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Abstract: Rice is a staple food in many Asian countries, but its production requires a high water
demand. Moreover, more attention should be paid to the water management of rice due to global
climate change and frequent droughts. To address this problem, we propose a rice water stress
identification system. Since water irrigation usually affects the opening and closing of rice leaf stomata
which directly affects leaf temperature, rice leaf temperature is a suitable index for evaluating rice
water stress. The proposed rice water stress identification system uses a CNN (convolutional neural
network) to identify water stress in thermal images of rice fields and to classify the irrigation situation
into three classes: 100%, 90%, and 80% irrigation. The CNN was applied to extract the temperature
level score from each thermal image based on the degree of difference between the three irrigation
situations, then these scores were used to further classify the water-stress situation. In the experiments
in this study, we compare CNN classification results without considering the degree between each
class. The proposed method considerably improves water stress identification. Since rice leaf
temperature is relative to air temperature and is not an absolute value, the background temperature is
also important reference information. We combine two different methods for background processing
to extract more features and achieve more accurate identification.

Keywords: rice water stress; thermal image; convolutional neural network

1. Introduction

Many studies have shown that water stress in rice reduces its yield and quality [1–3].
Wang et al. [4] observed that drought reduced the average rice yield by 6.8% in China. In
addition, Zubaer et al. [5] evaluated the effects of three water levels (100%, 70%, and 40%)
on three rice varieties, showing that the grain yield was reduced by 20.74–32.51% at the 70%
water level and by 45.34–53.08% at the 40% water level. Furthermore, Hossain et al. [6]
reported that under 75% and 50% water saturation, the panicle number/rice plant was
approximately one, while it was five under saturated conditions. He et al. [7] also showed
that reduced irrigation significantly decreased rice yield. These studies illustrate the
importance of water to rice yield; however, unfortunately, many meteorologists forecast
that global droughts will become more severe in future [8–11], thereby causing food supply
problems in countries where rice is the staple food. Taking other plants as an example,
Rani et al. [12] emphasized that chickpea yields were drastically reduced due to drought.
In response to this predicament, many studies have proposed various solutions, such as the
stricter management of irrigation [13]. In addition, botanists are attempting to cultivate new
drought-tolerant rice varieties [14–16] to reduce water usage. However, these proposals
require an automatic irrigation monitoring system; therefore, the purpose of this article
was to develop water stress identification for rice fields.

The proposed system is based on leaf temperature. Since plant leaves contain stomata,
the opening and closing of the stomata are affected by water irrigation. When there is
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sufficient water, the stomata often open; otherwise, the stomata are mostly closed. If
the stomata are open, the leaf temperature is lower, and vice versa [17,18]. A thermal
imaging camera is a suitable choice for simple measurement of leaf temperature as it can
record leaf temperature by taking pictures and does not require the manual measurement
of each leaf. In addition, it is a non-contact measurement, so causes no damage to the
leaf. Therefore, thermal imaging cameras are widely used to measure the temperature of
various plants [19].

Recently, the CNN has become the most successful method for image recognition [20]
and is commonly used to identify plant phototypes. For example, the VGG16 model
has been used to identify chickpea seed varieties [21] and different varieties of grape
leaves [22], while DenseNet has been used to identify PlantVillage (a well-known plant
disease database) [23]. These applications show that CNNs are advantageous for plant
phototype identification. Typically, a CNN extracts features by training convolution kernel
weights and uses these features for recognition by training fully connected layers. In this
article, a CNN was used to identify water stress in rice from thermal images, adopting
three well-known CNN architectures as the network backbone [24–26]. In addition, Taheri-
Garavand et al. [27] proposed a plant leaf water content estimation system based on visible
light cameras. In their method, six texture features were extracted in three color spaces and
used to estimate the leaf water content. This usually requires more prior knowledge, while
texture features require stricter shooting conditions; for example, the shooting distance must
be sufficient to capture the texture. Since thermal images directly reflect the water content of
the leaves, we do not need to consider prior knowledge or shooting conditions. Therefore,
using thermal imaging is a relatively easy way to estimate the water content of plant leaves.
Recently, due to the rapid development of CNNs, the technology has been applied in many
studies to identify the problem of water stress in plants. Chandel et al. [28] used three
common CNN architectures (AlexNet, GoogLeNet, and Inception v3) to identify stress
and non-stress in RGB images of corn, okra, and soybean. In addition, Zhuanga et al. [29]
built a model for water stress identification in corn using a simple six-layer convolutional
network model to extract RGB image features to evaluate water stress with an SVM and
an extra trees regressor. Both these methods are based on RGB images to build models;
however, water stress is usually identified in such images by observing shrinkage on the
surface of the plant leaf. For rice, such water stress is already very serious and greatly
affects the production quality, so it is more appropriate to use thermal images to identify
rice water stress.

Several previous studies have used CNN to identify plant drought problems with
thermal images. First, Niu et al. [30] classified the irrigation of pomegranate trees as
high (100% and 75%) and low (35% and 50%), then used a shallow (three-layer) CNN
to identify the classes. Chandel et al. [31] built a water stress identification system for
winter wheat. They classified irrigation conditions as stressed or non-stressed, then trained
CNN models based on RGB and thermal images. They tested five state-of-the-art CNN
architectures (AlexNet, GoogLeNet, Inception v3, MobileNetV2, and ResNet-50) and five
well-known classifiers (logistic, KNN, ANN, SVM, and LSTM), showing that the model
using thermal images performed better than using RGB images as input. Melo et al. [32]
identified the water stress of sugarcane using transfer learning to train thermal images on
an Inception-ResNet-v2 architecture.

In order to clarify the above literature, we list several important factors [27–32] in
Table 1, as well as some remarks.
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Table 1. Comparison of literature on water content of plant leaves.

Method Plants Data Type of Input Features and Classifiers Remark

Taheri-Garavand et al. [27] Spathiphyllum wallisii RGB image Texture features selected
by PCA + MLP

Stricter shooting conditions
and prior knowledge

requirements.

Chandel et al. [28] Corn, okra, and soybean RGB image CNN RGB image lacks features and
ignores degree information.Zhuanga et al. [29] Corn RGB image CNN features + SVM

Niu et al. [30] Pomegranate trees Thermal image

CNN

Too rough classification of
water stress and lack of

information on degree of
consideration

Chandel et al. [31] Winter wheat Thermal and RGB image

Melo et al. [32] Sugarcane Thermal image

For a more detailed study on the drought tolerance ability during the development of
drought-tolerant varieties, the degree of rice water stress must be classified precisely. In
addition, rice depends heavily on water; therefore, if water stress is very high, rice will not
survive. Consequently, in our work, 100% and 90% irrigation are regarded as well-watered
and slightly stressed for rice, while 80% normal irrigation is considered mildly stressed. In
addition, leaf temperature is affected by the amount of irrigation to a different degree. The
above studies [30–32] either refer to two classes or their target plants do not need such fine
classification, so they usually ignored degree information. To pay more attention to degree
information and to make the identification of water stress more accurate, a framework
was designed to consider the degree information. In addition, leaf temperature is not an
absolute value and is affected by the surrounding environment, which is also reflected
in CWSI calculations used in many studies on plant water stress. CWSI [33,34] takes the
leaf temperature minus the air temperature as normalization, while this study refers to the
background as the temperature reference. If acceptable accuracy can be achieved using the
background as a reference, then it is not necessary to record the current temperature.

Referring to Table 1, we have sorted out the main contributions of this study:

1. We chose thermal images instead of RGB images as the input data and explain its
advantages in our subsequent discussion section.

2. A CNN was selected as a feature extractor and classifier, which does not require prior
knowledge of hand-crafted features. In addition, we used a scoring method to retain
degree information.

3. We used two background processing methods: early fusion and late fusion which
complement each other.

4. For other plants or species, a framework is provided for the assessment of the water
content of other plant leaves.

This study comprises five sections: Section 2 describes the data collection and their
classification methods as well as the methods used in this study; in Section 3, we designed
several experiments for comparison to illustrate the effect of the method in this study;
Section 4 discusses the proposed method in-depth; and the conclusion and future work are
provided in Section 5.

2. Materials and Methods
2.1. Dataset

The experiments were conducted in central Taiwan rice fields, mainly for three rice vari-
eties, Tainan 11, HVA1 gene transgenic rice, and TNG67. Referring to the irrigation amount
setting in [7], the irrigation was classified as W1–W6, corresponding to 100–50% of normal
irrigation. In addition, the grain yield decreased significantly after W4 (i.e., 70% irrigation).
The goal of this study was to detect when water shortage is not serious; therefore, our exper-
iment targets the relatively light water stress situations of W1–W3 (i.e., 100–80% irrigation).
Well-watered, slight stress, and mild stress conditions were used to represent 100%, 90%,
and 80% of the normal irrigation, respectively, and the data for each class are shown in
Table 2.
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Table 2. Dataset for our experiments.

Water Stress Situation Number of Data

Well-watered 136
Slight stress 137
Mild stress 130

Total 403

We conducted experiments on shooting from March 2020 to October 2020, where the
planting distance of each plant was approximately 15 to 20 cm. An AVIO G100EX/R300
infrared thermal imaging camera (AVIO, Turin, Italy) was used to capture the data in
Table 2. For each picture, the thermal image (8–14 µm) and the RGB image (400–700 nm)
were captured at the same time, as shown in Figure 1 (taking HVA1 as an example). The
upper and lower rows are the RGB image and the thermal image, respectively, with 100%
irrigation to 80% irrigation from left to right. At the far right, the temperature is represented
by color, with blue to red representing low to high temperatures, respectively.
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Figure 1. RGB (upper row) and thermal (lower row) images in a rice field.

From Figure 1, it is difficult to distinguish the water stress from the rice RGB image.
However, the thermal image in the lower row shows a significant temperature difference
(rice fields reflect relatively low temperatures when watering is sufficient), confirming that
the thermal image reflects the water irrigation situation.

2.2. An Overview of the Proposed Framework

The proposed method is shown in Figure 2. Since the background was used as a
reference temperature, different background processing methods have their own advan-
tages and disadvantages. Therefore, our architecture consists of two branches that achieve
complementary effects. The processing of these two branches is early fusion and late
fusion [35] according to the background, with each branch calculating a temperature level
score (TLS). For convenience, we use symbols to represent TLSef (Temperature Level Score
of the Early Fusion Branch) and TLSlf (Temperature Level Score of the Late Fusion Branch),
and then use MLP to identify the final water stress classes according to these scores. On
TLSef and TLSlf ground truth scores, well-watered is 1.0 point, slight stress is 0.5 points, and
mild stress is 0.0 points. In addition, in the late fusion branch, the foreground is separated
from the background, so RGB images are used to segment the thermal image.
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2.3. The Early Fusion Branch

Early fusion usually refers to the fusion of data before the network input. In this
study, leaf temperature and background temperature were considered as two types of
data. Therefore, in this branch, we directly input each thermal image into the CNN, which
can be regarded as a type of early fusion, and the leaf temperature and the background
temperature are combined in the early stage. This branch plays a role when background
pixels are much smaller than leaf pixels. When there are too few background pixels, the
background branch of the later fusion will not obtain sufficient background temperature;
therefore, this branch compensates for shortcomings in the late fusion branch.

2.4. The Late Fusion Branch
2.4.1. Foreground and Background Segmentation

In order to separate the background and the foreground, we use a simple method to
separate the two. First, since rice leaves are green, we use Equation (1) to convert the RGB
image to I′. I′ mainly converts stronger green pixels. Then we use the Otsu thresholding
algorithm [36] on I′ to get a mask, M. Finally, we use M to cover the thermal image. The
segmentation process is shown in Figure 3 and several examples are shown in Figure 4

I′(x, y) = 2G(x, y)− (R(x, y) + B(x, y)), (1)
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In Equation (1), G(x, y), R(x, y), and B(x, y) are the intensity values of the three
channels of each pixel of the RGB image at the image coordinate (x, y), while I′(x, y)
represents the converted intensity value at the image coordinate (x, y). In addition, when
G(x, y) � R(x, y) and G(x, y) � B(x, y), I′(x, y) will have a greater intensity; therefore,
the pixel in (x, y) is likely to be a leaf. When G(x, y) < (R(x, y) + B(x, y)), the pixel is
probably not a leaf, therefore, we regard I′(x, y) as 0.

We roughly cut out the foreground and background. Although the cutting is not
perfect, we believe it is enough for the application in this study. In order to explain why
the cutting results are sufficient for our use, as shown in Table 3, compared with the
classification results in Section 2.3, the classification ability of the late fusion branch is much
higher. We speculate that since the objects we identify are thermal images, if the edges
contain errors, they might be weakened by the pooling operation in the CNN. If some
leaves are missed, since the temperature difference between the leaves in the whole rice
field is usually not large, such slight omissions do not affect the result.

Table 3. Comparison of the accuracy of the three CNN architectures.

CNN Architecture Early Fusion with
Softmax

Late Fusion with
Softmax

MLP with
TLSef + TLSlf

VGG16 36.59% 75.61% 100.0%
ResNet34 51.22% 73.17% 87.80%
DenseNet 34.15% 75.61% 85.37%

2.4.2. The Architecture of the Late Fusion Branch

The late fusion branch combines different types of data after extracting features from
the network. In this branch, the background and the foreground (leaves) are input into
their respective CNN models to concatenate two fully connected layers together. This is a
typical late fusion method, as shown in Figure 5.

The leaf temperature and background temperature are independent information, so
it is more appropriate to extract leaf temperature and background temperature features
separately. This also explains the results presented in Table 3.
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2.5. The Combination of TLSef and TLSlf

After obtaining TLSef and TLSlf through two CNNs, their scores must be combined to
determine the final irrigation classification. Simple MLP is used for this and its architecture
is shown in Figure 6. This MLP has three hidden layers, with 1024, 512, and 256 neurons
in each layer. The activation functions of these three layers are all ReLU. The output layer
contains three neurons representing three water stress conditions and uses softmax as the
activation function.
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2.6. CNN Training Details

In the CNN above, we experimented with three architectures: the architecture VGG16
is simply connected to the next layer, while ResNet and DenseNet are designed to be
connected across layers to alleviate the gradient problem. Each CNN was trained for
300 epochs, and SGD was used to learn the network parameters with a learning rate of
0.001. The MLP was trained for 1000 epochs, while the rest of the settings are the same as
the CNN settings.
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3. Experimental Results

The results of the three well-known CNN architectures, VGG16, ResNet34, and
DenseNet121, are in the second column. The last layer of the early fusion branch model
in Section 2.3 was changed into three output neurons and the softmax function was used
for classification. This approach is similar to [30–32], with some minor differences such
as the different CNN architectures. The third column is the result of changing the last
layer to three output neurons and using the softmax function in the model in Section 2.4.
The fourth column is the method proposed in this study, as shown in Figure 2. Under the
three CNN architectures, the method of separating the background and the foreground
(the third column of Table 3) is significantly better than in the second column of Table 3,
which shows that the late fusion of the background and the foreground significantly im-
proves identification. The results in the fourth column are much higher than those in the
previous two columns and are a significant improvement on the results of the late fusion
method, which shows that the early fusion branch compensates for the deficiencies of the
late fusion method.

To further examine these results, we calculated precision, recall, and F1-score. The
calculation of these three evaluation metrics are shown in Equations (2)–(4):

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1− score = 2
Precision× Recall
Precision + Recall

. (4)

TP is true positive, which means that the rice field is facing water stress and the model
correctly predicted water stress. FP is false positive, which means that the rice field is
well-watered but the model wrongly identified water stress. FN is false negative, which
means that the rice field is facing water stress but the model wrongly predicted that it is
well-watered. TN is true negative, which means that the rice field is well-watered and the
model correctly predicted that it is well-watered.

The precision in Table 4 is excellent, indicating that the proposed model performs well
for the misjudgment of water stress. The recall is also relatively good, indicating that the
system has a good ability to detect water stress.

Table 4. Precision, recall and F1-score under the three CNN architectures.

CNN Architecture Precision Recall F1-Score

VGG16 1.0000 1.0000 1.0000
ResNet34 0.9200 1.0000 0.9019

DenseNet121 1.0000 0.9231 0.8695

The confusion matrix of the three CNN architectures was drawn to describe detailed
identification results, as shown in Figure 7. Most of the misjudgments were between
slight stress and mild stress for ResNet34 and DenseNet121, thereby requiring further
enhancements.
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In addition, VGG16 performed better than the other two architectures. Since VGG16
does not have a cross-layer connection structure in the network, it makes the temperature
information less mixed when it is in the convolutional layer, also indicating that the
temperature data is more suitable for late fusion processing.

4. Discussion

The softmax feature was also used for classification to explore whether the degree
information features considered in this study are useful. The softmax feature is the model
output in the second and third columns of Table 3. Using these two results, we use the
same MLP as in Section 2.5 and the same setting for the classification task. The accuracy,
shown in Table 5 and compared with the results of the proposed model in the last column
in Table 3, is less accurate under the three CNN architectures.

Table 5. Accuracy with softmax feature under the three CNN architectures.

CNN Architecture VGG16 ResNet34 DenseNet121

Accuracy 95.12% 82.93% 75.61%

We also conducted an experiment to illustrate the necessity of MLP. By directly using
the two scores of TLSef and TLSlf for water stress classification, we combined these two
scores in a simple statistical way, using the mean, maximum, and minimum of the two
scores. For these three scores, the following rules were used to identify the degree of water
stress: if the score was within 1–0.667 we considered it well-watered; within 0.667–0.333
we considered it mildly stressed; and within 0.333–0 we considered it slightly stressed.
The results are shown in Table 6. We reviewed the MLP performance in the last column
of Table 3, which outperformed the results in Table 6, demonstrating that the MLP can
effectively fuse the two scores in this application. Furthermore, it mostly outperformed
the CNN with the softmax output, and the combination also outperformed the softmax
feature-based in Table 5. This shows that our method retains more degree information.

Table 6. Result of accuracy of three statistical values.

CNN Architecture Mean of TLSef
and TLSlf

Maximum of TLSef
and TLSlf

Minimum of TLSef
and TLSlf

VGG16 80.48% 78.05% 92.68%
ResNet34 65.85% 82.93% 43.90%

DenseNet121 68.29% 68.54% 60.98%
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In order to clearly compare Tables 5 and 6 and the results of the method in this study
(mean of TLSef and TLSlf), we drew them in Figure 8. Through this figure, it can be clearly
seen that the mean of TLSef and TLSlf is superior to the others under the three CNN
architectures.
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Next, we explored several single cases to better understand the advantages and
disadvantages of the proposed method and provide directions for future work. First, let us
discuss a few cases where identification was correct. The TLSef and TLSlf complemented
each other’s deficiencies through the use of two scores. Incidentally, although we only
selected the correct cases due to the addition of TLSef in the Table 7, there are also many
clearly classified cases. For the convenience of comparison, we reraised the corresponding
scores again, in ground truth, where well-watered was 1.0 point, slight stress was 0.5 points,
and mild stress was 0.0 points.

Table 7. Correct case sample TLSef and TLSlf for 3 CNN architectures.

Case Number CNN Architecture TLSef TLSlf Ground Truth

Case1 VGG16 0.94414753 0.41299862 Well-watered
Case2 VGG16 0.49225223 0.93656325 Slight stress
Case3 VGG16 0.51609260 0.99480104 Slight stress
Case4 VGG16 0.00144600 0.95988095 Mild stress
Case5 ResNet34 0.81816900 0.28788370 Well-watered
Case6 ResNet34 0.74497569 0.48903641 Well-watered
Case7 ResNet34 0.48903641 0.22066300 Slight stress
Case8 ResNet34 0.45508286 0.28079394 Slight stress
Case9 DenseNet121 0.97530377 0.14977294 Well-watered

Case10 DenseNet121 0.48703855 0.29539412 Slight stress
Case11 DenseNet121 0.54188645 0.18642481 Slight stress
Case12 DenseNet121 0.16764741 0.44175833 Mild stress

From Table 7, we can see the cases 1, 5, 6, and 9 all have unsatisfactory TLSlf, and all
rely on the TLSef score being closer to well-watered (1.0 point) to identify the case to correct.
In cases 2, 3, 7, 8, 10, 11, and also cases 4 and 12, the ground truths were slightly stressed
and mildly stressed, respectively, also to be corrected by TLSef.

Then we listed several cases of wrong identification (Table 8) and found that when a
wrong prediction occurred, their two scores were far from the correct result. This result
indicates that to make the system more accurate, we need to start with two scoring branches.



Appl. Sci. 2023, 13, 5423 11 of 13

Table 8. Error case samples of TLSef and TLSlf for the three CNN architectures.

CNN Architecture TC TS Ground Truth Misjudgment

ResNet34 0.00104090 0.14355020 Slight stress Mild stress
ResNet34 0.54493946 0.48646522 Mild stress Slight stress

DenseNet121 0.99440467 0.99999380 Slight stress Well-watered
DenseNet121 0.78365338 0.99712139 Mild stress Slight stress
DenseNet121 0.67452341 0.99999666 Mild stress Slight stress

In the MLP, we expected that the output layer uses softmax, while all other layers
use ReLU. We also tested whether this setting is reasonable through our experiments. In
Table 9, we replaced all the activation functions of the MLP with tanh and sigmoid, except
for the output layer. Since the values were all positive after ReLU conversion, and since the
two scores (TLSef and TLSlf) were all positive, we predicted that ReLU should have a better
performance than tanh and sigmoid.However, there was no significant difference in the
results of the replaced activation functions in Table 9, which shows that our MLP’s number
of layers and neuron settings provide enough capacity for this application.

Table 9. Accuracy of replacing MLP activation functions.

CNN Architecture Tanh Sigmoid

VGG16 100.00% 100.00%
ResNet34 87.80% 80.49%

DenseNet121 82.92% 85.37%

Compared with previous research, the method of this study mainly lies in the improve-
ment of two points. First, we used two scores, TLSef and TLSlf, to retain degree information,
explained by comparisons between Tables 3, 5, and 6. Second, we demonstrated through
experiments that using thermal images is better than using RGB images. As shown in
Table 10, we used the same architecture as a MLP with TLSef and TLSlf in Table 3, and
using RGB images as the input. These results show that it is difficult to directly use RGB
images to identify the water content of plant leaves. A more suitable and easier solution
is to use the response of water to leaf temperature and obtain temperature information
through thermal imagery.

Table 10. Accuracy using RGB images.

CNN Architecture VGG16 ResNet34 DenseNet121

Accuracy 48.78% 56.10% 46.34%

5. Conclusions

This study proposed an identification system of water stress in rice fields. Leaf tem-
perature is an important reference index for identifying water stress in rice and can be
obtained relatively simply and conveniently using a handheld thermal imaging camera.
The proposed automatic rice water stress identification system was developed for thermal
images based on a CNN and achieved an accuracy of 85% to 100%, thus meeting the needs
of practical applications. In the past, crop temperature-based water identification systems
usually ignored degree information which can provide useful features in thermal images.
We proposed a framework to incorporate degree information into the system, demonstrat-
ing through experiments that our method utilizes this information effectively. Since leaf
temperature is relative, background temperature was used as a reference temperature, with
two background processing methods used to obtain two temperature degree scores which
complemented each other to achieve better results.

In the future, the proposed system will be improved with better leaf temperature
degree score extraction. Furthermore, since a MLP was used in the final score combination,
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other simpler methods can be considered to improve the computing speed. After further
improvement, we believe that this framework may also be applied to other crops. Finally,
for future field applications, we suggest replacing the handheld thermal imager with an
external thermal imager connected to a mobile phone, thereby allowing for upload to the
GPU host for real-time identification. This configuration is low-cost and easy to operate,
making it accessible to farmers, scientists, and students.
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