overcome
historical limits [5] of simpler ANNs such as the Perceptron. At the same time, depth comes
with numerical and methodological hardships in model training. Part of the difficulties
arises as the search space for the optimal set of parameters grows considerably with the
number of layers (and their width as well). Other issues are strictly numerical since the
training algorithms include long computation chains that may affect the stability of training
and learning. Hence, new or rediscovered ideas in training protocols and mathematical
optimization (e.g., applying the “backpropagation of errors” algorithm to neural nets [6])
played an important role through times when the scientific interest and hopes in ANNs
faded (so-called “AI winters”), paving the way for later advancement. The main drivers
for the latest success of deep neural networks are of varied nature and can be schematized
as technical and human-related factors. On a technical side, deep learning has profited
from [7]:

• The datafication of the world, i.e., the growing availability of (Big) data
• The diffusion of Graphical Processing Units (GPUs) as hardware tools.

To outperform classic machine learning models, deep neural networks often require
larger quantities of data samples. Such data hunger and high parameter count contribute
to the high requirements of deep models in terms of memory, number of operations,
and computation time. Training models with highly parallelized and smartly scheduled
computations gained momentum thanks to GPUs. In 2012 a milestone exemplified both the
above technical aspects when AlexNet [8], a deep Convolutional Neural Network (CNN)
based on ideas from Fukushima [4] and LeCun [9,10], won the ImageNet Large Scale
Visual Recognition Challenge after being trained using two GPUs [11]. Since then, deep
learning has brought new outstanding results in various tasks and domains, processing
different data types. Nowadays, deep networks can work on images, video, audio, text,
and speech data, time series and sequences, graphs, and more; the main tasks consist of
classification, prediction, or estimating the probability density of data distributions, with the
possibility of modifying, completing the input, or even generating new instances. On a more
sociological side, the drivers of deep learning success can be related to the synergy of big
tech companies, advanced research centers, and developer communities [12]. Investments
of economic and scientific resources in relatively independent, collective projects, such
as open-source libraries, frameworks, and APIs (Application Programming Interfaces),
have offered varied tools adapted to multiple specific situations and objectives, exploiting
horizontal organization [13] and mixing top-down and bottom-up approaches. It is difficult
to imagine a rapid rise of successful endeavors without both active communities and the
technical means to incorporate and manage lower-level aspects. In fact, applying deep
learning to a relevant problem in any research field requires, in addition to specific domain
knowledge, a vast background of statistical, mathematical, and programming notions
and skills. The tools that support scientists and engineers in focusing on their main tasks
encompass the languages to express numerical operations on GPUs, such as CUDA [14] and
cuDNN [15] by NVIDIA, as well as the frameworks to design models, like TensorFlow [16]
and Keras [17] by Google, and PyTorch by Meta [18], or the supporting strategies to build
data pipelines. In particular, PyTorch, TensorFlow, and Keras offer the building blocks for
model design. These frameworks comprise the mathematical operations and functions
that deep learning models perform during training and at test time. The functions can
be treated as modular objects, stacked one upon another, or connected in more complex
ways. The data are input and processed through these objects-functions chains to return
corresponding outputs. On a higher level, one can ignore computational and mathematical
details as long as the role and effect of such components are understood. On a lower
level, these frameworks allow the experts in the community to introduce and share novel
custom objects and operations that push forward deep learning research. Data loading and
preprocessing modules are included, as well as many pre-trained deep learning models,
enhancing the framework’s adaptability and usability. Many deep learning achievements
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are relevant to biomedical and clinical research, and the above-presented tools have enabled
explorations of the capabilities of deep neural networks with neuroscience and biomedical
data. Fuller exploitation and routine employment of modern algorithms are yet to come,
both in research and clinical practice. This process would accelerate by popularizing,
democratizing, and jointly developing models, improving their usability, and expanding
their environments, i.e., by wrapping solutions into libraries and shared frameworks.

2.2. Neuroscience

As per the journal Nature, «neuroscience is a multidisciplinary science that is con-
cerned with the study of the structure and function of the nervous system. It encompasses
the evolution, development, cellular and molecular biology, physiology, anatomy, and
pharmacology of the nervous system, as well as computational, behavioral, and cognitive
neuroscience» [19]. In summary, neuroscience investigates:

• The evolutionary and individual development of the nervous system;
• The cellular and molecular biology that characterizes neurons and glial cells;
• The physiology of living organisms and the role of the nervous system in the homeo-

static function;
• The anatomy, i.e., the identification and description of the system’s structures;
• Pharmacology, i.e., the effect of chemicals of external origin on the nervous system,

their interactions with endogenous molecules;
• The computational features of the brain and nerves, how information is processed,

which mathematical and physical models best predict and approximate the behavior
of neurons;

• Cognition, the mental processes at the intersection of psychology and computa-
tional neuroscience;

• Behavior as a phenomenon rooted in genetics, development, mental states, and
so forth.

Overall, given the wide range of phenomena and the apparatus it investigates, neuro-
science research is profoundly multi-modal. Data range from sequences or signals (e.g.,
electromyography (EMG), electroencephalography (EEG), eye-tracking, genetic sequenc-
ing), to 2D/3D images (e.g., Magnetic Resonance Imaging (MRI), X-rays, tomography,
histopathology microscopy, eye fundus photography) or videos. Tabular data and text
data are also common in this field, from clinical reports and anamneses to surveys, test
scores, and inspections of cognitive and sensorimotor functions (e.g., the National Institute
of Health (NIH) Stroke Scale test scores [20]), and more.

2.3. Neuroinformatics

Neuroscience is evolving into a data-centric discipline. Modern research heavily
depends on human researchers as well as machine agents to store, manage, and process
computerized data from the experimental apparatus to the end stage. Before delving
into the specifics of artificial neural networks applied to the study of biological neural
systems, it is useful to outline the broader concepts of neuroinformatics, regarding data
and coding, especially in the light of open culture. According to the International Neuroin-
formatics Coordinating Facility (INCF), «neuroinformatics is a research field devoted to
the development of neuroscience data and knowledge bases together with computational
models and analytical tools for sharing, integration, and analysis of experimental data and
advancement of theories about the nervous system function.» [21]. Given the relevance of
neuroinformatics to neuroscience, supporting open and reproducible science implies and
requires attention to standards and best practices regarding open data and code. The INCF
itself is an independent organization devoted to validating and promoting such standards
and practices, interacting with the research communities [22] and aiming at the “FAIR
principles for scientific data management and stewardship” [23]. FAIR principles consist in:

• Being Findable, registered and indexed, searchable, richly described in metadata;
• Being Accessible, through open, free, universally implementable protocols;
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• Being Interoperable, with appropriate standards for metadata in the context of knowl-
edge representation;

• Being Reusable, clearly licensed, well described, relevant to a domain, and meeting
community standards.

Among free and open resources, several software and organized packages integrating
pre-processing and data analysis workflows for neuroimaging and signal processing be-
came the reference for worldwide researchers in neuroscience.
Such tools allow us to perform scientific research in neuroscience easily in solid and re-
peatable ways. It can be useful to mention, for neuroimaging, Freesurfer (https://surfer.
nmr.mgh.harvard.edu/) [24] and FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) [25] that are
standalone softwares, and the MATLAB-connected SPM (https://www.fil.ion.ucl.ac.uk/
spm/) [26]. In the domain of signal processing, examples are EEGLAB (https://sccn.
ucsd.edu/eeglab/index.php) [27], Brainstorm (https://neuroimage.usc.edu/brainstorm/
Introduction) [28], PaWFE (http://ninapro.hevs.ch/node/229) [29], all MATLAB related
yet free and open, and MNE (https://mne.tools/stable/index.html) [30], that runs on
Python. Regarding applications for neurorobotics and Brain Computer Interfaces (BCIs), a
recent open source platform can be found in ROS-neuro (https://github.com/rosneuro) [31].
All URLs accessed at date 22nd of November 2022. Interested readers can find lists of
open resources for computational neuroscience (including code, data, models, reposito-
ries, textbooks, analysis, simulation, and management software) at Open Computational
Neuroscience Resource (https://github.com/asoplata/open-computational-neuroscience-
resources) (by Austin Soplata), and at Open Neuroscience (https://open-neuroscience.
com/). Additional software resources oriented to neuroinformatics in general, but not
necessarily open, can also be found as indexed at “COMPUTATIONAL NEUROSCIENCE
on the Web” (https://compneuroweb.com/sftwr.html) (by Jim Perlewitz).

2.4. Bringing Deep Learning to the Neurosciences

The deep learning community is accustomed to open science, as many datasets, mod-
els, programming frameworks, and scientific outcomes are publicly released by both
academia and companies continuously. However, while deep learning can openly provide
state-of-the-art models for old and new problems in neuroscience, theoretical understand-
ing, formalization, and standardization are often yet to be achieved, which may prevent
adoption in other research endeavors. From a technical standpoint, deep networks are a
viable tool for many tasks involving data from the brain sciences. Image classification has
arguably been the task in which deep neural networks have had the highest momentum in
terms of pushing the state of the art forward. This translates now into a rich taxonomy of
architectures and pre-trained models that consistently maintain interesting performances in
pattern recognition across a number of image domains. Pattern recognition is indeed central
for diagnostic purposes, in the form of classification of images with pathological features
(e.g., types of brain tumors or meningiomas), segmentation of structures (such as the brain,
brain tumors, or stroke lesions), classification of signals (e.g., classification of electromyogra-
phy or electro encephalography data), as well as for action recognition in Human-Computer
Interfaces (HCIs) and Brain-Computer Interfaces (BCIs), where the complex systems un-
derlying human behavior and mind must be interpreted, processed and used by artificial
systems (see [32] for a larger review of BCIs). The initiatives BRain Tumor Segmentation
(BRATS) Challenge (https://www.med.upenn.edu/cbica/brats/) [33], Ischemic Stroke
LEsion Segmentation (ISLES) Challenge (https://www.isles-challenge.org/) [34,35], and
Ninapro (http://ninaweb.hevs.ch/node/7) [36] are examples of data releases for which
above-mentioned tools proved effective. There are models learning image-to-image func-
tions capable of enhancing data, preprocessing it, correcting artifacts and aberrations,
allowing smart compression as well as super-resolution, and even expressing cross-modal
transformations between different acquisition apparatuses. In the related tasks of object
tracking, action recognition, and pose estimation, research results from the automotive
sector or crowd analysis have inspired solutions for behavioral neuroscience, especially

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://sccn.ucsd.edu/eeglab/index.php
https://sccn.ucsd.edu/eeglab/index.php
https://neuroimage.usc.edu/brainstorm/Introduction
https://neuroimage.usc.edu/brainstorm/Introduction
http://ninapro.hevs.ch/node/229
https://mne.tools/stable/index.html
https://github.com/rosneuro
https://github.com/asoplata/open-computational-neuroscience-resources
https://github.com/asoplata/open-computational-neuroscience-resources
https://open-neuroscience.com/
https://open-neuroscience.com/
https://compneuroweb.com/sftwr.html
https://www.med.upenn.edu/cbica/brats/
https://www.isles-challenge.org/
http://ninaweb.hevs.ch/node/7


Appl. Sci. 2023, 13, 5472 6 of 27

in animal behavioral studies. When dealing with sequences, deep networks success in
computer vision has inspired CNN-based approaches to EEG and EMG studies [37,38],
either with or without relying on 2D data, given that mathematical convolution has a 1D
version, and 1D signals have 2D spectra. Other architectures more directly instantiate
temporal and sequential aspects, e.g., Recurrent Neural Networks (RNNs) such as the
Long Short Term Memory (LSTM) [39] and Gated Recurrent Units (GRUs) [40], and they
too can be applied to sequence problems and sub-tasks in neuroscience, such as decoding
time-dependent brain signals. Although deep neural networks do not explicitly model
the nervous system, they are inspired by biological knowledge and mimic some aspects
of biological computation and dynamical systems. This has inspired new comparative
studies and analogous approaches to learning and perception in a unique way among
machine learning algorithms [41]. Many neuroinformatic studies demonstrate how novel
deep learning concepts and methods apply to neurological data [12]. However, they often
showcase new advanced achievements in performance metrics that do not translate directly
to new accepted neuroscience discoveries or clinical best practices.

Such results are very often published together with open code repositories, allowing for
reproducibility, yet they may not be explicitly organized for widespread routine adoption
in domains different from machine learning. Algorithms are usually written in open
programming languages like Python [42], R [43], Julia [44], and deep learning design
frameworks such as TensorFlow, PyTorch or Flux [45]. Still, they are more inspiring
to the experienced machine learning researcher rather than practically helpful to end
users such as neuroscientists. In fact, to successfully build a deep learning application
from scratch, vast knowledge is needed in the data science aspect of the task and in
coding, as much as in the theoretical and experimental foundations and frontiers of the
application domain, here being neuroscience. For the above reasons, the open source
and open science domains are promising frames for common development and testing
of relevant solutions for neuroscience, as they provide an active flow of ideas and robust
diversification, avoiding “reinvention of the wheel”, harmful redundancies, or starting
from completely blank states. As a contribution to clarifying the current situation and
reducing the workload for researchers, this work collects and analyzes several open libraries
that implement and facilitate deep learning applications in neuroscience, with the aim of
allowing scientists worldwide to identify the most suitable options for their inquiries and
clinical tasks.

3. Materials and Methods

The large corpus of available open code makes it useful to specify what qualifies
as a coding library or a framework rather than as a model accompanied by utilities for
the present scope. In programming, a library is a collection of pre-coded functions and
object definitions, often relying on one another and written to optimize programming
for custom tasks. The functions are considered useful and unmodified across multiple
unrelated programs and tasks. The main program at hand calls the library in the control
flow specified by the end users. A framework is a higher level concept, akin to the library,
but typically with pre-designed control flows in which custom code from the end users
is inserted.

In this review, a repository that simply collects a set of functions that defines and
instantiates a deep learning model is not considered a library. On the contrary, a collection
of notebooks that allows us to train, retrain, and test models with different architectures,
also taking care of data preprocessing and preparation, fully meets the present scopes. The
explicit definition given by the authors, their aims, and their level of maintenance were
relevant in determining if a repository would be considered a library (or toolkit/toolbox,
etc.). Open code for this review comprises code for proprietary languages such as MATLAB,
the reasons being the compatibility with free languages such as GNU Octave (https://
octave.org/) (where noted), and the general value of open accessing algorithms. For

https://octave.org/
https://octave.org/


Appl. Sci. 2023, 13, 5472 7 of 27

the sake of the review, several resources were queried or scanned. Google Scholar was
queried with:

• Allintitle: “deep learning library”;
• Allintitle: “deep learning toolbox”;
• Allintitle: “deep learning package”;
• “deep learning library|toolbox|package” AND “neuroscience|neuroimaging”;
• “deep learning library|toolbox|package” AND “EEG|EMG”;
• “deep learning library” OR “deep learning toolbox” OR “deep learning package”

-“MATLAB deep learning toolbox”

preserving the top 100 search results, ordered for relevance by the engine algorithm.
On PubMed the queries were:

• opensource (deep learning) AND (toolbox OR toolkit OR library);
• (EEG OR EMG OR MRI OR (brain (X-ray OR CT OR PT))) (deep learning) AND

(toolbox OR toolkit OR library).

Moreover, the site https://open-neuroscience.com/ was scanned specifically for “deep
learning” mentions. Stemming citations and automatic recommendations from the engines
of the hosting and publishing platforms were also analyzed. The time window was
unrestricted in the past, given the recent development of the field, and the search was
finished by 22 November 2022 for the selection of library entries. Data regarding library
use were updated to 17 April 2023.

The collected libraries were organized according to the principal aim, in the form of
data type processed or the supporting function in the workflow, thus dividing:

1. Libraries for sequence data (e.g., EMG, EEG)
2. Libraries for image data (including scalar volumes, 4-dimensional data as in fMRI, video)
3. Libraries and frameworks for further data types and abstractions (including data

handling, evaluation, and cloud platforms)

In each category, a set of three tables present separately the results related to the
following library characteristics:

1. Domain of application
2. Model engineering
3. Technology and sources

The domain of application comprises the Neuroscience area , the Data types handled,
the provision of Datasets, and the machine learning Task to which the library is dedicated.
When available (73 entries out of 74), a publication is referenced for the library entry in
the domain table. Together with the repositories, referenced publications contain valuable
information every potential user should check before experimenting, such as the data sets
leveraged and use cases intended by the original authors. The model engineering tables
include information on the architecture of Models manageable in the library, the DL (Deep
Learning) framework and Programming language main dependencies, and the possibility of
Customization for the model structure or training parameters. Technology and sources refer
to the type of Interface available for a library, whether it works Online/Offline, specifically
with real-time data or logged data. Maintenance refers to the ongoing activity of releasing
features, solving issues and bugs, or offering support through channels (considered active
with commits or releases in 2022), Source specifies where code files and instructions are
made available. Stars (Forks) refers to the counts of “stars” and “forks” of the repositories,
by which the number of users and possible new developers could be approximately es-
timated.Contributors is the number of people adding code and features to the repository,
as declared on site (effective contributors might be differently acknowledged), which is
useful to estimate the amount of teamwork, developer support, as well as the inclination
to customization that could be expected for the given library. The entry “(*)” signals
missing data.

https://open-neuroscience.com/
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4. Results

The analysis of the literature allowed us to select a total of 74 entries for the tables,
with publications that describe libraries implementing or empowering deep learning
applications for neuroscience. Despite open source and effectiveness, several publications
did not provide an ecosystem of reusable functions. Proofs of concept and single-shot
experiments were discarded. Please, refer to the Abbreviations section for acronyms from
the entire paper and specifically the following tables.

4.1. Libraries for Sequence Data

Libraries and frameworks for sequence data are shown in Table 1 (domains of appli-
cation), Table 2 (models characteristics), Table 3 (technologies and sources). The majority
of models process EEG signals, which are among the most common types of sequential
data in neuroscience research. A common objective is deducing the activity or state of the
subject based on temporal or spectral (2D) patterns. Deep Learning is capable of bypassing
some of the preprocessing steps often required by other common statistical and engineering
techniques, and it comprises both 1D and 2D approaches through MLPs, CNNs, or RNNs
architectures. An example of a sequence-oriented library is gumpy, whose intended area of
application is that of BCIs, where decoding a signal is the first step towards communica-
tion and interaction with a computer or robotic system. Given the setting, gumpy allows
working with EEG or EMG data and suits them with specific defaults, e.g., 1-D CNNs, or
LSTMs. Similarly to ExBrainable, it was validated on data from the BCI Competition IV
(https://www.bbci.de/competition/iv/).

Notable mentions in the sequence category are the library Traja and the VARDNN tool-
box, as they depart from the common scenarios of previous examples. Traja stands out as an
example of less usual sequential data, namely trajectory data (sequences of coordinates in 2
or 3 dimensions, through time). Moreover, in Traja sequences are modeled and analyzed
employing the advanced architectures of Variational AutoEncoders (VAEs) and Generative
Adversarial Networks (GANs), usually encountered in image tasks. With different theoreti-
cal backgrounds, both architectures allow simulation and characterization of data through
their statistical properties. The VARDNN toolbox enables analyses on blood-oxygen-level-
dependent (BOLD) signals in the established domain of functional Magnetic Resonance
Imaging (fMRI) but uses a unique approach to autoregressive processes mixed with deep
neural networks, allowing to perform causal analysis and to study functional connections
between brain regions through their patterns of activity in time. It was developed from
the data set ADNI-2 (73 subjects) from the Alzheimer’s Disease Neuroimaging Initiative
(https://adni.loni.usc.edu/).

Overall, the libraries oriented to sequence data analysis are mainly directed at the
classification of EEG signals, whose variety of acquisition settings and downstream appli-
cations could be largely approached with the aid of deep models as a part of the pipeline.
Other types of sequence data in neuroscience could be processed by newer or harder-to-
retrieve libraries. Despite the fact that preprocessing and domain-specific features require
special care, sequence model can still be applied in principle to these data to perform
several machine learning tasks on magnetoencephalography (MEG), electrocorticography
(ECoG), spike train data, and more. The expert end user may apply or adapt the libraries
mentioned above to new domains, or develop new applications, possibly leveraging the
open source of available code.

https://www.bbci.de/competition/iv/
https://adni.loni.usc.edu/
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Table 1. Domains of applications for the libraries and frameworks processing sequence data.

Name Neuroscience Area Data Type Datasets Task

braindecode [46] General EEG, MEG External Classification
DeepEEG Electrophysiology EEG No Classification

DeLINEATE [47] General Images, sequences External Classification
DN3 [48] BCI EEG No Classification

EEG-DL [49] BCI EEG No Classification
ExBrainable [50] Electrophysiology EEG External Classification, XAI

gumpy [51] BCI EEG, EMG No Classification
SANTIA [52] Electrophysiology Local Field Potentials No Processing

Traja [53] Behavioural neuroscience Trajectories No Prediction, Classification, Synthesis
VAME [54] Behavioral neuroscience Trajectories No Embedding, Clustering

VARDNN toolbox [55] Connectomics (Functional
Connectivity) Sequences (BOLD signal) No Time series causal analysis

Table 2. Model engineering specifications for the libraries and frameworks processing sequence data.

Name Models DL Framework Customization Programming Language

braindecode 1-D CNN PyTorch Yes (weights, model) Python
DeepEEG MLP, 1,2,3-D CNN, LSTM Keras, TensorFlow Yes (weights) Python

DeLINEATE CNN Keras, TensorFlow Yes (weights, model) Python
DN3 MLP PyTorch Yes Python

ExBrainable CNN PyTorch Yes (weights) Python
EEG-DL Miscellaneous TensorFlow Yes (weights, model) Python, MATLAB
gumpy CNN, LSTM Keras, Theano Yes (weights, model) Python

SANTIA MLP, LSTM, 1-D CNN Deep Learning Toolbox Yes (weights, model) MATLAB
Traja LSTM, VAE, GAN PyTorch Yes (weights, model) Python

VAME VAE PyTorch Yes (weights, size) Python
VARDNN toolbox Vector Auto-Regressive DNN TensorFlow Yes (weights) Python
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Table 3. Technological aspects and code sources for the libraries and frameworks processing sequence data. The entry “(*)” signals missing data.

Name Interface Online/Offline Maintenance Source Stars (Forks) Contributors

braindecode CLI Offline Active https://github.com/braindecode/braindecode 463 (123) 26
DeepEEG Colab Notebooks Offline Inactive https://github.com/kylemath/DeepEEG 213 (55) 2

DeLINEATE GUI, Colab Notebooks Offline Active https://bitbucket.org/delineate/delineate (*) 3
DN3 CLI Offline Inactive https://github.com/SPOClab-ca/dn3 50 (16) 4

EEG-DL CLI Offline Active https://github.com/SuperBruceJia/EEG-DL 640 (179) 1
ExBrainable GUI Offline Active https://github.com/CECNL/ExBrainable 1 (2) 4

gumpy CLI Online, Offline Inactive https://github.com/gumpy-bci 61 (22) 4
SANTIA GUI Offline Inactive https://github.com/IgnacioFabietti/SANTIAtoolbox 4 (2) 1

Traja CLI Offline Active https://github.com/traja-team/traja 71 (23) 10

VAME CLI Offline Active https:
//github.com/LINCellularNeuroscience/VAME 130 (43) 5

VARDNN toolbox CLI Offline Active https://github.com/takuto-okuno-riken/vardnnpy 2 (0) 2

https://github.com/braindecode/braindecode
https://github.com/kylemath/DeepEEG
https://bitbucket.org/delineate/delineate
https://github.com/SPOClab-ca/dn3
https://github.com/SuperBruceJia/EEG-DL
https://github.com/CECNL/ExBrainable
https://github.com/gumpy-bci
https://github.com/IgnacioFabietti/SANTIAtoolbox
https://github.com/traja-team/traja
https://github.com/LINCellularNeuroscience/VAME
https://github.com/LINCellularNeuroscience/VAME
https://github.com/takuto-okuno-riken/vardnnpy
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4.2. Libraries for Image Data

Libraries and frameworks for image data are shown in Table 4 (domains of applica-
tion), Table 5 (models characteristics), Table 6 (technologies and sources). Computer vision
and 2D image processing are arguably the fields in which deep learning has achieved the
most impressive and state-of-art defining results, often inspiring and translating break-
throughs in other domains. Classification and segmentation (i.e., the separation of parts of
the image based on their classes) are the most common tasks addressed by image processing
libraries. Magnetic resonance is the primary source of data; however, various deep learning
libraries are built for microscopic and eye-tracking data as well. Most of the libraries
collected in our analysis took advantage of classical CNN architectures for classification,
Convolutional AutoEncoders (CAEs) for segmentation, and GANs for synthesis. It is com-
mon to employ transfer learning to lessen the computational and memory burden during
the training phase and take advantage of pre-trained models. Transfer learning consists
of initializing models with parameters learned on usually larger data sets, possibly from
different domains and tasks, with varying amounts of further training in the target domain.
The best such examples are pose-estimation libraries extending the DeepLabCut system,
arguably the most relevant project on the topic. DeepLabCut is an interactive framework for
labeling, training, testing, and refining models that originally exploits the weights learned
from ResNets (or newer architectures) on the ImageNet data. The results match human
annotation using quite a few training samples, holding for many (human and non-human)
animals and settings. Validated data sets comprise TRI-MOUSE (161 data points), Parenting
Mouse (542), MARMOSET (7600), FISH (100), and HORSE (8114). The documentation,
demonstrative notebooks, and tools offered by the Mathis Lab allow different levels of
understanding and customization of the process with high levels of robustness. Among the
considered libraries, two set apart from the majority given the type of tasks they perform:
GaNDLF addresses eXplainable AI (XAI), i.e., Artificial Intelligence whose decisions and
outputs can be understood by humans through more transparent mental models; ANTsX
performs both the co-registration step and super-resolution as a quality enhancing step for
neuroimages, with the former being usually performed by traditional algorithms. GaNDLF
sets its goal as the provision of deep learning resources in different layers of abstraction,
allowing medical researchers with virtually no ML knowledge to perform robust experi-
ments with models trained on carefully split data, with augmentations and preprocessing,
under standardized protocols that can easily integrate interpretability tools such as Grad-
CAM [56] and attention maps, which highlight the parts of an image according to how they
influenced a model outcome. It was validated on 7 data sets comprising from 371 up to
180,000 images of different systems ranging from brain MRI to dental X-ray and eye fundus.
The ANTsX ecosystem is of similar wide scope and is intended to build workflows on
quantitative biology and medical imaging data, both in Python and R languages. Packages
from the same ecosystem perform registration of brain structures (by classical methods) as
well as brain extraction by deep networks, aggregating structural MRI data sets for over
1200 subjects.



Appl. Sci. 2023, 13, 5472 12 of 27

Table 4. Domains of applications for the libraries and frameworks processing image data.

Name Neuroscience Area Data Type Datasets Task

Allen Cell Structure Segmenter [57] Microbiology, Histology 3D-fluorescence microscopy No Segmentation
ALMA [58] Behavioral neuroscience Video External Pose estimation, Classification

ANTsX [59] (ANTsPyNet,
ANTsRNet) Neuroimaging MRI No Classification, Segmentation,

Registration, Superresolution
ATLASS [60] Medical Imaging Images No Annotation, Classification

AxonDeepSeg [61] Microbiology, Histology SEM, TEM External Segmentation
BART [62] Medical Imaging MRI No Reconstruction

Brainstorm [63] Medical Imaging MRI No Synthesis, Augmentation
CASCADE [64] Electrophys. 2-photon calcium video, sequences Yes Event detection
CDeep3M2 [65] Microbiology, Histology Microscopy Yes Segmentation

CERR [66] Oncology, Radiomics Images No Segmentation, Outcome prediction
ClinicaDL [67] Neuroimaging MRI, PET External Classification, Segmentation
DANNCE [68] Behavioral neuroscience Video Yes Pose estimation

DeepBehavior [69] Behavioral neuroscience Video Yes Pose estimation
DeepBhvTracking [70] Behavioral neuroscience Video No Pose estimation

DeepCINAC [71] Electrophys. 2-photon calcium video No Classification
DeepInfer [72] Medical Imaging Images (3D) No Classification, Segmentation

DeepLabCut [73] Behavioral neuroscience Video No Pose estimation
DeepLabStream [74] Behavioral neuroscience Video No Pose estimation

DeepNeuro [75] Neuroimaging Images (fMRI, miscellaneous) No Classification, Segmentation,
Synthesis

DeepNeuron [76] Morphology Images (2D, 3D) No Classification, Segmentation
DeepPoseKit [77] Behavioral neuroscience Video No Pose estimation
DeLINEATE [47] Medical Imaging Images, sequences External Classification
DeepVOG [78] Oculography Images, Video Demo Segmentation

DLTK [79] Medical Imaging Images No Classification, Segmentation
DNNBrain [80] Brain mapping Images No Classification
FastSurfer [81] Neuroimaging MRI No Segmentation
fetal-code [82] Neuroimaging rs-fMRI External Segmentation
GaNDLF [83] Medical Imaging Images (2D, 3D) External Segmentation, Regression, XAI

hipotalamus_seg [84] Neuroimaging MRI No Segmentation
ivadomed [85] Neuroimaging Images (2D, 3D) No Classification, Segmentation

LEAP [86], SLEAP [87] Behavioral neuroscience Video No Pose estimation

MARS, BENTO [88] Behavioral neuroscience Video Yes Pose estimation, Classification,
Action recognition, Tag

MesoNet [89] Neuroimaging Images (fluoresc. microscopy) External Segmentation, Registration
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Table 4. Cont.

Name Neuroscience Area Data Type Datasets Task
MEYE [90] Oculography Images, Video Yes Segmentation

MIScnn [91] Medical Imaging Images (2D, 3D) No Segmentation
Neurite, Neuron [92] Neuroimaging Images No Segmentation

NiftyNet [93] Medical Imaging MRI, CT No Classification, Segmentation,
Synthesis

NiftyTorch [94] Neuroimaging Images (2D, 3D) No Classification, Segmentation,
Synthesis

nnU-Net [95] Medical Imaging Images (2D, 3D) No Segmentation
PyTC [96] Connectomics Images (2D, 3D) No Segmentation

ScLimbic [97] Neuroimaging MRI External Segmentation
SimBA [98] Behavioral neuroscience Video No Pose estimation

SynthStrip [99] Neuroimaging Images (3D) No Segmentation, Extraction
VesicleSeg [100] Microbiology, Histology EM No Segmentation

Visual Fields Analysis [101] Eye tracking, Behavioral
neuroscience Video No Pose estimation, Classification

Volume Segmantics [102] Neuroimaging Images (3D) No Segmentation
VoxelMorph [103], HyperMorph

[104] Neuroimaging MRI No Registration

Table 5. Model engineering specifications for the libraries and frameworks processing image data.

Name Models DL Framework Customization Programming Language

Allen Cell Structure Segmenter CAE PyTorch No Python
ALMA CNN Unspecified No Python

ANTsX (ANTsPyNet, ANTsRNet) CNN, CAE, GAN Keras, TensorFlow Yes Python, R, C++
ATLASS CNN FastAI Yes Python

AxonDeepSeg CAE TensorFlow Yes (weights) Python
BART CAE, VAE BART, TensorFlow Yes Python

Brainstorm 3D-CAE Keras, TensorFlow Yes (weights) Python
CASCADE 1-D CNN TensorFlow Yes (weights) Python
CDeep3M2 CAE TensorFlow Yes (weights) Python

CERR CAE CERR Yes Octave, MATLAB
ClinicaDL CNN, CAE PyTorch Yes Python
DANNCE 3D-CNN PyTorch Yes (weights) Python, MATLAB

DeepBehavior CNN TensorFlow Yes (weights) Python, MATLAB
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Table 5. Cont.

Name Models DL Framework Customization Programming Language
DeepBhvTracking CNN TensorFlow Yes (weights) Python, MATLAB

DeepCINAC DeepCINAC (CNN+LSTM) Keras, TensorFlow Yes (weights) Python
DeepInfer 3D-CNN, CAE Unspecified Yes (weights) Python, C++ (3D Slicer)

DeepLabCut CNN TensorFlow Yes (weights) Python
DeepLabStream CNN TensorFlow Yes (weights) Python

DeepNeuro CNN, CAE, GAN Keras, TensorFlow Yes (weights, model) Python
DeepNeuron 2,3-D CNN Unspecified (Vaa3D) Yes (weights) C++
DeepPoseKit CNN Keras, TensorFlow Yes (weights) Python
DeLINEATE CNN Keras, TensorFlow Yes (weights, model) Python
DeepVOG CAE TensorFlow No Python

DLTK CNN, CAE Tensorflow Yes (weights) Python
DNNBrain CNN PyTorch Yes (model) Python
FastSurfer CNN PyTorch Yes (weights) Python (FreeSurfer)
fetal-code 2-D CNN TensorFlow No Python
GaNDLF CNN, CAE PyTorch Yes Python

hipotalamus_seg 3D-CNN Keras, TensorFlow Yes (weights) Python
ivadomed 2,3-D CNN, CAE PyTorch Yes (weights, model) Python

LEAP, SLEAP CNN, CAE TensorFlow Yes (weights, model) Python
MARS, BENTO CNN TensorFlow Yes (weights) Python

MesoNet CNN, CAE Keras, TensorFlow No Python
MEYE CAE, CNN TensorFlow Yes (model) Python

MIScnn 2,3-D CNN TensorFlow Yes (weights) Python
Neurite, Neuron VAE Keras, TensorFlow Yes (weights) Python

NiftyNet CNN TensorFlow Yes Python
NiftyTorch CNN, CAE, GAN PyTorch Yes Python
nnU-Net 2,3-D CAE PyTorch Yes Python

PyTC 2,3-D CAE PyTorch Yes Python
ScLimibic 3-D CAE Neurite, TensorFlow No Python (FreeSurfer)

SimBA CNN TensorFlow Yes (weights) Python
SynthStrip 3-D CAE PyTorch No Python
VesicleSeg CNN PyTorch No Python

Visual Fields Analysis DeepLabCut TensorFlow, DeepLabCut Yes (weights) Python
Volume Segmantics CAE PyTorch Yes (weights) Python

VoxelMorph, HyperMorph CAE TensorFlow Yes (weights) Python
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Table 6. Technological aspects and code sources for the libraries and frameworks processing image data. The entry “(*)” signals missing data.

Name Interface Online/Offline Maintenance Source Stars (Forks) Contributors

Allen Cell Structure
Segmenter GUI, Jupyter Notebooks Offline Active https://github.com/AllenCell/aics-ml-segmentation 24 (4) 2

ALMA GUI Offline Active https://github.com/sollan/alma 7 (1) 2
ANTsX (ANTsPyNet,

ANTsRNet) CLI Offline Active https://github.com/ANTsX 961 (354) 55

ATLASS Jupyter Notebooks Offline Inactive https://github.com/adines/ATLASS 2 (1) 2
AxonDeepSeg Jupyter Notebooks Offline Active https://github.com/axondeepseg/axondeepseg 106 (28) 21

BART CLI Offline Active https:
//github.com/mrirecon/deep-deep-learning-with-bart 4 (0) 1

Brainstorm CLI Offline Inactive https://github.com/xamyzhao/brainstorm 387 (93) 1
CASCADE GUI, Colab Notebooks Offline Active https://github.com/HelmchenLabSoftware/Cascade 74 (26) 7
CDeep3M2 GUI, Colab Notebooks Offline Active https://github.com/CRBS/cdeep3m2 4 (2) 2

CERR GUI Offline Active https://github.com/cerr/CERR 170 (95) 7
ClinicaDL GUI, Colab Notebooks Offline Active https://github.com/aramis-lab/clinicadl
DANNCE GUI Offline Inactive https://github.com/spoonsso/dannce/ 162 (23) 7

DeepBehavior GUI Offline Inactive https://github.com/aarac/DeepBehavior 29 (17) 1
DeepBhvTracking GUI Offline Inactive https://github.com/SunGL001/DeepBhvTracking 3 (0) 1

DeepCINAC GUI, Colab Notebooks Offline Active https://gitlab.com/cossartlab/deepcinac 7 (0) 10
DeepInfer GUI Offline Active http://www.deepinfer.org/ 24 (14) 4

DeepLabCut GUI, Colab Notebooks Offline Active https://github.com/DeepLabCut/DeepLabCut 3600 (1500) 102

DeepLabStream GUI Online Active https:
//github.com/SchwarzNeuroconLab/DeepLabStream 45 (8) 5

DeepNeuro CLI Offline Active https://github.com/QTIM-Lab/DeepNeuro 113 (35) 3

DeepNeuron GUI Offline Inactive https://github.com/Vaa3D/vaa3d_tools/tree/master/
hackathon/MK/DeepNeuron 92 (69) 69

DeepPoseKit GUI Offline Inactive https://github.com/jgraving/DeepPoseKit 353 (83) 6
DeLINEATE GUI, Colab Notebooks Offline Active bitbucket.org/delineate/delineate (*) 3
DeepVOG CLI Offline Inactive https://github.com/pydsgz/DeepVOG 131 (58) 4

DLTK CLI Offline Inactive https://github.com/DLTK/DLTK 1400 (408) 6
DNNBrain CLI Offline Active https://github.com/BNUCNL/dnnbrain 37 (39) 10
FastSurfer CLI Offline Active https://github.com/Deep-MI/FastSurfer 338 (83) 12
fetal-code GUI, Colab Notebooks Offline Active https://github.com/saigerutherford/fetal-code 12 (5) 2
GaNDLF GUI Offline Active https://github.com/CBICA/GaNDLF 85 (53) 30

hipotalamus_seg CLI Offline Active https://github.com/BBillot/hypothalamus_seg 18 (5) 1
ivadomed CLI Offline Active https://github.com/ivadomed/ivadomed 146 (151) 34

LEAP, SLEAP CLI, GUI, Colab Notebooks Online Active https://github.com/talmolab/sleap 278 (61) 26

MARS, BENTO GUI, MATLAB GUI, Jupyter
Notebooks Offline Active https://github.com/neuroethology 37 (8) 3

MesoNet GUI, Colab Notebooks Offline Active osf.io/svztu (*) 3

https://github.com/AllenCell/aics-ml-segmentation
https://github.com/sollan/alma
https://github.com/ANTsX
https://github.com/adines/ATLASS
https://github.com/axondeepseg/axondeepseg
https://github.com/mrirecon/deep-deep-learning-with-bart
https://github.com/mrirecon/deep-deep-learning-with-bart
https://github.com/xamyzhao/brainstorm
https://github.com/HelmchenLabSoftware/Cascade
https://github.com/CRBS/cdeep3m2
https://github.com/cerr/CERR
https://github.com/aramis-lab/clinicadl
https://github.com/spoonsso/dannce/
https://github.com/aarac/DeepBehavior
https://github.com/SunGL001/DeepBhvTracking
https://gitlab.com/cossartlab/deepcinac
http://www.deepinfer.org/
https://github.com/DeepLabCut/DeepLabCut
https://github.com/SchwarzNeuroconLab/DeepLabStream
https://github.com/SchwarzNeuroconLab/DeepLabStream
https://github.com/QTIM-Lab/DeepNeuro
https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron
https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/MK/DeepNeuron
https://github.com/jgraving/DeepPoseKit
bitbucket.org/delineate/delineate
https://github.com/pydsgz/DeepVOG
https://github.com/DLTK/DLTK
https://github.com/BNUCNL/dnnbrain
https://github.com/Deep-MI/FastSurfer
https://github.com/saigerutherford/fetal-code
https://github.com/CBICA/GaNDLF
https://github.com/BBillot/hypothalamus_seg
https://github.com/ivadomed/ivadomed
https://github.com/talmolab/sleap
https://github.com/neuroethology
osf.io/svztu
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Table 6. Cont.

Name Interface Online/Offline Maintenance Source Stars (Forks) Contributors
MEYE Web app Online, Offline Active pupillometry.it 21 (5) 2

MIScnn Jupyter Notebook Offline Inactive https://github.com/frankkramer-lab/MIScnn 357 (116) 6
Neurite, Neuron CLI Offline Active https://github.com/adalca/neurite 279 (59) 11

NiftyNet CLI Offline Inactive https://github.com/NifTK/NiftyNet 1300 (408) 41
NiftyTorch CLI Offline Active https://github.com/NiftyTorch/NiftyTorch.doc 34 (8) 3
nnU-Net CLI Offline Active https://github.com/MIC-DKFZ/nnUNet 3500 (1200) 38

PyTC CLI Offline Active https://github.com/zudi-lin/pytorch_connectomics 139 (67) 28
ScLimbic CLI Offline Active https://surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic (*) (*)
SimBA GUI Offline Active https://github.com/sgoldenlab/simba 201 (115) 9

SynthStrip CLI Offline Active https://github.com/freesurfer/freesurfer/tree/dev/mri_
synthstrip (*) (*)

VesicleSeg GUI Offline Active https://github.com/Imbrosci/synaptic-vesicles-detection 4 (3) 2
Visual Fields Analysis GUI Offline Active https://github.com/mathjoss/VisualFieldsAnalysis 1 (3) 4

Volume Segmantics CLI, API Offline Active https:
//github.com/DiamondLightSource/volume-segmantics 7 (3) 1

VoxelMorph,
HyperMorph CLI Offline Active https://github.com/voxelmorph/voxelmorph 1800 (534) 13

pupillometry.it
https://github.com/frankkramer-lab/MIScnn
https://github.com/adalca/neurite
https://github.com/NifTK/NiftyNet
https://github.com/NiftyTorch/NiftyTorch.doc
https://github.com/MIC-DKFZ/nnUNet
https://github.com/zudi-lin/pytorch_connectomics
https://surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic
https://github.com/sgoldenlab/simba
https://github.com/freesurfer/freesurfer/tree/dev/mri_synthstrip
https://github.com/freesurfer/freesurfer/tree/dev/mri_synthstrip
https://github.com/Imbrosci/synaptic-vesicles-detection
https://github.com/mathjoss/VisualFieldsAnalysis
https://github.com/DiamondLightSource/volume-segmantics
https://github.com/DiamondLightSource/volume-segmantics
https://github.com/voxelmorph/voxelmorph
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4.3. Libraries for Further Data Types and Abstractions

Libraries for further data types and abstractions are shown in Table 7 (domains of
application), Table 8 (models characteristics), Table 9 (technologies and sources). There are
two ways libraries listed in this section differ from the previous ones. On the one hand,
they can process data types that do not fall into the sequence or image category. On the
other hand, they are the product of projects that transcend the training of deep learning
models, i.e., larger scope frameworks, deep learning support functions (e.g., preprocessing
and data augmentations pipelines), and services or infrastructure to host computational
experiments. NeuroCAAS is an ambitious project that both standardizes experimental
schedules and analyses and offers computational resources on the cloud. The platform lifts
the burden of configuring and deploying data analysis tools, also guaranteeing replicability
and readily available usage of pre-made pipelines with high efficiency. Other platform-
oriented libraries are concerned with federated learning, i.e., the training of deep learning
models on separated and private datasets, a relevant issue in healthcare. MONAI is a
project that brings deep learning tools to many health and biology problems. The paradigm
builds on PyTorch and aims at unifying healthcare AI practices throughout both academia
and enterprise research, not only in the model development but also in the creation of
shared annotated datasets. It also focuses on deployment and work in real-world clinical
production, settling as a strong candidate for being the standard solution in the domain.
Importantly, it is a commonly used framework for the 3D variations of UNet [105] lately
dominating the yearly BraTS challenge [33] (see at http://braintumorsegmentation.org/).
In this regard, nnU-Net is a narrower scope framework explicitly for building UNet-like
models, focused on data-driven self-configuration of training hyperparameters, reducing
the burden on researchers and practitioners. It was validated on 23 public data sets of
biomedical interest with great success. PsychRNN, PyCog and THINGvision, as well as
NeuroGym are libraries that bridge deep learning research and computational neuroscience.
They are concerned with studying how artificial neural systems solve the same tasks that
animal and human brains are subject to. The aims are those of simulating, modeling,
learning representations, and reverse engineering cognition and behavior.

http://braintumorsegmentation.org/
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Table 7. Domains of applications for the libraries and frameworks for special applications.

Name Neuroscience Area Data Type Datasets Task

DANCE [106] Single cell analysis Gene sequences External availability Clustering, Classification, Prediction
PsychRNN [107] Computational neuroscience Sequences No Classification, Prediction, Cognitive tasks

PyCog [108] Computational neuroscience Sequences No Classification, Prediction, Cognitive tasks
THINGvision [109] Computational neuroscience Images, Text External availability Classification

TorchDIVA [110] Speech production Sequences No Audio synthesis

COINSTAC [111] Neuroimaging Img No Federated learning, Classification,
Segmentation

Fed-BioMed [112] Neuroimaging Img No Federated learning, Classification,
Aggregation

FeTS [113] Neuroimaging Img No Federated learning, Segmentation

MeDaS [114] Neuroimaging Img No Utilities, Classification, Segmentation, Object
detection

MONAI [115] General General External availability General
NeuroCAAS [116] General General External availability General

NeuroGym [117] Behavioral, cognitive neuroscience General Internal Behavioral, cognitive task generation,
evaluation

NiftyNet [93] Neuroimaging Img No Utilities, Classification, Segmentation,
Regression, Synthesis

OpenFL [118] General General No Federated learning, Segmentation
pymia [119] General Img No Utilities (data handling, evaluations)

TorchIO [120] Imaging All images No Augmentation

Table 8. Model engineering specifications for the libraries and frameworks for special applications.

Name Models DL Framework Customization Programming Language

DANCE GNN PyTorch Yes Python
PsychRNN RNN Tensorflow Yes Python

PyCog RNN Theano Yes Python
THINGvision CNN, RNN, Transformers PyTorch, TensorFlow No Python

TorchDIVA CNN PyTorch Yes (weights) Python
COINCSTAC CNN COINSTAC Yes JavaScript, Python
Fed-BioMed VAE PyTorch Yes (weights) Python

FeTS 3D-ResUNet PyTorch Yes (weights) Python
MeDaS 2,3-D CNN, CAE PyTorch, TensorFlow Yes Python
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Table 8. Cont.

Name Models DL Framework Customization Programming Language
MONAI General PyTorch Yes Python

NeuroCAAS CNN TensorFlow Yes Python
NeuroGym RNN, General Keras, TensorFlow, PyTorch Yes Python

NiftyNet CNN, CAE, GAN TensorFlow Yes Python
OpenFL General Keras, TensorFlow, PyTorch Yes Python
pymia General General Yes Python

TorchIO CNN PyTorch Yes Python

Table 9. Technological aspects and code sources for the libraries and frameworks for special applications. The entry “(*)” signals missing data.

Name Interface Online/Offline Maintenance Source Stars (Forks) Contributors

DANCE CLI Offline Active https://github.com/OmicsML/dance 206 (15) 8
PsychRNN None Offline Active https://github.com/murraylab/PsychRNN 122 (38) 8

PyCog None Offline Inactive https://github.com/xjwanglab/pycog 45 (29) 1
THINGvision None Offline Active github.com/ViCCo-Group/THINGSvision 108 (17) 12

TorchDIVA CLI Offline Active https://github.com/skinahan/DIVA_PyTorch 12 (0) 1
COINSTAC GUI Offline Active https://github.com/trendscenter/coinstac 35 (19) 19
Fed-BioMed CLI Offline Active https://gitlab.inria.fr/fedbiomed 6 (0) 26

FeTS GUI, CLI Offline Active https://github.com/FETS-AI/Front-End 55 (6) 2
MeDaS GUI Offline Inactive https://medas.bnc.org.cn/ (*) (*)
MONAI GUI, Colab Notebooks Offline Active github.com/Project-MONAI/MONAI 4000 (776) 151

NeuroCAAS GUI, Jupyter Notebooks Offline Active github.com/cunningham-lab/neurocaas 25 (22) 6
NeuroGym Colab Notebooks Offline Active https://neurogym.github.io (*) 4

NiftyNet CLI Offline Inactive https://github.com/NifTK/NiftyNet 1300 (408) 41
OpenFL CLI Offline Active https://github.com/securefederatedai/openfl 484 (134) 49
pymia CLI Offline Active https://github.com/rundherum/pymia 54 (12) 4

TorchIO GUI, CLI Offline Active torchio.rtfd.io 1700 (204) 49

https://github.com/OmicsML/dance
https://github.com/murraylab/PsychRNN
https://github.com/xjwanglab/pycog
github.com/ViCCo-Group/THINGSvision
https://github.com/skinahan/DIVA_PyTorch
https://github.com/trendscenter/coinstac
https://gitlab.inria.fr/fedbiomed
https://github.com/FETS-AI/Front-End
https://medas.bnc.org.cn/
github.com/Project-MONAI/MONAI
github.com/cunningham-lab/neurocaas
https://neurogym.github.io
https://github.com/NifTK/NiftyNet
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5. Discussion

The use of deep learning in neuroscience research requires us to frame a study, or
a part of it, as a machine learning problem or task. The setting may or may not require
researchers to develop a novel learning architecture and algorithm, train an existing model
on the data, or directly apply a trained model to the scientific use case. These situations
require different levels of machine learning knowledge and data literacy. Consequently,
different libraries and frameworks would be of use. In general, researchers should be
aware of what mathematical objects and data objects can represent their experimental data:
deep learning typically processes vectors, matrices, and tensors, which could represent
signals, images, scalar and tensor fields, and more. Scientists should also consider the
nature of data used to train models and how similar they are to use case data, hence how
the model would perform on the latter. Importantly, there must be a specific task the model
would perform in processing input data and providing the output, e.g., many problems
are formulated as classification tasks, while others are very specific to the neuroscience
domain. Deep learning models may retain general information from the training data but
generally cannot apply it to different tasks without design adaptations. The application
of deep learning to neuroscience is thus challenging. Working in teams with different
scientific backgrounds is a possible solution for the problem of specialized expertise that
deep learning requires. Leveraging the platforms and practices of open science and open
source communities offers the support that a working team would still need. Deep learning
has the potential hindrance of thriving on large data sets and powerful hardware, but
transfer learning and the availability of “model zoos” in many libraries allow researchers to
build on systems with great knowledge or efficacy from the start. These systems are not an
end in themselves and can be integrated into larger workflows, allowing domain expertise
and researchers’ creativity to be enhancing and enhanced.

The tables in this work help to evaluate candidate tools for neuroscience research
problems, providing information on the type and domain of data they process, the machine
learning task they perform, and whether models are trainable, customizable, or frozen and
ready for use.

The panorama of open-source libraries dedicated to deep learning applications in neu-
roscience is quite rich and diversified. There is a corpus of organized packages that integrate
preprocessing, training, testing, and performance analyses of deep neural networks for neu-
rological research. Most of these projects are tuned to specific data modalities and formats,
but some libraries are quite versatile and customizable, and there are projects that encom-
pass quantitative biology and medical analysis as a whole. There is a common tendency
to develop GUIs, enhancing the user-friendliness of toolkits for non-programmers and
researchers unacquainted with the command line interfaces, for example. Visualizations of
building blocks, operations, and results allow us to focus on them without further allocating
cognitive and time resources to producing the respective codes. Moreover, for the many
libraries developed in Python, the (Jupyter) Notebook format appears as a widespread tool
both for tutorials, documentation and as an interface to cloud computational resources
(e.g., Google Colab [121]). Through notebooks, experimental templates can be modified
and adapted in complete environments, where text instructions, dynamic visualization,
and code are blended efficiently, can be shared and reproduced, Although learning curves
depend on subjective experiences, the availability of such interfaces and instruments re-
duces the burden on the end user, enhancing accessibility. Apart from specific papers and
documentation, and outside of deep learning per se, it is important to make researchers and
developers aware of the main topics and initiatives in open culture and neuroinformatics
in order to sustain the development of the field. For this reason, the interested reader is
invited to rely on competent institutions (e.g., INCF) and databases of open resources (e.g.,
open-neuroscience) dedicated to neuroscience. Among the possibly missing technologies,
the queries employed did not retrieve results in Natural Language Processing libraries dedi-
cated to neuroscience, nor toolkits specifically employing Graph Neural Networks (GNNs),
although available in EEG-DL. NLP is actually fundamental in healthcare since medical
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reports often come in non-standardized forms. Large Language Models (LLMs), Named
Entity Recognition (NER) systems and text mining approaches in biomedical research
exist [122,123]. GNNs comprise recent architectures that are extremely promising in a vari-
ety of fields [124], including biomedical research and particularly neuroscience [125,126].
Even if promising, their application is still less mature than that of computer vision models
or time series analysis.

Future Directions

Overall, current libraries cover a wide range of applications, but it seems unlikely
that a single deep learning framework could dominate the entire neuroscience field in the
near future. Nonetheless, projects such as the PyTorch-based MONAI are strong candi-
dates in unifying ecosystems for deep learning in medicine and biology. DeepLabCut and
nnU-Net are also worth mentioning since they are widely applied as blueprints for newer
applications, respectively, in pose estimation and segmentation. Investing efforts in open
tools and data, accessible documentation, and modularity may guarantee useful results
regardless of the specific application field and are indeed foundational to transferring
successful tools across domains. Such effort should be paired with data literacy and basic
knowledge of machine learning best practices (e.g., how to avoid data leakage between
train and test sets, how to assess model performance), paired with digital frameworks with
strong priors towards these experimental practices, such as NeuroCAAS. Interpretability
and explainability of models depend not only on the researchers’ theoretical understand-
ing but also on transparent models and effective tools to open and shed light on black
boxes. In fact, XAI is essential for systems that support decision-making in healthcare or
experiments in biomedical sciences. Tools and libraries such as GaNDLF can be expected
to gain value. Another relevant aspect of biomedicine is that of privacy and sensitive
data. Records cannot be processed anywhere; personal data cannot be published anyhow.
Standards and protocols to protect people’s privacy and machine learning models and
frameworks that respect them, such as federated learning, are expected to gain momentum.
All developments should hold against the intrinsic multimodality of data from the field
and the multidisciplinarity required to analyze them. In the end, the interplay of common
practices and flexible models can be expected to be of central importance.

6. Conclusions

Although a large and growing number of repositories offer code to build specific
models, as published in experimental papers, these resources seldom aim to constitute
proper libraries or frameworks for research or clinical practice. Both deep learning and
neuroscience gain much value even from sophisticated proofs of concept. In parallel,
organized packages are spreading and starting to provide and integrate pre-processing,
training, testing, and performance analyses of deep neural networks for neurological
and biomedical research. This paper has offered both a historical and a technical context
for the use of deep neural networks in neuroinformatics, focusing on open-source tools
that scientists can comprehend and adapt to their necessities. At the same time, this work
underlines the value of the open culture and points to relevant institutions and platforms for
neuroscientists. Although the aim is not restricted to making clinicians develop their own
deep models without coding or machine learning background, as was the case in [127], the
overall effect of these libraries and sources is to democratize deep learning applications and
results, as well as standardize such complex and varied models, supporting the research
community in obtaining a proper means to an end and in envisioning then realizing
collectively new projects and tools.
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