
Citation: Pérez Arteaga, S.;

Sandoval Orozco, A.L.; García

Villalba, L.J. Analysis of Machine

Learning Techniques for Information

Classification in Mobile Applications.

Appl. Sci. 2023, 13, 5438. https://

doi.org/10.3390/app13095438

Academic Editor: Yu-Dong Zhang

Received: 11 February 2023

Revised: 13 April 2023

Accepted: 23 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Analysis of Machine Learning Techniques for Information
Classification in Mobile Applications
Sandra Pérez Arteaga , Ana Lucila Sandoval Orozco and Luis Javier García Villalba *

Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence
(DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM),
Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain
* Correspondence: javiergv@fdi.ucm.es; Tel.: +34-91-394-7638

Abstract: Due to the daily use of mobile technologies, we live in constant connection with the
world through the Internet. Technological innovations in smart devices have allowed us to carry
out everyday activities such as communicating, working, studying or using them as a means of
entertainment, which has led to smartphones displacing computers as the most important device
connected to the Internet today, causing users to demand smarter applications or functionalities that
allow them to meet their needs. Artificial intelligence has been a major innovation in information
technology that is transforming the way users use smart devices. Using applications that make use of
artificial intelligence has revolutionised our lives, from making predictions of possible words based
on typing in a text box, to being able to unlock devices through pattern recognition. However, these
technologies face problems such as overheating and battery drain due to high resource consumption,
low computational capacity, memory limitations, etc. This paper reviews the most important artificial
intelligence algorithms for mobile devices, emphasising the challenges and problems that can arise
when implementing these technologies in low-resource devices.

Keywords: algorithms; architectures; artificial intelligence; challenges; classification; deep learning;
federated learning; limited resources; mobile devices

1. Introduction

Smartphones have become an essential part of our daily lives and are considered
personal devices for individuals. Initially, smartphones were primarily intended for
business [1]; however, in a few years, they have replaced computers as the most important
device connected to the Internet [2], leading to a high demand for smarter applications or
functionalities to meet consumer needs.

Artificial intelligence has been a topic of controversy in all areas since its implementa-
tion in computer video games. This technology has opened to many fields of knowledge,
making a solid path for smartphones to perform many tasks that make people’s lives easier,
such as recognising places through a photograph taken from the device’s camera, inter-
preting voice commands, biometric pattern recognition to unlocking devices, automatic
emergency calls when a medical mishap occurs, etc. In addition, artificial intelligence can
strike the right balance between hardware and software, allowing for more sophisticated
functionalities. Therefore, it is possible to process, analyse and implement the optimal
configuration of resources to increase the lifetime of devices and balance the hardware
features of cameras to take pictures in extreme lighting conditions or, on the contrary, in
low light for night photography. In addition, artificial intelligence has been part of many
devices in recent years such as so-called smart homes, which can be managed automatically
via a mobile app. Companies such as Google and Amazon have created innovation in
common devices that we use in our homes, such as lamps, speakers, appliances, etc., as well
as smart home devices that help people with everyday tasks, with products such as Alexa

Appl. Sci. 2023, 13, 5438. https://doi.org/10.3390/app13095438 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095438
https://doi.org/10.3390/app13095438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1370-7227
https://orcid.org/0000-0002-2846-9017
https://orcid.org/0000-0001-7573-6272
https://doi.org/10.3390/app13095438
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095438?type=check_update&version=1

Appl. Sci. 2023, 13, 5438 2 of 19

or Google Assistant. However, with the constant demand for new functionalities, the cur-
rently used artificial intelligence algorithms are becoming obsolete, and as improvements
are made, their computational cost and demand for resources increases, which means that
optimisation methods must be sought to be implemented in low-resource devices.

This paper presents a review of the main artificial intelligence algorithms that can be
adapted for mobile devices to fulfill image and text classification functionalities, as well
as providing a comparison of the main algorithms and methods analysed. The rest of
this paper is organised as follows. Section 2 describes the challenges and problems that
may arise when implementing machine learning in mobile devices. Section 3 details the
architectures that can be used to implement machine learning on mobile devices. Section 4
describes the algorithms that can be implemented for image and video detection. Section 5
describes the algorithms that are used for text analysis on mobile devices. Section 6
describes the different frameworks available to implement machine learning on mobile
devices. Section 7 mentions how federated learning works, and finally, Section 8 presents
the conclusions of the work.

2. Challenges and Issues

The use of artificial intelligence algorithms in mobile devices has helped to maximise
the functionalities we can perform with a mobile phone in different areas of research;
processing input data, such as images, text or audio; image recognition; object detection;
and gesture recognition, taking into account the CPU (central processing unit) and GPU
(graphics processing unit) of the device.

Some advantages of machine learning on mobile devices are low latency, privacy,
offline operation and low or no cost. However, mobile devices can be restricted in terms of
storage, memory, computing resources and power consumption [3].

Challenges that can arise with the implementation of mobile algorithms include the
conversion of large models to device-friendly models such as CoreML, TFLite, Edge ML or
WinML using, for example, Tensorflow with a performance advantage. Other challenges
that may arise are associated the version of the mobile device, as not all have updates or
will soon be discontinued, as well as the version of the SDK [4].

Common challenges include limited computational and memory power when running
machine learning processes consuming a lot of device resources. This also includes issues of
limited bandwidth and connectivity, as well as easy and efficient deployment of the models,
as they have to be customized and adapted to their intended use, taking into account device
deployment management, as well the quality of the data with which the models are trained
and data overfitting, whereby the model becomes adjusted to the training data to such an
extent that it does not generalize well to the test data [5,6].

It is also necessary to take into account the security of the data that can be used in the
models or the data that are processed on mobile devices, since the information may contain
sensitive data that could damage the integrity of users.

3. Architectures for Machine Learning on Mobile Devices

Machine learning models consist of two fundamental phases that can be performed in
cloud or on-device architectures: training and inference. The training of a model involves
finding patterns and grouping them according to their similarity, with the aim of minimising
losses in most test examples; this process is called empirical risk minimisation. Inference is
the process whereby the trained model is tested; once the AI learns the patterns, it creates
an inference model that it uses to solve or classify a given problem. This base architecture
allows AI models to learn complex structures without requiring large amounts of data.
In this section, we review architectures that are used to implement machine learning
models on mobile devices, emphasising the advantages and disadvantages of their use,
such as cloud, on-device and hybrid architectures.

Appl. Sci. 2023, 13, 5438 3 of 19

3.1. Cloud

For the development of machine learning functions, the type of development to be
carried out must be taken into account, as this will determine how functional the proposal is
and how well it will meet the needs of the target audience. There are two types of paradigms
associated with the infrastructure that makes use of cloud services for machine learning.
The first involves the use of cloud computing only to make inferences, and the second
involves the developer performing the training and testing using cloud infrastructure, as
explained below.

3.1.1. Testing without Training

Currently, there is a large number of applications that make use of platforms dedicated
to providing machine learning services by performing their functions in the cloud. These
platforms are called machine learning as a service (MLaaS) [7]. The MLaaS concept is an
umbrella term for various cloud-based platforms that use machine learning to provide
functionalities such as predictive analytics, data preprocessing, model creation, execution
orchestration, model deployment, etc. Companies such as Google, IBM, Microsoft, Oracle
and Amazon, among others, offer such services. Table 1 shows platforms that can provide
applications created by developers with specialised servers to deploy complex, resource-
intensive machine learning functions [8–12]. Generally, the models on these platforms are
retrained on a regular basis, supporting high confidence in the predictions.

This architecture is the most beneficial for applications that are mounted on devices
with very low performance, as it allows only a small amount of data to be sent to the server
that performs all the processing work; however, this architecture does not ensure privacy,
as the data used to make inferences leave the device. This problem increases when the
data that travel are personal, as any vulnerability in the APIs could compromise access
to these data.

Table 1. Cloud Machine Learning comparison.

Service Description Interface Models Extras

Amazon [12]

Automated infrastructure
that applies ML techniques
to information stored
on Amazon Web
Services.

Amazon ML console,
Amazon CLI

Users can use
their information with
pretrained algorithms
that can be
included in:
- Regression;
- Binary classification;
- Multiclass
classification.

Additional payments
for information stored
in a collection of
cloud computing
services billed
separately.

Google
Cloud [8]

Gives customers
access to cutting-edge
algorithms used by
Google with
the help of other
industry-leading
applications for use
in searches. Users
have the ability
to make their
own algorithms.

The terminal
is run using gcloud ml-engine
to control tensor flow
processes.

Customers have the
ability to create
models or use
pretrained models
that are supported
by following apps:
-Multimedia analysis
(image and video);
-Dialogue recognition;
-Text analysis;
-Translation.

Google account
required.

Appl. Sci. 2023, 13, 5438 4 of 19

Table 1. Cont.

Service Description Interface Models Extras

IBM
Watson [9]

Focuses on
putting algorithms
into production
using REST
API connectors.

-IBM’s SPSS graphical
analysis software
can be used as
a front end;
-API connectors allow
customers to design
models in third-party
data science applications.

Users can design
algorithms in any
language using
REST API connectors.
Access to Apache
Speak’s MLlib
library of machine
learning models is
available through
IBM’s Data Science
Experience
workbench platform
(implementation
currently in a closed
beta).

A Bluemix account is required.

Microsoft
Azure [10]

Includes predefined
models that clients
can use on
their data.

Azure Machine
Learning Studio,
R and Python
coding.

Customers may use
their information in
algorithms, including:
- Decision tree;
-Bayesian systems;
-Deep neural networks;
- Decision jungles;
-The rating service
supports these
algorithms;
-Binary
classification.
-Regression clustering.

A paid Azure account
and a free
Microsoft account
are required.

Oracle [11]

Oracle is a database
architecture relational in
which data are managed
and processed over
local and wide
area networks.
The Oracle database
has its own
networking component
to enable communications
across networks.

Oracle machine
learning AutoML.

Machine learning
function.

Oracle Platform account
required.

Figure 1 shows a general outline of a basic machine learning architecture. First,
an app makes a request for information to the API about the image, the API communicates
with the application through the remote server and data are sent to the cloud. Then,
the platform makes a prediction about the image and returns the result of the prediction.
This architecture is popular among service applications to define usage trends such as
music preferences based on played tracks or for video streaming services to generate
recommendations based on tastes and content viewing time.

3.1.2. Training and Testing

One of the biggest limitations of mobile devices in the implementation of machine
learning models in their functions is that when training and testing are performed, a large
amount of resources such as RAM memory, energy and time is consumed. This is because
in order for the models to be highly accurate, large datasets are necessary for the model
to learn the patterns and make more accurate inferences. Therefore, in some situations,

Appl. Sci. 2023, 13, 5438 5 of 19

these two functions must be performed in a cloud architecture as in [13–19]. A summary of
research using a cloud approach for data training and inference is provided in Table 2.

Figure 1. Machine learning online model architecture.

Table 2. Overview of proposals for cloud inference and training.

Approach Architecture Device or Technology Proposal Scope Reference

JoinDNN Hybrid Mobile
Computing with a mobile
device and the cloud Eshratifar et al. [13]

Pie-NET Cloud 3D Points Parametric inference of edges Wang et al. [14]

MEANet Cloud IoT Image Classification Long et al. [15]

SPINN Cloud CNN CNN splitting at run time Laskaridis et al. [16]

DATAMIX Hybrid Edge devices Speech recognition Liu et al. [17]

PieSlicer Cloud Online services Cloud-based CNN inference Ogden et al. [18]

Deep Learning Inference
on Real-time Cloud DNN Cloud development Li et al. [19]

As shown in Figure 2, the architecture does not change with respect to the previous
one; the only difference is that the service provider enables model training with our
own datasets, which leads to a design more tailored to the needs of our application and
customised to our data. The developer can upload the data for training either from the
application itself or using a different service and use them to perform the training in the
cloud. However, this scheme has the same privacy issues as the previous one.

Figure 2. Machine learning online model architecture: training and testing in the cloud.

3.2. On-Device Architecture

One of the architectures that is rarely used involves training and inference on the
device because machine learning algorithms are often not optimized for low-resource

Appl. Sci. 2023, 13, 5438 6 of 19

devices, which leads to a high consumption of power and resources and high latency. This
architecture helps maintain user privacy, as user data remain on the device.

3.2.1. On-Device Testing with Pretrained Models

Making predictions on the device has its advantages. First, privacy is increased
because the data do not leave the device at any time, and there is no need for an API for
the application to communicate with the machine learning model, which helps to avoid
the introduction of an element into the architecture that could put the user’s data at risk.
Secondly, it lowers the response time from the time the request is made to the model until
a prediction is made, achieving latencies of the order of microseconds in particular cases,
as well as improving the amount of bandwidth used. This low latency is fundamental for
architectures for which response time is crucial, such as an autonomous car. In addition,
because device models must be as small as possible, it affects the ability of inference
accuracy and flexibility of use, as they are tailored to specific circumstances.

In order to run machine learning models on a limited-resource device, it is necessary
to convert the original model files into TensorFlow Lite files. This is a framework specially
designed for running deep learning models on the device, storing models in a special low-
storage file format that enables low execution rates by reducing computing and memory
requirements [20]. As seen in Figure 3, to perform inference on a given image, the applica-
tion must load the pretrained model from internal storage and then perform the necessary
computations locally on the device. Compared to previous architectures, this one does not
need to communicate with a remote server or API to perform its functions. The developer
only needs to check if the pretrained model meets the application requirements, then load
it into the application. If not, a custom model is needed, which can be trained and adjusted
to the application’s needs on a computer or in the cloud. The pretrained model can be a
common model used for a specific purpose or tailored to research needs, such as in [21–26].

As previously discussed, an application that performs all data processing on the device
using algorithms preloaded into the device’s storage is appropriate when it is necessary to
preserve the user’s privacy, as the user’s data never leave the device. An example is the
solution presented in [27], in which the authors presented a solution for detection of spam
in short text messages (SMS), as such messages may contain sensitive user information that,
if disclosed, could compromise some aspect of the user’s personal life.

Figure 3. Machine learning model architecture on-device testing.

Appl. Sci. 2023, 13, 5438 7 of 19

3.2.2. Training and Testing on the Device

This architecture is perhaps the most optimal for low-scale data processing (Figure 4).
It preserves user privacy, as training and inferences are performed on the device, allowing
the application to continue learning from the data first hand. In addition, it helps to
avoid the costs and bandwidth requirement associated with using cloud services. This
architecture is feasible in scenarios using smaller machine learning algorithms. As shown
above, using pretrained models stored on the device to make predictions leads to a decrease
in the accuracy of the results. This is mainly due to the use of optimised models that are too
small or basic ML algorithms, given the processing limitations that may be encountered, as
in [24].

Figure 4. Machine learning model architecture on-device testing and inference.

3.3. Hybrid

This architecture involves two stages, the first of which occurs on the mobile device and
the second of which occurs in the cloud. In a hybrid architecture of the automatic learning
model, the model performs the extraction of internal characteristics; these characteristics
feed the models of the second stage to predict the response variable [28]. This architecture
allows the model to be refined by adapting it to the individual model and customising it to
the user’s individual data.

4. Image and Video Classification Algorithms on Mobile Devices

The algorithms that are used for image classification are mostly used for computers,
which leads to more computational complexity and processing power for training data,
which, when performing image processing such as image classification to identify a person
in a photo on a mobile device, is done with algorithms with low computational cost to
avoid latency, high memory consumption, high battery consumption and other potential
problems. Currently, deep learning models are often used for image classification and
recognition; the main algorithms used for this type of classification in mobile devices are
described in the next sections.

Appl. Sci. 2023, 13, 5438 8 of 19

4.1. MobileNet

MobileNet is a model that can be deployed on mobile devices to meet the intelligence
needs of the market for mobile applications due to the low number of parameters required
for training, low latency in processing inferences and low consumption of computing
resources. Mobilenet consists of an architecture based on depth-separated convolutions,
allowing the model to be quite light and efficient. It can be used for classification, de-
tection, embedding and segmentation and is used in a similar way to other large-scale
models [29,30].

• MobileNetV2 is the second version of the MobileNet model that greatly improves the
accuracy and inference time of the model. This update contains a full convolution
layer with 32 filters and 19 bottleneck layers and direct access connections [29,31].

• MobileNetV3: This version of the model is based on the EfficientNet search method
with specific parameter space targets required for use on mobile devices. It is a
lightweight model that allows for image classification with low inference times and
fits architectures with limited computational resources [32,33].

Among the areas in which this model has been used to improve and automate pro-
cesses are botany, botanics [34–37], medicine [38–42], manufacturing [43], zoology [44],
digital forensics processes [45], etc.

MobileNet Architecture

As discussed above, MobileNet is based on an architecture based on depth-separable
convolutions. This convolution consists of two operations: depthwise convolution and
pointwise convolution. Depthwise convolution applies separate convolutions to each chan-
nel of the input tensor, i.e., a traditional n × m convolution on a colour image. Subsequently,
the activation maps resulting from the convolution operations are concatenated on the
depth axis. A traditional 1× 1 convolution is then applied to the resulting tensor (pointwise
convolution), which combines the channels of the concatenated activation maps [46].

4.2. EfficientNet

Convolutional neural networks (ConvNets) are developed with a fixed resource re-
quirement in mind, then scaled up to obtain better accuracy if more resources are available.

The EfficientNets family of models was designed based on the neural architecture
and scaling efficiency of MobileNet and ResNet, achieving better precision and efficiency
than their base models. The EfficientNet model, like MobileNet, uses a convolutional
neural network (CNN) architecture that improves performance by uniformly balancing
and scaling depth, width and resolution using a composite coefficient, limiting those of the
convolutional network to fixed portions of the parameters. The composite scaling method
intuits that if the input image is larger, the network needs to increase the receptive field by
increasing layers and channels to capture detailed patterns from the input image [22].

The EfficientNet model conforms to the MnasNET search method by adding two
important concepts, squeeze and excitation blocks (swish activation function and the SE),
making use of inventive residual blocks from MobileNetV2 [32].

4.2.1. EfficientNet Architecture

The scaling efficiency of the model is also highly dependent on the reference network.
Using the AutoML MNAS framework, a neural architecture is sought to improve the
scaling performance in order to optimise the accuracy and efficiency of the model. This
architecture makes use of mobile bottleneck inverse convolution (MBConv) techniques
such as MobileNetV2 and MnasNet; however, it assumes a larger size due to a higher
accuracy and efficiency rate [47], as proposed in [22].

Appl. Sci. 2023, 13, 5438 9 of 19

4.2.2. EfficientNet Variants

The EfficientNet model is one of the most relevant among the latest models. This model
achieves an assumption of 84.4%. As discussed, EfficientNets models rely on AutoML
and composite scaling to increase resource efficiency and achieve superior performance.
Following this method, different versions of EfficientNet have been developed; starting
from B0, improving the composite scaling method, the EfficientNet B1 to B7 versions were
obtained [48]. Although the number of parameters increases, the increase is not significant,
while the accuracy increases significantly in contrast to other CNN models [49].

For the generation of new versions of EfficientNet, it is only necessary to scale the
network when a set of heuristic scaling characteristics of the base network (B0) is present,
which enables the production of increasingly larger networks. In short, each step of a larger
network requires a square amount of computation. Therefore, a large amount of training
time is necessary to deploy a network that has good accuracy-related results [32]. Table 3
shows the characteristics of each of the EfficientNet-derived models from B0 to B7, as well
as the input size in pixels, the number of parameters and the accuracy [22,50].

Table 3. Comparison of features of EfficientNet models.

Version Input Size (px) #Params Accuracy

EfficientNetB0 224 × 224 4,057,253 76.3%/93.2%

EfficientNetB1 240 × 240 6,582,914 78.8%/94.4%

EfficientNet-B2 260 × 260 7,777,012 79.8%/94.9%

EfficientNet-B3 300 × 300 10,792,746 81.1%/95.5%

EfficientNet-B4 380 × 380 17,684,570 82.6%/96.3%

EfficientNet-B5 456 × 456 28,525,810 83.3%/96.7%

EfficientNet-B6 528 × 528 40,973,969 84.0%/96.9%

EfficientNet-B7 600 × 600 64,113,049 84.4%/97.1%

4.2.3. EfficientNet-Lite

EfficientNet-Lite is derived from the state-of-the-art EfficientNet architecture [51].
EfficientNet is a model that has achieved outstanding results in image recognition, speech
recognition and video detection and improves the overall prediction/recognition accuracy.
This model is suitable for deployment in devices with limited resources, such as mobile
phones that implement EfficientNet-Lite, due to low resource consumption and low storage
demand due to the low number of parameters needed to train the model. EfficientNet-Lite
runs on all mobile CPUs/GPUs/EdgeTPUs [52].

EfficientNet-Lite is based on the efficiency of EfficientNet and is used in edge devices,
with five variants that vary in precision and size of the model (number of parameters).
EfficientNet-Lite0 is the low-latency and low-size version of the model and, EfficientNet-
Lite4 is the high-precision version.

Figure 5 the red line represents the different versions of EfficientNet-lite and the
blue line represents popular models for image classification (MobileNetV2, ResNet50 and
InceptionV4). The comparison is made in terms of latency and accuracy is quantized with
integers only and using the ImageNet dataset running in real time. As shown EfficientNet-
Lite4, achieves an accuracy of 80.4% as does the InceptionV4 model, however the latter
has a higher latency of approximately 80 ms. This last figure is significant because the
processing [53].

Table 4 shows some algorithms that perform well on mobile devices, analysing the
input parameters and the output of each of the models in comparison with EfficientNet.

Appl. Sci. 2023, 13, 5438 10 of 19

Figure 5. EfficientNet-Lite latency (ms) vs Accuracy (top 1) [53].

Table 4. Characteristics of the operation of models on mobile devices.

PRE-Trained Model Image Input Size (px) Acuracy Parameters Inference Time Size

EfficientNetV2 [54] 300 × 300 83% 55 M 57 ms 220 MB

MobileNet [55] 224 × 224 70.4% 4.3 M 22.6s 16 MB

MobileNetV2 [55] 224 × 224 71.3% 3.5 M 25.9 ms 14 MB

ResNet50 [56] 224 × 224 74.9% 25.6 M 58.2 ms 98 MB

VGG16 [57] 224 × 224 71.3% 138.4 M 69.5 ms 528 MB

InceptionV3 [58] 299 × 299 77.9% 23.9 M 42.2 ms 92 MB

NASNetMobile [59] 224 × 224 74.4% 5.3 M 27 ms 23 MB

DenseNEt121 [60] 224 × 224 75% 8.1 M 77.1 ms 33 MB

Xception [59] 299 × 299 79% 22.9 M 109.4 ms 88 MB

The variants of the EfficientNet model shown in Table 3 were used to create the
EfficientNet-Lite model, which can be implemented on mobile devices with unlimited
resources and perform as well as the EfficientNet model for computers. Table 4 shows
algorithms that, thanks to the low number of parameters used for their training, can be
adapted to mobile phones; for example, MobileNet and MobileNetV2 achieve a similar
accuracy of 70% and 71%, respectively. The number of parameters used is also relatively
low, which means that the storage necessary for its operation is around 16 MB. Other algo-
rithms, although they achieve similar performance to MobileNet, require a large amount of
resources for processing. A special case is EfficientNet, which despite the higher number of
parameters, has versions that can be adapted to a mobile device using TensorflowLite.

5. Text Analytics Algorithms on Mobile Devices

Natural language interface (NLI) helps clients to interact with their computer using
high-level language instead of using machine language in the command line interface or
with the graphical user interface [61]. NLI involves user–computer interaction, helping
the computer to understand high-level language, enabling search queries through text
or spoken language.

Mobile devices present usage challenges for users because they are small and have
limited resources and network connection, among other elements [62]. Natural language
has been implemented in novel applications such as database queries, question answers,
personalisation, etc. NLI focuses on the work of desktop computer systems. NLI on mobile
devices expands knowledge theoretically and practically to improve mobile devices.

Appl. Sci. 2023, 13, 5438 11 of 19

One area that has attracting attention from researchers is the use of lightweight,
pretrained deep learning models to perform text processing on devices, which can allow
for the classification of text messages, application messages, notifications, etc., without the
need to connect to a remote server to make inferences. However, this task is complex
due to hardware limitations such as RAM, storage or battery requirements. Algorithms
designed for mobiles must have few training parameters to make the model light enough
to be supported.

In [63] the authors proposed TinyBERT, a BERT-based model that, to enable its use in
resource-constrained devices, makes use of novel methods to distill transformer knowledge
both in the pretraining stage and in the task-specific learning stage to be implemented.

On the other hand, in [64], MobileBERT, an algorithm based on BERT_Large de-
signed between self-attenuation and feed-forward networks, was proposed. The results
obtained by the authors show that MobileBert is 4.3 times smaller and 5.5 times faster than
BERT_Base.

MobileBERT is a bidirectional transformer based on the BERT model, which is com-
pressed and accelerated using various approaches. Masquerade language modeling (MLM)
is effective in predicting masquerade tokens and in NLU in general. MLM is not optimal
for text generation, but models trained with a causal language modeling (CLM) goal are
better in that regard [63]. The architecture of MobileBERT is shown in the Figure 6.

Figure 6. MobileBERT architecture. (a) BERT; (b) MobileBERT teacher; (c) MobileBERT student [64].

DistilBERT is a transformer model that is smaller and faster than BERT. DistilBERT
is trained on a corpus previously in self-supervised mode with the base BERT model [65].
DistilBERT was pretrained on three targets: masked language modelling (MLM), loss of
cosine embedding and distillation loss.

This model is one of the most efficient; in addition to needing few parameters for
its training, the space required to store the model makes it ideal for applications on
mobile devices.

For example, Saha et al. [66], collected data from text posted on social networks
and classified how children are harassed by various comments online. The aim of this
work was to show society the risks that children face with the use of communication
applications. In [67], the authors used this model to detect comments that denote online
aggression and conclude that the use of information from multiple depths increases the
model’s performance. In addition, in [68], the authors presented TopicBERT to optimise
the computational cost of fine tuning for document classification, which was achieved by
complementary learning of thematic and linguistic models in a unified framework.

Appl. Sci. 2023, 13, 5438 12 of 19

6. Frameworks for Mobile Devices

Current tools on the market that allow for the implementation of machine learning
models on mobile, which, as we have seen, allow the functionalities of applications to be
expanded to other areas. In addition to the tools already mentioned, other tools provide
functionalities to generate machine learning models for mobile devices, as shown in Table 5.

• TensorFlow Lite: Is a computational intelligence platform for local inference designed
primarily for low-resource computing hardware such as mobile devices and embedded
and edge systems. It enables on-device artificial intelligence by supporting program-
mers in running their models on relevant hardware and IoT devices [69]. This tool
provides various methods of optimisation, compression and conversion of an ML
model into a tflite format. This platform ensures data security through local device
training without the need for an Internet connection [70].

• OpenCV: OpenCV is an open-source computer library developed in C and C++ on
Linux, Windows and MacOS X with support for Python, Ruby Matlab and other
languages [71]. It also supports mobile applications, which allows for the development
of applications that require face recognition, object detection, image processing and
manipulation, etc.

• The ML Kit by Google: Is a free mobile development SDK for Google’s machine
learning model in Android and iOS applications. It has features in its computer vision
and natural language processing APIs. All ML Kit APIs run on the device, enabling
real-time use cases. This also means that the functionality is available offline [72].

• Core ML: Is a machine learning development kit for Apple devices. It offers easy
integration of machine learning models into applications. This library allows the user
to transform models generated by other libraries using the ML Core utility, in addition
to allowing users to preview the model directly from Xcode and download it using the
ML Core Ready utility. It also allows the user to transform models from other types of
libraries using Core ML Converters or downloaded ready-made Core ML models and
preview the model easily or directly in Xcode. Furthermore, the kit allows the user to
create computer vision, natural language, speech and audio models [73].

• Google Cloud AI: Tools use Google technologies to help developers solve common AI
problems. Google AI continuously updates products and implemented algorithms
in order to achieve the best inference results for developers. Google AI features
include speech-to-text conversion, natural language processing and optical character
recognition, among others [74].

• CAFFE2: Caffe2 provides an easy way to provide proof of concept and take advantage
of the contributions of new models and algorithms provided by the scientific commu-
nity. GPUs can be use in the cloud to train large volumes of data and scale trained
models to mobile devices using Caffe2’s cross-platform libraries [75].

• DialogFlow: Is a natural language understanding platform with which users can
design a conversational user interface and embed it in a mobile or web application.
It analyzes different file types of input such as text input or audio input, such as a
voice recording, and can respond to users in different ways such as through text or an
artificial voice [76].

• Microsoft Cognitive Services: Is an artificial intelligence (AI) service that bases its
operation on sending data to a central server that is in charge of carrying out the
training and returning the trained model to the source device. This service helps
developers add cognitive intelligence to applications without prior AI knowledge
or skills. Azure Cognitive Services enables developers to add functionality to their
applications such as the ability to see, hear, speak and analyze [77].

• The Firebase ML Kit: Is a set of tools and services that focused on offering the developer
powerful machine learning so that can be included in apps using an Android or iOS
system. It has a set of APIs, also known as an application programming interfaces, that
is cloud-enabled and allows the user to perform different actions, such as recognizing
text, recognizing landmarks and image tagging [78].

Appl. Sci. 2023, 13, 5438 13 of 19

Table 5. Tools for implementing machine learning applications on mobile devices.

Model Features Support Functions

CAFFE2 [75] Integration with mobile applications C++, Python, Android, IOS Training and testing on the device

OpenCV [79]
Integration with mobile applications;
Facial recognition;
Gesture recognition

C++, Java, Python, Android, IOS Training and testing on the device

TensorFlow Lite [20,69]
Lightl
Integration with mobile devices;
Efficient

Android, IOS, RaspBerry Pi Training and testing on the device

Google ML KIT [72]
Light;
Integration with mobile devices;
High speed of inference

Android, IOS Training and testing on the device

DialogFlow [76,80]

Multichannel implementation;
Advanced AI;
State-based models;
End-to-end administration

C, C#, Go, Java
Node.js, Python Inferences in the cloud

Microsoft Cognitive
Services [77,81]

Computer vision;
Speech recognition;
Natural language understanding;
Decision management

Python, Java, .NET, JS, GO, PHP Inferences in the cloud

Core ML [73]
Creation of models;
Pretrained or own models;
No training allowed

IOS and converted models from other libraries
Model implementation;
Pretrained on devices

Firebase ML Kit [78]

Text recognition;
Image tagging;
Object recognition and tracking;
Language identification

Android, iOS Inferences on the device or in the cloud

Google Cloud AI [74]
Speech to text;
Natural language;
Document AI

Java, Go, Python, Node.js Inferences on the device or in the cloud

Pytorch Mobile [82] Integration in mobile applications iOS, Android and Linux Training and testing on the device

Appl. Sci. 2023, 13, 5438 14 of 19

7. Federated Learning

Federated learning is an ML environment in which different clients collaborate to learn
a centralised model while keeping client data decentralised [83]. In this model, several
users share data remotely to a server for centralized deep learning model training; this
improves iteratively, meaning that the more data are shared by the clients, the better fit the
model will have. The training and tuning process is simple; first, each client downloads the
pretrained base model from the cloud, which is trained with the client’s data (private or
public), and a model summary is created with the new data. The new model configuration
is encrypted and sent back to the server, performing the reverse process of encryption, and
the model is integrated with the client data and the base model [84].

Federated learning allows mobile devices to collaboratively learn the shared prediction
model so that all training data can be kept on the device, which helps train the machine
learning algorithm while allowing each device to maintain its own private and local data.
This technology provides pervasive machine learning solutions, as well as flexible and
managed real-time data. Federated learning can be used for numerous tasks and contexts,
including offline and online learning procedures for algorithms [85,86].

In order to ensure user privacy, when a model is deployed on a mobile device using
federated Learning features, the device initially downloads the base model (A) from a
remote server; when there is a data candidate for retraining, this model summarises the
changes as a update to the base model (B), which is sent to refresh the core model via
encrypted communication (C). This ensures that no user data, whether private or not, leave
the device and that no individual updates are stored in the cloud [85] (see Figure 7).

There are three types of federated learning [87]:

• Vertical federated learning: Is applied in cases in which the datasets share the same
sample space but have a different feature space, with training data vertically divided.

• Horizontal federated learning: Is proposed for architectures for which the participat-
ing customer datasets share the same type of characteristics but have different data
samples, with the entire data set divided horizontally into data samples and assigned
to two customers.

• Hybrid federated learning: Is applied when datasets from different customers have not
only have different sample architectures but also share different feature architectures.

Figure 7. Functioning of federated learning. (A) the device downloads the base model, (B) sum-
marises the changes as a update to the base model, (C) sent to refresh the core model via encrypted
communication.

Appl. Sci. 2023, 13, 5438 15 of 19

Federated learning has been used to improve the utility of various types of appli-
cations. Some of the most prominent applications of federated learning are Android’s
Gboard for predictive text and Google Assistant, in addition to natural language pro-
cessing, autonomous vehicle, resource allocation, data science and health applications,
among others [83].

Federated learning has the functionality to be incorporated into other industries, such
as adding to customer financial records and adding to sound and image data. As more
technology moves to mobile phones and other peripheral devices, federated learning
provides a way to take advantage of streaming data [84].

8. Conclusions

In this paper, we analysed the literature on machine learning models that can be
used to create more sophisticated and intelligent applications. We analysed the main
architectures that a developer can use to implement machine learning models on mobile
devices, taking into account the privacy and processing characteristics of the device. We
also listed some of the most important frameworks that exist to implement AI models on
devices with limited processing, comparing which of these can be used to make inferences
either in the cloud or on the device. Since one of the main functionalities of AI applications
is image classification and text analysis, some models and works were shown that adjust the
parameters of the models so that they can be used in mobile devices, and a description of
the concept of federated learning and its advantages with respect to developments in terms
of privacy was provided. Finally, some challenges and problems currently encountered
when implementing robust models on smartphones in terms of processing power, latency
and memory were presented.

The technologies studied in this paper can be implemented on mobile devices to
achieve certain tasks due to the increasing demand for new functionalities to satisfy the
needs of users. With the implementation of artificial intelligence and machine learning
algorithms, functionalities can be implemented that help users to carry out more specific
activities in different areas, such as classifying images and videos, text analysis, predic-
tion of possible words when writing, biometrics and mobile device software security,
among others.In this work, it was possible to verify that for the implementation of machine
learning algorithms in mobile devices, the size, memory, CPU, GPU and updates of the
mobile device, as well as the security of sensitive information of a user, have to be taken
into account.

Author Contributions: Conceptualization, S.P.A., A.L.S.O. and L.J.G.V.; methodology, S.P.A., A.L.S.O.
and L.J.G.V.; validation, S.P.A., A.L.S.O. and L.J.G.V.; investigation, S.P.A., A.L.S.O. and L.J.G.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This work also was supported by the European Commission under the Horizon 2020
research and innovation programme, as part of the project HEROES (Grant Agreement no. 101021801).
Views and opinions expressed are however those of the authors only and do not necessarily reflect
those of the European Union or European Commission—EU. Neither the European Union nor the
European Commission can be held responsible for them.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable; this study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sarwar, M.; Soomro, T.R. Impact of smartphone’s on society. Eur. J. Sci. Res. 2013, 98, 216–226.
2. Statista. Share of Users Worldwide Accessing the Internet in 3rd Quarter 2022, by Device. Available online: https://www.statista.

com/statistics/1289755/internet-access-by-device-worldwide/ (accessed on 10 April 2023).

https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide/
https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide/

Appl. Sci. 2023, 13, 5438 16 of 19

3. Why On-Device Machine Learning? Available online: https://developers.google.com/learn/topics/on-device-ml/learn-more.
(accessed on 15 January 2023).

4. Addressing the Challenges of On-Device Machine Learning. Available online: https://blog.developer.adobe.com/addressing-
the-challenges-of-on-device-machine-learning-1f71ebcedd69 (accessed on 15 January 2023).

5. Addepto. What Are the Top 10 Challenges of Machine Learning? Available online: https://addepto.com/blog/what-are-the-
top-10-challenges-of-machine-learning/ (accessed on 15 January 2023).

6. Linkedin. The Benefits and Challenges of Edge Machine Learning. Available online: https://www.linkedin.com/pulse/benefits-
challenges-edge-machine-learning-wallaroolabs (accessed on 15 January 2023).

7. Ribeiro, M.; Grolinger, K.; Capretz, M.A. MLaaS: Machine Learning as a Service; IEEE: Piscataway, NJ, USA, 2015; pp. 896–902.
[CrossRef]

8. Google Cloud, AI and Machine LEARNING Products. Available online: https://cloud.google.com/products/ai (accessed on
6 January 2023).

9. IBM Watson Machine Learning. Available online: https://www.ibm.com/cloud/watson-studio (accessed on 6 January 2023).
10. Welcome to Machine Learning Studio. Available online: https://studio.azureml.net/ (accessed on 6 January 2023).
11. Oracle Machine Learning. Available online: https://docs.oracle.com/en/database/oracle/machine-learning/oml4py/1/mlpug/

machine-learning-classes-and-algorithms.html (accessed on 6 January 2023).
12. Machine Learning on AWS. Available online: https://aws.amazon.com/machine-learning (accessed on 6 January 2023).
13. Eshratifar, A.E.; Abrishami, M.S.; Pedram, M. JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud

Computing Services. IEEE Trans. Mob. Comput. 2021, 20, 565–576. [CrossRef]
14. Wang, X.; Xu, Y.; Xu, K.; Tagliasacchi, A.; Zhou, B.; Mahdavi-Amiri, A.; Zhang, H. PIE-NET: Parametric Inference of Point

Cloud Edges. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Online, 6–12 December 2020;
pp. 20167–20178.

15. Long, Y.; Chakraborty, I.; Srinivasan, G.; Roy, K. Complexity-Aware Adaptive Training and Inference for Edge-Cloud Distributed
AI Systems. In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),
Washington, DC, USA, 7–10 July 2021; pp. 573–583. [CrossRef]

16. Laskaridis, S.; Venieris, S.I.; Almeida, M.; Leontiadis, I.; Lane, N.D. SPINN: Synergistic Progressive Inferenceof Neural Networks
over Device and Cloud. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking,
MOBICOM ’20, London, UK, 21–25 September 2020; Association for Computing Machinery (ACM): New York, NY, USA, 2020;
pp. 1–15. [CrossRef]

17. Liu, Z.; Wu, Z.; Gan, C.; Zhu, L.; Han, S. DataMix: Efficient Privacy-Preserving Edge-Cloud Inference. In Proceedings of the
Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020;
Volume 12356, pp. 578–595. [CrossRef]

18. Ogden, S.S.; Kong, X.; Guo, T. PieSlicer: Dynamically Improving Response Time for Cloud-based CNN Inference. In Proceedings
of the ACM/SPEC International Conference on Performance Engineering, Virtual Event, 19–23 April 2021; ACM: New York, NY,
USA, 2021; pp. 249–256. [CrossRef]

19. Li, Y.; Han, Z.; Zhang, Q.; Li, Z.; Tan, H. Automating Cloud Deployment for Deep Learning Inference of Real-time Online
Services. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada,
6–9 July 2020.

20. Reda, M.; Suwwan, R.; Alkafri, S.; Rashed, Y.; Shanableh, T. AgroAId: A Mobile App System for Visual Classification of Plant Species
and Diseases Using Deep Learning and TensorFlow Lite. Informatics 2022, 9, 55. [CrossRef]

21. Mondal, S.; Modi, S.; Garg, S.; Das, D.; Mukherjee, S. ICAN: Introspective Convolutional Attention Network for Semantic Text
Classification; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 158–161. [CrossRef]

22. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

23. Vatsal, S.; Purre, N.; Moharana, S.; Ramena, G.; Mohanty, D. On-Device Information Extraction from Sms Using Hybrid
Hierarchical Classification. In Proceedings of the 2020 IEEE 14th International Conference on Semantic Computing (ICSC), San
Diego, CA, USA, 3–5 February 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 178–181.
[CrossRef]

24. Garg, S.; Harichandana, S.S.; Kumar, S. On-Device Document Classification using Multimodal Features. In Proceedings of the 3rd
ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD),
Bangalore, India, 2–4 January 2021; Association for Computing Machinery: New York, NY, USA, 2020; pp. 203–207. [CrossRef]

25. Buiu, C.; Dănăilă, V.R.; Răduţă, C.N. MobileNetV2 ensemble for cervical precancerous lesions classification. Processes 2020, 8, 595.
[CrossRef]

26. Ignatov, A.; Malivenko, G.; Timofte, R.; Tseng, Y.; Xu, Y.S.; Yu, P.H.; Chiang, C.M.; Kuo, H.K.; Chen, M.H.; Cheng, C.M.; et al.
PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks. In Proceedings of the 2022 26th International
Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; Institute of Electrical and Electronics
Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 677–684. [CrossRef]

https://developers.google.com/learn/topics/on-device-ml/learn-more
https://blog.developer.adobe.com/addressing-the-challenges-of-on-device-machine-learning-1f71ebcedd69
https://blog.developer.adobe.com/addressing-the-challenges-of-on-device-machine-learning-1f71ebcedd69
https://addepto.com/blog/what-are-the-top-10-challenges-of-machine-learning/
https://addepto.com/blog/what-are-the-top-10-challenges-of-machine-learning/
https://www.linkedin.com/pulse/benefits-challenges-edge-machine-learning-wallaroolabs
https://www.linkedin.com/pulse/benefits-challenges-edge-machine-learning-wallaroolabs
http://doi.org/10.1109/ICMLA.2015.152
https://cloud.google.com/products/ai
https://www.ibm.com/cloud/watson-studio
https://studio.azureml.net/
https://docs.oracle.com/en/database/oracle/machine-learning/oml4py/1/mlpug/machine-learning-classes-and-algorithms.html
https://docs.oracle.com/en/database/oracle/machine-learning/oml4py/1/mlpug/machine-learning-classes-and-algorithms.html
https://aws.amazon.com/machine-learning
http://dx.doi.org/10.1109/TMC.2019.2947893
http://dx.doi.org/10.1109/ICDCS51616.2021.00061
http://dx.doi.org/10.1145/3372224.3419194
http://dx.doi.org/10.1007/978-3-030-58621-8_34
http://dx.doi.org/10.1145/3427921.3450256
http://dx.doi.org/10.3390/informatics9030055
http://dx.doi.org/10.1109/ICSC.2020.00031
http://dx.doi.org/10.1109/ICSC.2020.00036
http://dx.doi.org/10.1145/3430984.3431030
http://dx.doi.org/10.3390/pr8050595
http://dx.doi.org/10.1109/ICPR56361.2022.9956598

Appl. Sci. 2023, 13, 5438 17 of 19

27. Sidhpura, J.; Shah, P.; Veerkhare, R.; Godbole, A. FedSpam: Privacy Preserving SMS Spam Prediction. In Communications in
Computer and Information Science, Proceedings of the ICONIP 2022: Neural Information Processing, New Delhi, India, 22 November 2022;
Springer: Singapore, 2023; Volume 1793, pp. 52–63

28. Nagula, P.K.; Alexakis, C. A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price. J. Behav. Exp. Financ.
2022, 36, 100741. [CrossRef]

29. Wibowo, A.; Hartanto, C.A.; Wirawan, P.W. Android skin cancer detection and classification based on MobileNet v2 model. Int. J.
Adv. Intell. Inform. 2020, 6, 135–148. [CrossRef]

30. GitHub. MobileNet. Available online: https://github.com/tensorflow/tfjs-models/tree/master/mobilenet (accessed on
8 January 2023).

31. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

32. Koonce, B. Convolutional Neural Networks with Swift for Tensorflow; Apress: Berkeley, CA, USA, 2021; pp. 109–123. [CrossRef]
33. Huang, J.; Mei, L.; Long, M.; Liu, Y.; Sun, W.; Li, X.; Shen, H.; Zhou, F.; Ruan, X.; Wang, D.; et al. Bm-net: Cnn-based mobilenet-v3

and bilinear structure for breast cancer detection in whole slide images. Bioengineering 2022, 9, 261. [CrossRef]
34. Michele, A.; Colin, V.; Santika, D.D. MobileNet Convolutional Neural Networks and Support Vector Machines for Palmprint

Recognition. In Procedia Computer Science, Proceedings of the 4th International Conference on Computer Science and Computational
Intelligence (ICCSCI 2019): Enabling Collaboration to Escalate Impact of Research Results for Society, Yogyakarta, Indonesia, 12–13
September 2019; Elsevier: Amsterdam, The Netherlands, 2021; pp. 110–117. [CrossRef]

35. Bi, C.; Wang, J.; Duan, Y.; Fu, B.; Kang, J.R.; Shi, Y. MobileNet based apple leaf diseases identification. Mob. Netw. Appl. 2020, 1–9.
[CrossRef]

36. Rajbongshi, A.; Sarker, T.; Ahamad, M.M.; Rahman, M.M. Rose Diseases Recognition using MobileNet. In Proceedings of
the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey,
22–24 October 2020; pp. 1–7. [CrossRef]

37. Zaki, S.Z.M.; Zulkifley, M.A.; Stofa, M.M.; Kamari, N.A.M.; Mohamed, N.A. Classification of tomato leaf diseases using MobileNet
v2. IAES Int. J. Artif. Intell. 2020, 9, 290. [CrossRef]

38. Sae-Lim, W.; Wettayaprasit, W.; Aiyarak, P. Convolutional Neural Networks Using MobileNet for Skin Lesion Classification. In
Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi,
Thailand, 10–12 July 2019; pp. 242–247. [CrossRef]

39. Venkateswarlu, I.B.; Kakarla, J.; Prakash, S. Face mask detection using MobileNet and Global Pooling Block. In Proceedings of
the 2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; pp. 1–5.
[CrossRef]

40. Velasco, J.; Pascion, C.; Alberio, J.W.; Apuang, J.; Cruz, J.S.; Gomez, M.A.; Molina, B.J.; Tuala, L.; Thio-ac, A.; Jorda, R.J. A
Smartphone-Based Skin Disease Classification Using MobileNet CNN. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 2632–2637.
[CrossRef]

41. Souid, A.; Sakli, N.; Sakli, H. Classification and Predictions of Lung Diseases from Chest X-rays Using MobileNet V2. Appl. Sci.
2021, 11, 2751. [CrossRef]

42. Hartanto, C.A.; Wibowo, A. Development of Mobile Skin Cancer Detection using Faster R-CNN and MobileNet v2 Model.
In Proceedings of the 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering
(ICITACEE), Kota Semarang, Indonesia, 24–25 September 2020; pp. 58–63. [CrossRef]

43. Pan, H.; Pang, Z.; Wang, Y.; Wang, Y.; Chen, L. A New Image Recognition and Classification Method Combining Transfer
Learning Algorithm and MobileNet Model for Welding Defects. IEEE Access 2020, 8, 119951–119960. [CrossRef]

44. Rahman, M.M.; Biswas, A.A.; Rajbongshi, A.; Majumder, A. Recognition of local birds of Bangladesh using MobileNet and
Inception-v3. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 309–316. . [CrossRef]

45. Kadam, K.; Ahirrao, S.; Kotecha, K.; Sahu, S. Detection and Localization of Multiple Image Splicing Using MobileNet V1. IEEE
Access 2021, 9, 162499–162519. [CrossRef]

46. Díaz-Gaxiola, E.; Morales-Casas, Z.E.; Castro-López, O.; Beltrán-Gutiérrez, G.; López, I.F.V.; Rendón, A.Y. Estudio comparativo
de arquitecturas de CNNs en hojas de Pimiento Morrón infectadas con virus PHYVV o PEPGMV. Res. Comput. Sci. 2019,
148, 289–303. [CrossRef]

47. EfficientNet: Improving Accuracy and Efficiency through AutoML and Model Scaling. Available online: https://ai.googleblog.
com/2019/05/efficientnet-improving-accuracy-and.html (accessed on 10 January 2023).

48. EfficientNet Keras (and TensorFlow Keras). Available online: https://pypi.org/project/efficientnet/ (accessed on
6 January 2023).

49. Atila, Ü.; Uçar, M.; Akyol, K.; Uçar, E. Plant leaf disease classification using EfficientNet deep learning model. Ecol. Inform. 2021,
61, 101182. [CrossRef]

50. Yi, S.L.; Yang, X.L.; Wang, T.W.; She, F.R.; Xiong, X.; He, J.F. Diabetic Retinopathy Diagnosis Based on RA-EfficientNet. Appl. Sci.
2021, 11, 11035. [CrossRef]

51. Fudholi, D.H.; Rani, S.; Arifin, D.M.; Satyatama, M.R. Deep Learning-based Mobile Tourism Recommender System. Sci. J. Inform.
2021, 8, 111–118. [CrossRef]

http://dx.doi.org/10.1016/j.jbef.2022.100741
http://dx.doi.org/10.26555/ijain.v6i2.492
https://github.com/tensorflow/tfjs-models/tree/master/mobilenet
http://dx.doi.org/10.1007/978-1-4842-6168-2
http://dx.doi.org/10.3390/bioengineering9060261
http://dx.doi.org/10.1016/j.procs.2019.08.147
http://dx.doi.org/10.1007/s11036-020-01640-1
http://dx.doi.org/10.1109/ISMSIT50672.2020.9254420
http://dx.doi.org/10.11591/ijai.v9.i2.pp290-296
http://dx.doi.org/10.1109/JCSSE.2019.8864155
http://dx.doi.org/10.1109/CICT51604.2020.9312083
http://dx.doi.org/10.30534/ijatcse/2019/116852019
http://dx.doi.org/10.3390/app11062751
http://dx.doi.org/10.1109/ICITACEE50144.2020.9239197
http://dx.doi.org/10.1109/ACCESS.2020.3005450
http://dx.doi.org/10.14569/IJACSA.2020.0110840
http://dx.doi.org/10.1109/ACCESS.2021.3130342
http://dx.doi.org/10.13053/rcs-148-7-22
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://pypi.org/project/efficientnet/
http://dx.doi.org/10.1016/j.ecoinf.2020.101182
http://dx.doi.org/10.3390/app112211035
http://dx.doi.org/10.15294/sji.v8i1.29262

Appl. Sci. 2023, 13, 5438 18 of 19

52. GitHub. EfficientNet-Lite. Available online: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/
lite/ (accessed on 10 January 2023).

53. Blog, T. Higher Accuracy on Vision Models with EfficientNet-Lite. Available online: https://blog.tensorflow.org/2020/03/
higher-accuracy-on-vision-models-with-efficientnet-lite.html (accessed on 15 January 2023).

54. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the 38th International Conference on
Machine Learning, ICML, Online, 18–24 July 2021; pp. 10096–10106.

55. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 27–30 June 2016; pp. 770–778.

57. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
58. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
59. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.
60. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
61. Thompson, C.W.; Ross, K.M. Natural-Language Interface Generating System. U.S. Patent 4,688,195, 18 August 1987.
62. Sarker, S.; Wells, J.D. Understanding mobile handheld device use and adoption. Commun. ACM 2003, 46, 35–40. [CrossRef]
63. Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.; Wang, F.; Liu, Q. Tinybert: Distilling bert for natural language understanding.

arXiv 2019, arXiv:1909.10351.
64. Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; Zhou, D. Mobilebert: A compact task-agnostic bert for resource-limited devices. arXiv

2020, arXiv:2004.02984.
65. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,

arXiv:1910.01108.
66. Saha, U.; Mahmud, M.S.; Keya, M.; Lucky, E.A.E.; Khushbu, S.A.; Noori, S.R.H.; Syed, M.M. Exploring Public Attitude Towards

Children by Leveraging Emoji to Track Out Sentiment Using Distil-BERT a Fine-Tuned Model. In Proceedings of the Third
International Conference on Image Processing and Capsule Networks, Online, Bangkok, Thailand, 20–21 May 2022; pp. 332–346.

67. Palliser-Sans, R.; Rial-Farràs, A. HLE-UPC at SemEval-2021 Task 5: Multi-Depth DistilBERT for Toxic Spans Detection. arXiv
2021, arXiv:2104.00639.

68. Chaudhary, Y.; Gupta, P.; Saxena, K.; Kulkarni, V.; Runkler, T.A.; Schütze, H. TopicBERT for Energy Efficient Document
Classification. arXiv 2020, arXiv:2010.16407.

69. For Mobile & Edge. Available online: https://www.tensorflow.org/lite/performance/model_optimization (accessed on
6 January 2023).

70. Rashidi, M. Application of TensorFlow Lite on Embedded Devices: A Hands-On Practice of TensorFlow Model Conversion
to TensorFlow Lite Model and Its Deployment on Smartphone to Compare Model’s Performance. Available online: https:
//www.diva-portal.org/smash/record.jsf?pid=diva2%3A1698946&dswid=-2072 (accessed on 6 January 2023).

71. Brahmbhatt, S. Practical OpenCV; Apress: Berkeley, CA, USA, 2013; ISBN 978-1-4302-6080-6.
72. Google ML Kit. Available online: https://developers.google.com/ml-kit (accessed on 6 January 2023).
73. Machine Learning. Available online: https://developer.apple.com/machine-learning/ (accessed on 6 January 2023).
74. Google. Google Cloud AI. Available online: https://developer.apple.com/machine-learning/ (accessed on 6 January 2023).
75. CAFFE2. Caffe2: Anew Lightweight, Modular, and Scalable Deep Learning Framework. Available online: https://caffe2.ai/

docs/caffe-migration.html (accessed on 6 January 2023).
76. Cloud, G. DialogFlow. Available online: https://cloud.google.com/dialogflow (accessed on 6 January 2023).
77. Del Sole, A. Introducing Microsoft Cognitive Services. In Microsoft Computer Vision APIs Distilled: Getting Started with Cognitive

Services; Apress: Berkeley, CA, USA, 2018; pp. 1–4. [CrossRef]
78. Google. Firebase ML Kit. Available online: https://firebase.google.com/docs/ml-kit (accessed on 6 January 2023).
79. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library, 1st ed.; O’Reilly: Springfield, MO, USA, 2008;

ISBN 978-0-5965-5404-0.
80. Reyes, R.; Garza, D.; Garrido, L.; la Cueva, V.D.; Ramirez, J. Methodology for the Implementation of Virtual Assistants for Education

Using Google Dialogflow; Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. Eds.; Springer International Publishing:
Cham, Switzerland, 27 October 2019; Volume 11835, pp. 440–451. [CrossRef]

81. Masood, A.; Hashmi, A. Cognitive Computing Recipes: Artificial Intelligence Solutions Using Microsoft Cognitive Services and TensorFlow;
Apress: Berkeley, CA, USA, 2019.

82. PyTorch. PyTorch Mobile. Available online: https://pytorch.org/mobile/home/ (accessed on 6 January 2023).
83. Banabilah, S.; Aloqaily, M.; Alsayed, E.; Malik, N.; Jararweh, Y. Federated learning review: Fundamentals, enabling technologies,

and future applications. Inf. Process. Manag. 2022, 59, 103061. [CrossRef]
84. IBM. What Is Federated Learning? Available online: https://research.ibm.com/blog/what-is-federated-learning (accessed on

15 January 2023).

https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
http://dx.doi.org/10.1145/953460.953484
https://www.tensorflow.org/lite/performance/model_optimization
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1698946&dswid=-2072
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1698946&dswid=-2072
https://developers.google.com/ml-kit
https://developer.apple.com/machine-learning/
https://developer.apple.com/machine-learning/
https://caffe2.ai/docs/caffe-migration.html
https://caffe2.ai/docs/caffe-migration.html
https://cloud.google.com/dialogflow
http://dx.doi.org/10.1007/978-1-4842-3342-9_1
https://firebase.google.com/docs/ml-kit
http://dx.doi.org/10.1007/978-3-030-33749-0_35
https://pytorch.org/mobile/home/
http://dx.doi.org/10.1016/j.ipm.2022.103061
https://research.ibm.com/blog/what-is-federated-learning

Appl. Sci. 2023, 13, 5438 19 of 19

85. Research, G. Federated Learning: Collaborative Machine Learning without Centralized Training Data. Available online:
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 15 January 2023).

86. Team, D.S. Aprendizaje Federado. Available online: https://datascience.eu/es/aprendizaje-automatico/aprendizaje-federado/
(accessed on 15 January 2023).

87. Zhu, H.; Zhang, H.; Jin, Y. From federated learning to federated neural architecture search: A survey. Complex Intell. Syst. 2021,
7, 639–657. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://datascience.eu/es/aprendizaje-automatico/aprendizaje-federado/
http://dx.doi.org/10.1007/s40747-020-00247-z

	Introduction
	Challenges and Issues
	Architectures for Machine Learning on Mobile Devices
	Cloud
	Testing without Training
	Training and Testing

	On-Device Architecture
	On-Device Testing with Pretrained Models
	Training and Testing on the Device

	Hybrid

	Image and Video Classification Algorithms on Mobile Devices
	MobileNet
	EfficientNet
	EfficientNet Architecture
	EfficientNet Variants
	EfficientNet-Lite

	Text Analytics Algorithms on Mobile Devices
	Frameworks for Mobile Devices
	Federated Learning
	Conclusions
	References

