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Abstract: The interface pressure between the cable attachment and the body is crucial for the stable
long-term operation of the cable. To solve the issue of interface insulation characteristics’ damage
caused by the pressure transducer measurement method, a non-destructive testing method of silicone
rubber interface pressure using nonlinear ultrasound is presented. Initially, the study analyzes the
propagation characteristics of ultrasonic waves at the interface of cross-linked polyethylene and
silicone rubber. The study also establishes the relationship between the nonlinear coefficient and
the interface pressure. Subsequently, a nonlinear ultrasonic test platform is constructed using the
pulse reflection method to measure the interface pressure of flat silicone rubber and cross-linked
polyethylene through nonlinear ultrasonic testing. Theoretical and experimental results indicate that
the fundamental amplitude of the frequency domain of the interface reflection wave decreases, and
the second harmonic amplitude and nonlinear coefficient both increase as pressure increases. These
results demonstrate that the nonlinear ultrasound, non-destructive testing method can accurately
evaluate the interfacial pressure state of the cable accessories.

Keywords: cable; silicone rubber; nonlinear ultrasound; interfacial pressure; nonlinear coefficient

1. Introduction

With the continuous deepening of China’s urbanization process, the scale of urban
power grid cable equipment is constantly increasing. According to statistics, in addition to
external damage, 70% of cable faults are caused by cable accessory faults [1]. The silicone
rubber cross-linked polyethylene (XLPE) composite interface between the cable accessories
and the body is a high incidence of cable line faults due to the concentration of stress in the
electric field and the occurrence of partial discharge, leading to insulation breakdown [2].
Studies have shown that the interface pressure distribution between cable accessories and
the body is between 0.10 MPa and 0.25 MPa to ensure the stable operation of the cable
line [3].

The main methods for detecting the pressure at the interface between the cable
attachment and the body are the sensor method [4–7] and the finite element analysis
method [8–10]. The built-in sensor method is to pre-install a pressure sensor between the
cable attachment and the body, and the sensor detects the pressure change at the interface
and outputs the result. As this method not only requires a high-pressure sensor size specifi-
cation, but also destroys the insulation characteristics between the cable attachment and the
body, it is not applicable to the interface pressure measurement of cable attachments with
voltage levels above 10 kV. The external fiber optic curvature sensor method is based on
the outer curvature–radial displacement interface pressure relationship model of the cable
accessory calibrated fiber optic sensor, which is tangentially applied to the outer layer of the
accessory along the outer diameter to measure the curvature and thus obtain the interface
pressure value. However, this method has only been studied for 10 kV cable accessories,
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and the repeatability and stability of the sensor measurements are still in the laboratory
optimization stage. The finite element analysis method uses simulation software to create
a three-dimensional model of the cable joint to analyze the effect of overfill, temperature,
and other factors on the interface pressure. Although the finite element analysis is a simple
method, there are errors between the simulation parameters and the actual cable, and the
simulation results need to be compared with the test results for verification. In summary,
the existing methods for testing the interface pressure of cable accessories have their own
limitations, so there is an urgent need to introduce a new method to test the interface
pressure of cable accessories in the field of cable transportation and inspection.

In recent years, nonlinear ultrasound techniques have been increasingly applied
to stress detection. Scholars have built stress detection platforms based on nonlinear
ultrasound have conducted a large number of studies on interface adhesion [11], aluminum
alloy surface stress [12], aluminum plate pre-stress [13], metal material internal stress [14,15],
metal plate residual stress [16], and metal contact interface stress [17]. Mao et al. [18]
combined the LCR wave method with nonlinear ultrasound techniques to evaluate the
internal stresses in metallic materials under pre-stress loading conditions. The pre-stress
within the metal was also detected along three directions, respectively. The experimental
results showed that the second-order relative nonlinear coefficients monotonically increased
with stress, and the normalized relationship was consistent with a simplified dislocation
model, verifying the reliability of the method. Yan et al. [15,19] found that when tensile
stress is applied to a metallic material, it affects the ultrasonic nonlinear properties in
addition to the propagation velocity of the ultrasonic waves inside. Payan et al. [20]
used ultrasonic methods to detect stresses in concrete, taking into account the third-order
elastic constants, providing an effective method for concrete stress detection. Kim et al.
found that the second harmonic generated by ultrasonic waves passing through a metal
contact interface increases and then decreases with the interface pressure, reaching a
maximum at a specific pressure value [17]. Jiao Jinping et al. used both linear ultrasound
and nonlinear ultrasound based on the transmission method to detect the pressure at
metal contact interfaces and showed that the ultrasonic nonlinear coefficient decreases
with increasing interface pressure [21], and that the nonlinear characteristic parameter
(nonlinear coefficient) is more sensitive to changes in interface pressure than the linear
ultrasound characteristic parameter (first-order stiffness coefficient) over a small pressure
variation range [22].

However, most of the current research on nonlinear ultrasonic detection of stresses at
contact interfaces is aimed at metal–metal contact interfaces or metal–nonmetal interfaces.
Nonlinear ultrasonic detection of stresses at nonmetal–nonmetal contact interfaces is less
common. The authors based this study on nonlinear ultrasonic technology to detect the
stress at the silicone rubber-XLPE interface. It not only expands the nonlinear ultrasonic de-
tection of stress at the nonmetal–nonmetal contact interface, but also provides a possibility
for the non-destructive detection of pressure at the interface between cable accessories and
the body.

A non-destructive testing method for the interface pressure of cable accessories based
on nonlinear ultrasound is proposed to address the limitations of existing measurement
methods for measuring the interface pressure of cable accessories. Firstly, the propagation
mechanism of ultrasonic waves at the interface of silicone rubber-XLPE is simulated and
analyzed, and the relationship between the nonlinear coefficient and the interfacial pressure
is obtained. Then, the curved structure of the cable accessory and the body is simplified to a
flat structure, and the nonlinear ultrasonic test platform is built based on the ultrasonic pulse
reflection method, with silicone rubber and XLPE as the research objects. The ultrasonic
response under different pressures is then evaluated.



Appl. Sci. 2023, 13, 5404 3 of 14

2. Finite Element Simulation
2.1. Theory

As the surface of objects have a certain degree of roughness, the contact interface is
actually the contact of the rough peaks of the object surface. The uncontacted part of the
interface is the air gap. This is shown in Figure 1. When pressure is applied, the contact
interface undergoes intense collision and deformation, resulting in elastic and plastic
deformations [17]. When the ultrasonic longitudinal wave propagates in one dimension
at the contact interface, the reflected wave expression is as outlined in the equations
below [23].
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where:
A0 is the incident wave displacement amplitude,
K1 is the interfacial linear stiffness,
K2 is the interfacial nonlinear stiffness,
c is the longitudinal wave speed,
ρ is the material density,
ω is the incident angular frequency,
P is the pressure,
C and m are the constants associated with the surface roughness of the interface.
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The expressions for the fundamental wave amplitude and the second harmonic ampli-
tude in the reflected wave are:

A1 =
A0√

1 + 4K2
1/(ρcω)2

=
A0√

1 + 4C2P2m/(ρcω)2
(6)

A2 = K2 A0 A1

ρcω
√

1+4K2
1/(ρcω)2

√
1+K2

1/(ρcω)2

=
1
2 mC2P2m−1 A0 A1

ρcω

√
1+4C2P2m/(ρcω)2

√
1+C2P2m/(ρcω)2

(7)

where:
A1 is the fundamental amplitude in the frequency domain of the reflected wave,
A2 is the second harmonic amplitude in the frequency domain of the reflected wave.
The relative nonlinear coefficient of ultrasonic-reflected waves is defined as the ratio

of the second harmonic amplitude to the square of the fundamental wave amplitude,
as follows:

β =
A2

A2
1
=

K2

ρcω
√

1 + K2
1/(ρcω)2

=
1
2 mC2P2m−1

ρcω

√
1 + C2P2m/(ρcω)2

(8)

where:
β is the ultrasonic relative nonlinear coefficient.
From Equation (6) to (8), when the ultrasonic frequency, material density, and ultra-

sonic propagation velocity are constant, the change of pressure will cause the change of the
ultrasonic fundamental wave amplitude, second harmonic amplitude, and the ultrasonic
relative nonlinear coefficient. Therefore, the nonlinear coefficient can be used to reflect the
magnitude of the interface pressure.

2.2. Silicone Rubber-XLPE Contact Interface Model

Considering that the roughness of the object surfaces on both sides of the interface
affects the actual contact area, the surface roughness of the silicone rubber is measured
based on the white-light interference test, and its surface micromorphology is shown in
Figure 2. A straight line in the x-direction is selected to measure the surface wave crest
of up to 4 µm, and the distance between the wave crests is 20 µm. The surface of silicone
rubber is represented by a series of semicircles with an interval of 20 µm and a radius of
4 µm to characterize its interfacial micromorphology [24]. Compared to silicone rubber, the
XLPE surface roughness is much smaller, so it can be regarded as a smooth plane.
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Figure 3 is the 2D simulation model of silicone rubber-XLPE. The top model is silicone
rubber, and the bottom model is XLPE. The uncontacted part of the silicone rubber-XLPE
interface is the gap, where the radius of the gap is 4 µm. In order to examine the ultrasonic
nonlinear effects at the contact interface more intuitively and to reduce the computational
effort, the size of the silicone rubber is 3 mm × 1 mm, and the XLPE is 3 mm × 1 mm.
The modulus of elasticity of silicone rubber is 4.5 MPa, the density is 1050 kg/m3, and
the Poisson’s ratio is 0.488. The modulus of elasticity of XLPE is 130 MPa, the density is
930 kg/m3, and the Poisson’s ratio is 0.32.
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The expression of the excitation source signal is shown in Equation (9). Figure 4a is
the time domain waveform of the excitation source, and Figure 4b is the spectrum of the
excitation source.

an1(t) = A0sin(2πft)× e(−((t−5T)/(T/0.5))2) (9)

where:
A0 is the amplitude of the excitation source,
f is the center frequency of the excitation source,
t is the time
T is the signal period of the excitation source.
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The finite element analysis of the silicone rubber-XLPE interface was carried out by
COMSOL. The coupling of the acoustic and stress fields is carried out in two ways, direct
coupling and sequential coupling. Direct coupling refers to the combined application of
both pressure and ultrasonic waves into the model, facilitating transient calculations. In
contrast, sequential coupling involves an initial static force analysis performed within a
steady-state study. A deformation model is derived from this analysis, and it is used as the
initial geometric configuration for sound field simulation calculations. The direct coupling
approach in the finite element analysis of the pressure at the silicone rubber-XLPE interface
was applied in this paper. A displacement load with a central frequency of 1.5 MHz was
added to the upper surface of the silicone rubber to simulate the ultrasonic signal, and an
upward boundary load was added to the lower surface of the XLPE to generate contact
pressure on the silicone rubber-XLPE interface. Contact pairs were added to the silicone
rubber-XLPE interface. Low-reflection boundaries were placed on either side of the model
to reduce interference with the received signal. The maximum grid size of the simulation
model is 0.02 mm, the time step is 0.05 µs, and the total simulation time is 16 µs.

2.3. Analysis of Simulation Results

Figure 5 shows the time domain diagram of the reflected waves at the silicone rubber-
XLPE interface at different pressures. As the pressure increased, the reflected wave ampli-
tude at the silicone rubber-XLPE interface slightly decreased. This is because the actual
contact area of the interface increased due to pressure, the ultrasonic transmission was
enhanced, and the reflection was weakened. Figure 6 shows the spectrum of the reflected
waves at the silicone rubber-XLPE interface at different pressures. Comparing Figure 4b
with Figure 6, the second harmonic appears in the reflected wave spectrum of the silicone
rubber-XLPE interface. This indicates that a significant nonlinear effect occurred when the
ultrasonic wave passed through the silicone rubber-XLPE interface. The fundamental wave
amplitude and the second harmonic amplitude in Figure 6 were extracted, and the rela-
tionship between the two and the pressure at the silicone rubber-XLPE interface is shown
in Figure 7a,b. The ultrasonic relative nonlinearity coefficient was calculated according
to Equation (8). The relationship between it and the pressure at the silicone rubber-XLPE
interface is shown in Figure 8. As the pressure increased, the fundamental amplitude of the
reflected wave at the interface decreased, the second harmonic amplitude increased, and
the ultrasonic nonlinearity coefficient increased. The nonlinear coefficient steeply increased
at first, and then more slowly.
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3. Materials and Methods
3.1. Specimens

Based on the actual structure of the YJJJI2 110 kV silicone rubber monolithic prefabri-
cated cable intermediate joints, produced by Guodian Changyuan Electric Power Co., Ltd.
(Wuhan, China), the cylindrical physical shape was simplified to a flat specimen. The test
samples were prepared by the cable accessories manufacturer, Guodian Changyuan Electric
Power Co., Ltd., using standard production equipment and raw materials, where the silicon
rubber material and XLPE insulation material used in the samples were processed in the
same way as 110 kV prefabricated cable intermediate joints. The size of the silicone rubber
was 100 mm × 100 mm × 15 mm, and the size of the XLPE was 10 mm × 100 mm × 9 mm,
as shown in Figure 9.
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3.2. Experimental Setup

The test system consists of a RAM-5000 SNAP nonlinear, high-energy ultrasonic test
system, a 50 Ω impedance matcher, a duplexer, a low-pass filter bank, a band-pass filter
bank, an oscilloscope, and a computer. In order to receive more harmonic components from
the reflected waves at the interface, a longitudinal ultrasonic transducer from Olympus
from Changsha Pengxiang Electronic Technology Co. (Changsha, China) with a central
frequency of 2.25 MHz was selected for this test, and the bandwidth of the transducer met
the test requirements. The pressure measurement device consists of a pressure transducer
and a power supply. The pressure platform consists of a hydraulic press, bolts, nuts,
springs, and an epoxy resin plate. The pressure value at the silicone rubber-XLPE interface
is the product of the pressure sensor indication and the force area of the silicone rubber, as
shown in Figure 10.
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The signal source excited by the system host is passed through a low-pass filter bank,
in which the high-frequency signals are filtered out to ensure that the harmonic signals
in the interface-reflected waves are not related to the input signal. The primary echo
signal containing all frequency components is transmitted directly back to the system host
reception port 1 through the duplexer, and the harmonic signal is transmitted back to the
system host reception port 2 through the band-pass filter bank.

Silicone rubber is a high acoustic attenuation material, and for the same frequency
of ultrasound, the longitudinal wave has less attenuation and better penetration than the
transverse wave, so the longitudinal wave was chosen for the test. In order to receive
more of the harmonic components of the reflected waves at the interface, an Olympus
longitudinal ultrasound transducer with a central frequency of 2.25 MHz was chosen for
this test.

The system was setup by computer software to generate a Hanning window-modulated
signal of 2.25 MHz and 8 cycles. Glycerol was uniformly applied to the surface of the
ultrasonic transducer and the sample under test to reduce the energy attenuation of the
ultrasonic waves and the nonlinearity introduced by the coupling agent. The hydraulic
device was controlled so that the pressure transducer indicated a gradient from 0 MPa
to 0.2 MPa, in 0.05 MPa increments. Since it takes at least 30 min for the actual cable
attachment to stabilize at the interface, a wait of 30 min was needed after each gradient
before performing ultrasonic testing.

Since the coupling between the ultrasonic transducer and the pattern surface, the test
equipment, and other factors will affect the test results, it is necessary to verify the reliability
of the test system. Keeping the silicone rubber-XLPE interface pressure unchanged at
a certain value, the excitation voltage of the system was gradually increased, and the
relationship between the fundamental amplitude, A1

2, and the harmonic amplitude, A2,
under different excitation voltages was obtained, as shown in Figure 11. The fitting curve
formula was: A2 = 1.2584103A1

2 + 0.0592, and the correlation coefficient, R2, was 0.993.
It can be seen that when the excitation voltage increased, A2 and A1

2 had a good linear
relationship, and the stability of the test system was high.
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3.3. Experimental Results and Analysis

Nonlinear ultrasonic testing of the pressure at the silicone rubber-XLPE interface was
carried out using the test setup and the test method described above. The waveform
obtained from the test when no external pressure was applied is shown in Figure 12.
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Based on the relationship between time, sound velocity, and propagation distance for
the interface-reflected waveform verification in Figure 10, according to Equation (10) [25]:

2h = v(t2 − t1) (10)

where:
h is the thickness of the silicone rubber,
v is the speed of sound propagated in the silicone rubber,
t1 is the front signal time, 0.732 µs,
t2 is the reflected signal reception time, 31.448 µs.
Through calculation, it can be concluded that the time domain waveform of 30–40 µs

in Figure 12 is the primary echo of the silicone rubber-XLPE interface. The spectrum was
obtained by Fourier transforming the silicone rubber-XLPE interface echoes in Figure 12,
as shown in Figure 13. The second harmonic signal appeared in the spectrogram after
the ultrasonic waves were reflected by the silicone rubber-XLPE interface. This indicates
that the interaction of ultrasound with the nonlinear features of the interface produced a
nonlinear effect.
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Figure 13. Reflected wave spectrum at the silicone rubber-XLPE interface.

Figure 14a shows the variation curve of the fundamental wave amplitude of the
interfacial-reflected waves at different pressures. Figure 14b shows the variation of the sec-
ond harmonic amplitude of the interface-reflected wave at different pressures. According to
Equation (8), the ultrasonic nonlinear coefficient of the interface-reflected wave at different
pressures was calculated, and its variation law with pressure is shown in Figure 15.



Appl. Sci. 2023, 13, 5404 11 of 14

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22 
 

As shown in Figure 14a, the fundamental wave amplitude decreased as the contact pres-

sure at the interface increased. This is because the pressure increased the actual con

 

Figure 13. Reflected wave spectrum at the silicone rubber-XLPE interface. 

Figure 14a shows the variation curve of the fundamental wave amplitude of the in-

terfacial-reflected waves at different pressures. Figure 14b shows the variation of the sec-

ond harmonic amplitude of the interface-reflected wave at different pressures. According 

to Equation (8), the ultrasonic nonlinear coefficient of the interface-reflected wave at dif-

ferent pressures was calculated, and its variation law with pressure is shown in Figure 15. 

  
(a) (b) 

Figure 14. Curves of fundamental and second harmonic amplitudes of reflected waves at the silicone 

rubber-XLPE interface as a function of pressure. (a) Fundamental wave amplitude variation curve. 

(b) Second harmonic amplitude variation curve. 

 

Figure 15. Silicone rubber-XLPE interface ultrasonic nonlinearity coefficient as a function of pressure. 

Figure 14. Curves of fundamental and second harmonic amplitudes of reflected waves at the silicone
rubber-XLPE interface as a function of pressure. (a) Fundamental wave amplitude variation curve.
(b) Second harmonic amplitude variation curve.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 22 
 

 

Figure 13. Reflected wave spectrum at the silicone rubber-XLPE interface. 

Figure 14a shows the variation curve of the fundamental wave amplitude of the in-

terfacial-reflected waves at different pressures. Figure 14b shows the variation of the sec-

ond harmonic amplitude of the interface-reflected wave at different pressures. According 

to Equation (8), the ultrasonic nonlinear coefficient of the interface-reflected wave at dif-

ferent pressures was calculated, and its variation law with pressure is shown in Figure 15. 

  
(a) (b) 

Figure 14. Curves of fundamental and second harmonic amplitudes of reflected waves at the silicone 

rubber-XLPE interface as a function of pressure. (a) Fundamental wave amplitude variation curve. 

(b) Second harmonic amplitude variation curve. 

 

Figure 15. Silicone rubber-XLPE interface ultrasonic nonlinearity coefficient as a function of pressure. 

As shown in Figure 14a, the fundamental wave amplitude decreased as the contact 

pressure at the interface increased. This is because the pressure increased the actual con-

tact As shown in Figure 14a, the fundamental wave amplitude decreased as the contact 

Figure 15. Silicone rubber-XLPE interface ultrasonic nonlinearity coefficient as a function of pressure.

As shown in Figure 14a, the fundamental wave amplitude decreased as the contact
pressure at the interface increased. This is because the pressure increased the actual contact
area of the interface, and the enhancement of the transmitted wave caused the reflected
wave to weaken. As shown in Figures 14b and 15, the second harmonic amplitude increased,
and the ultrasonic nonlinear coefficient also increased as the interface pressure increased.
The reason for this is that the compressive stress reduced the gap between the interfaces,
enhancing the generation of second harmonics and the contact nonlinearity at the silicone
rubber-XLPE interface.

As the contact interface studied in this paper consisted of two different materials,
the ultrasonic transducer was placed on the XLPE surface and tested again in order to
investigate whether the materials had an effect on the test results. The relationship between
the ultrasonic nonlinear coefficient and the pressure at the interface is shown in Figure 16.
As the interface pressure increased, the relative nonlinearity coefficient tended to increase
overall, and the relative nonlinearity coefficient increased more and more rapidly at equal
pressure changes, due to the interface microstructure changing its contact state more
under pressure.
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3.4. Comparison of Simulation and Experimental Results

The theoretical values of the interfacial nonlinear coefficient were compared with the
experimental values, as shown in Figure 17. As the pressure at the silicone rubber-XLPE
interface increased, the theoretical and experimental values followed the same general
trend. It can be seen that the experimental value of the nonlinear coefficient was smaller
than the simulated value, which may be attributed to the fact that the pressure at the
interface of silicone rubber-XLPE was smaller than the pressure value displayed by the
pressure transducer, resulting in a smaller change in the fundamental and second harmonic
amplitudes. The nonlinear coefficient showed approximately the same trend as the pressure
variation when ultrasound was incident from the silicone rubber surface and the XLPE
surface, respectively. This indicates that for contact interfaces made up of different materials,
the surface from which the ultrasound is incident has less influence on the results of the
interfacial nonlinear coefficient.
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4. Conclusions

In this paper, nonlinear ultrasonic detection of the pressure at the silicone rubber-XLPE
interface was performed by simulations and experiments, and the results showed that:

(1) As the interface pressure increased, the time domain amplitude of the reflected waves
at the interface slightly decreased, the fundamental amplitude of the interface-reflected
wave frequency domain decreased, the second harmonic amplitude increased, and
the ultrasonic nonlinear coefficient increased.
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(2) For contact interfaces composed of two different materials, ultrasound waves were
vertically incident to the interface from both sides, and the nonlinear ultrasound
detection results were approximately the same.

(3) The use of the relative nonlinear coefficient could effectively achieve evaluation of
the pressure state of the flat silicone rubber interface, which provided a new idea for
the pressure detection of the interface between the actual cable accessories and the
cable body.

The authors’ use of nonlinear ultrasound techniques allowed for the detection of flat
silicone rubber-XLPE interfacial pressures, which provides a basis for research into the
detection of interfacial pressure in real products. The shape of the real product resembles
a cylindrical shape, and the ultrasonic transducer needs to use a curved probe when
performing nonlinear ultrasonic inspection. Alternatively, a device that can be fully coupled
to the curved surface of the real sample can be designed so that the curved coupling device is
paired with a planar ultrasound transducer for detection. Based on the relationship between
the nonlinear coefficient and the interfacial pressure, the magnitude of the interfacial
pressure can be deduced from the nonlinear coefficient.

However, in the simulation, the authors used equally spaced and sized semicircles
to characterize the roughness of the silicone rubber surface, which simplified the silicone
rubber-XLPE interface contact state to some extent. The modeling of the silicone rubber-
XLPE interface can be improved later to bring it closer to the real situation. During the actual
operation of the cable intermediate joint, factors such as interface roughness, temperature,
ageing, overfill, and the coupling agent all affect the interface pressure between the cable
attachment and the body. The authors have only studied one sample of roughness value in
this article so far, and the relationship between the interfacial pressure and the nonlinear
coefficient needs to be continued to be investigated for different roughness values. There is
also a need to continue to explore the effects of temperature, ageing, and other factors on
the nonlinear ultrasonic detection of silicone rubber-XLPE interfacial pressure. In this paper,
only a simplified model of 110 kV integral prefabricated cable accessories was investigated.
Subsequent studies on cable intermediate joints for medium- and low-voltage distribution
networks (e.g., wrapped, cold-shrink, heat-shrink cable intermediate joints, etc.) can be
carried out.
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