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Featured Application: The study could be used for sitting posture monitoring in a work-from-
home setup. This could also be used for rehabilitation purposes of patients who has posture-
related problems.

Abstract: Human posture recognition is one of the most challenging tasks due to the variation in
human appearance, changes in the background and illumination, additional noise in the frame,
and diverse characteristics and amount of data generated. Aside from these, generating a high
configuration for recognition of human body parts, occlusion, nearly identical parts of the body,
variations of colors due to clothing, and other various factors make this task one of the hardest
in computer vision. Therefore, these studies require high-computing devices and machines that
could handle the computational load of this task. This study used a small-scale convolutional
neural network and a smartphone built-in camera to recognize proper and improper sitting posture
in a work-from-home setup. Aside from the recognition of body points, this study also utilized
points’ distances and angles to help in recognition. Overall, the study was able to develop two
objective datasets capturing the left and right side of the participants with the supervision and
guidance of licensed physical therapists. The study shows accuracies of 85.18% and 92.07%, and
kappas of 0.691 and 0.838, respectively. The system was developed, implemented, and tested in a
work-from-home environment.

Keywords: expert systems; convolutional neural network; deep learning; machine learning; decision
tree; HCI; human pose estimation; work-from-home; COVID-19

1. Introduction

Human pose estimation is one of the challenging tasks of computer vision, due to
its wide range of use cases. It aims to determine the position of a person in an image
frame or video by detecting the pixel location of different body parts/joints [1,2]. Human
pose estimation is usually performed using image observations in either 2D or 3D [3,4]
by obtaining the pose of the detected person’s joints and selected body points. In the
literature, there are several approaches proposed from the traditional use of morphological
operators to complex human pose estimation using convolutional neural networks and deep
learning [5–8]. However, these methods involve challenges—inaccuracy in determining a
point’s location, finding correlation between variables, and high computational load—since
they deal with sensor capability and high-computing devices [9,10].

The processes of human pose estimation have progressed significantly due to the exis-
tence of deep learning and many publicly available datasets. The first of a few applications
of human pose estimation are seen in the fields of animation and human monitoring [11,12].
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These systems have been expanded to video surveillance, assistance systems used for daily
living, and driver systems [13,14].

Within a human pose estimation framework, pose classification emerges in recognizing
the specific pose that a person is in from a predefined set of poses. This can be used to
recognize certain actions or movements, such as yoga poses or dance moves, and can also
be used in security or surveillance systems to detect suspicious behavior.

However, this task brings challenges such as joints that are occluded, multi-person
detection in one frame, spatial difference because of clothing, lighting, and backgrounds,
and investigation of complex positions. However, the cost of 3D camera sensors has been
decreasing over the last few years; there is an emergence of machine learning and deep
learning methods. This might bring new and innovative approaches to the challenges it is
currently facing.

Over the last two years, the COVID-19 pandemic has greatly disrupted many tradi-
tional and conventional working routines. This includes switching from the traditional
and typical office-based setup to a new working-from-home (WFH) setting on short notice.
It has been suggested by many studies that this new setup will have considerable nega-
tive impacts on employees’ overall well-being and productivity [15]. Nevertheless, many
studies also show positive impacts of WFH settings [16–19]. Given this, human posture
recognition systems could be used to assess sitting postures and might lessen the negative
impacts of the work-from-home setup.

This study aims to

a. Investigate the related studies pertaining to human sitting posture recognition;
b. Develop a custom dataset for sitting posture recognition;
c. Develop a model to recognize proper and improper sitting posture using a rule-based

approach; and
d. Evaluate the effects of other ergonomic and demographic elements on sitting posture.

2. Related Works

Sedentary behavior (SB) refers to seated or reclined behavior [20]. As industrial
development trends upwards in the modern world, and this situation becomes more
salient due to the COVID-19 pandemic, human life has been transformed into a sedentary
lifestyle [21]. Based on recent studies in the United States and Australia, over 50% of an
adult’s waking day is spent in sedentary behavior [22]. Large amounts of sitting time
are associated with increased risks of disorders [23] (cardio-vascular diseases (CVDs),
metabolic syndrome, diabetes, and hypertension) and even mortality, for adults in high-
income countries [24]. Using the data in a prospective urban rural epidemiology study
from 1 January 2003 until 31 August 2021 in 21 high-, middle-, and low-income countries,
the association between sitting time and risks was examined. The study found out that
longer sitting times were associated with a significant increase in the risk of mortality and
CVDs. Comparing those who were seated for less than 4 h per day and those who sat for
more than 8 h per day, there was an increase of 17% to 50% in risks for these diseases for
the latter group.

Due to the changes brought by the pandemic in the occupational setting, people
spend a significant amount of time sitting; combined with awkward posture (i.e., forward-
leaning head, increased thoracic kyphosis), this might contribute to the increased risks of
developing spinal pain and disorders [25–28]. Several studies showed that 17.7–63% of
office workers experienced neck pain, and 23–34% suffered from back pain [29–31]. Long
and extended computer hours during daily activities contribute to high prevalence rates
of neck and back pain among college students [32,33]. According to the study presented
by Hurwitz et al. [34], back and neck pain have been recognized as the leading cause of
disability in most countries. The total cost of these injuries was estimated to be USD 1345
billion in 2016 [35].

While many workplaces follow proper workplace ergonomic design, home settings
are far different from this. This may result in poorer sitting posture and the development of
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musculoskeletal disorders. Therefore, various systems have been proposed to alleviate this,
noting the need to monitor proper sitting posture. One breakthrough in research is human
pose estimation. In human pose estimation, the two primary processes are locating human
body points/joints and grouping these points/joints into a valid human pose configura-
tion. To accomplish the tasks of human pose estimation, the task can be subdivided into
different parts such as selecting a dataset, selecting approaches, determining the backbone
architecture, and classifying poses.

2.1. Dataset

To locate human body joints, there are many widely used datasets. This includes the
COCO [11] and MPII [12], which differ in many aspects. First, the number of points/joints
detected in COCO is 17 key points, while MPII provides 14 key points (see Figure 1 below).
Aside from the number of key points detected, the way these images were captured and
collected in these broadly famous datasets also differs. For example, the VGG Human Pose
Estimation dataset consists of large datasets annotated with upper body poses collected
using the YouTube Pose dataset, which consists of 50 videos for upper body pose estimation.
Some of the activities covered were dancing, stand-up comedy, sports, and a wide range
of other activities. On the other hand, the MPII Human Pose dataset has an estimated
25,000 images. In this dataset, there are more than 40,000 people with annotated body
joints. Another strength of this dataset is that it covers more than 410 activities annotated in
YouTube videos. Lastly, the COCO dataset released in 2017 consists of one 118,000 training
images and five thousand 5000 validation images.
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2.2. Approaches

All human pose estimation methodologies are classified into two parts—single-person
and multiple-person estimation approaches. Single-person estimation approaches detects
the pose of the subject (person) in an image; on the other hand, multiple-person estimation
approaches detect the pose of all the subjects (persons) available in an image.

Single-person estimation includes the following: CNN-based approaches, RNN-based
approaches, hybrid approaches, and key point-based approaches. CNN-based approaches
use convolutional neural networks (CNNs) to classify poses. A common method is to
extract features from an image using a CNN and to then use a fully connected layer to
classify the pose. One example of this approach is the work of Wei et al. in 2016 [36], who
used a CNN to classify yoga poses from images. RNN-based approaches: These approaches
use recurrent neural networks (RNNs) to classify poses. This can be useful for classifying
dynamic poses, or poses that change over time. One example of this approach is the work
of Liu et al. in 2017 [37], who used an RNN to classify dance poses from videos. On the
other hand, Hybrid approaches: These approaches combine CNNs and RNNs to classify
poses. This can be useful for classifying both static and dynamic poses. One example
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of this approach is the work of Chen et al. in 2018 [38], who used a hybrid CNN-RNN
model to classify poses from images and videos. Lastly, Key point-based approaches: These
approaches use key point detection to classify poses. This can be useful for classifying
poses from images and videos. One example of this approach is the work of Sun et al. in
2018 [39], who used key point detection to classify poses from images and videos.

For multiple-person estimation, two (2) common approaches are: Top-down ap-
proaches and Bottom-up approaches. Top-down approaches start with the processing
from low to high resolutions, using a bounding box object detector to follow the detection
of the subject/s (person/s) in the image then focuses on determining their succeeding
poses [40–42]. However, the disadvantage of this approach is that when the early de-
tection fails, then it will not be able to recover from it also, multiple subjects (persons)
detection shows signs of vulnerability of this approach. Moreover, the more number of
subjects/persons in an image, the higher the computational cost. This is because for every
detection, a single-person estimator runs.

On the other hand, bottom-up approaches processing from high to low resolutions.
The first step of this approach is to locate all the key points in an image and then group
these key points [43–47]. The disadvantage of this approach is when there is an overlapping
of multiple subjects/persons.

2.3. Backbone Architecture

In the context of pose classification, one of the main components of human pose
estimation is the backbone architecture. This refers to the underlying neural network
architecture that is used to extract features from an image. This is commonly a CNN
(Convolutional Neural Network) that is pre-trained on a large dataset. To implement these
tasks of human pose estimation, a consistent and stable backbone architecture needs to be
deployed. Since this is a widely research area in the computer vision, there are many decent
backbone architectures. This includes DeepPose [13], which is deployed using AlexNet [14]
as the backbone architecture. This was followed by the implementation of R-CNN [15],
Fast-RCNN [16], machine learning algorithms. This was then followed by VGG [17] but
most of the recent research use ResNet [18]. DeepPose is a human pose estimation model
which uses Deep Neural Networks. This captures the position of each joint in a frame
which do not require any use of graphical models. DeepCut [1] is used for multiple people
pose estimation. The model works by counting the number of people in the frame then
predicting the common location of each key point.

Since the emergence of convolutional neural networks (CNN), one of the early imple-
mentations for pose estimation is the AlexNet to directly regress the joint co-ordinates to
improve its accuracy. In Figure 1a, as mentioned, it detects the location of each key point.
This includes upper extremity points such as head, arms, shoulders, elbow and other. As
seen in Figure 1b, it shows the groupings or pairs between these key points to estimate a
human pose (see Figure 1b).

2.4. Pose Classification

Therefore, this study investigated the use of human pose estimation and pose classifica-
tion in recognizing proper and improper sitting posture in a work-from-home environment.

Table 1 above shows the summary of the relevant studies published from 2017 to
the present time. This covers the studies which used camera as the main tool to capture
significant feature points. As seen in the table, the first study used webcam as the main
tool for data capturing. It also utilized physical markers placed on the key points. This
study recommended the use of deep learning and CNN (Convolutional Neural Network)
to recognize key points [48]. The next study used CNN to detect and recognize 18 key
points. The study focused on lower extremity and due to occlusion, this study suggested to
investigate upper extremity points [49]. Then, the use of side camera was also suggested
in this study [50]. This used Kinect cameras that are costly in nature in combination with
IMU sensors that are intrusive and invasive. Lastly, the use of Pointcloud data were also
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investigated. This approach is not just computational expensive but also the price of Lidar
sensors in the market is costly. Therefore, the investigation on the use of less expensive
devices, less intrusive and less computationally expensive is needed.

Table 1. Key Insights from the Early Studies (2017–2022).

Features # of Samples Key Discovery Recommendations

7 feature points 60 subjects (30 male and
30 female)

The use of head and shoulder
posture (Chin, Manubrium, left and
right shoulder). The use of physical
markers placed on this keypoints.

Consideration of Deep Learning
and CNN [48]

18 key points and
10 features 146 random images The use of lower extremities

points (angles)

It was also observed that in
images where lower body was not

completely visible due to
occlusion (i.e., hip joints were not

detected, algorithm could not
correctly classify between sitting

and standing postures) [49]

6 key points and
10 features

11 subjects (nine males
and two females)

2 Kinect cameras (front and lateral),
RULA- risk assessment (manually
measured) and variables, such as

upper-arm abduction and neck side
bending, are measured more easily
and accurately from front-view, and

other variables, such as trunk
flexion and neck flexion, can be
measured more accurately from

side- view than from the front-view.

the information captured with the
side camera and leverage the

temporal information captured
in video [50]

3 points in the spine,
1 neck and 1 hip 6 subjects Combination of IMU sensors and

Kinect Cameras

Consideration of more
areas/points with respect to

their position [51]

Pointcloud Data (3D images)

A pilot study utilizing LIDAR
sensors to capture 3D images then

convert into 2D with the use of
Convolutional Neural Network

LIDARs in the market are
expensive, non-portable and large.
Capturing the 3D point cloud and
transformation is computationally
expensive. Therefore, this needs

to be transformed into a
small-scale neural network

running in less computational
expensive devices [52].

10 feature points

Converting 2D into 3D images and
applying Posenet.js and ResNet50

model for the detection of
these points.

A small-scale model that can run
an efficient and accurate model
detecting more feature points is

recommended [53].

Table 2 below shows the summary of all the key points mentioned in the previous
studies as well as the device/s used to capture these key points. As seen in the table,
there are common features that are being measured by both direct (Accelerometer, Gy-
roscope and IMU) and vision-based type of measurements (RGB and RGB-D cameras).
It is noticeable that due to the limitations of direct-based sensors (the cost of these sen-
sors and its nature—intrusive), there is a smaller number of feature points compared to
vision-based sensors.
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Table 2. Keypoints and their respective method of capturing.

Keypoints Method

Lower Extremity

1. Left hip Camera [49]
2. Right hip Camera [49], IMU [51]
3. Left knee Camera [49]
4. Right knee Camera [49]
5. Left ankle Camera [49]
6. Right ankle Camera [49]

Upper Extremity

1. Left ear (tragus) Camera [50], Camera [53]
2. Right ear (tragus) Camera [50], Camera [53]
3. Nose Camera [53]
4. Mouth Camera [53]
5. Chin Physical Marker- Camera [36]
6. Left arm (humerus) Camera [50]
7. Right arm (humerus) Camera [50]
8. Left elbow Camera [50]
9. Right elbow Camera [50]
10. Eyes (canthus) Camera [50], Camera [53]
11. Back of the neck (c7) Accelerometer [52], Camera [38], IMU [51]
12. Middle of the chest (sternum) Physical Marker- Camera [48], Camera [50]
13. Left Shoulder Physical Marker- Camera [48], Camera [53]
14. Right Shoulder Physical Marker- Camera [48], Camera [53]
15. Thoracic (T8) Gyroscope [54], Camera [38], IMU [51]
16. Thoraco-lumbar Gyroscope [54], IMU [51]
17. Lumbar Gyroscope [54], IMU [51]

As seen in the Table 2 below, there are key points that can be measured with either
sensors directly attached to human body or vision-based (camera-based) sensors. It is
noticeable that in the literature, the three points in the spine, only being measured using
direct-based measurement (accelerometers). Therefore, some of the features mentioned in
this table will be use in the proposed study. Additionally, some features that were captured
using direct-based measurements will be measured using camera-based sensors.

The succeeding sections shows the important concepts and techniques to achieve
an acceptable monitoring system for proper and improper sitting posture. The study is
divided into two major tasks. First, to develop an acceptable dataset with the guidance and
supervision of the Domain Experts (Licensed Physical Therapists). This is essential since
this study has added distinct key points such as chin, and three key points in the spine
(thoracic, thoraco-lumbar and lumbar). This includes the use of sufficiently fast Human
Pose Estimation, and acceptable algorithm for pose classification. To locate raw feature
points using human pose estimation, this study has used existing framework.

The next major task is to generate rules used for pose classification systems. These
rules will be used to recognize proper and improper sitting posture using the features
generated with the distinct key points.

3. Materials and Methods
3.1. Dataset Creation
3.1.1. Data Gathering—Participants

This study includes thirty (30) males and thirty (30) females with a desired height
and wrist size (see Table 3 below). A total of sixty (60) participants were involved in the
study. They accomplished ethical clearance and data privacy statements. The study did
not include any participant who has a history of back-related disorders such as kyphosis,
scoliosis and alike (see Table 3).
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Table 3. Body Frame Category.

Height Wrist Size Category No. of Participants

Female 5′2′′ or less tall
<5.5′′ Small 5

5.5′′ to 5.75′′ Medium 5
>5.75′′ Large 5

Female 5′2′′ to 5′5′′ tall
<6′′ Small 5

6′′ to 6.25′′ Medium 5
>6.25′′ Large 5

Male 5′5′′ or less tall
<6′′ Small 5

6′′ to 6.25′′ Medium 5
>6.25′′ Large 5

Male taller than 5′5′′
<6.25′′ Small 5

6.25′′ to 6.5′′ Medium 5
>6.5′′ Large 5

3.1.2. Data Gathering—Key Points

The key points that were captured by the data gathering tool were presented in Table 4.
As seen in the table, it has identical list of feature points for both left and right sides. Aside
from these key points, additional feature points such as points’ distances and angles were
calculated to help in the recognition. Common features from the existing human pose
estimation systems were shown below such as neck, elbow, shoulder, and nose. Moreover,
additional distinct feature points were also recognized such as three points in the spine
and chin. These distinct feature points are not part of the human pose estimation model
Mediapipe [55] that was used to recognize key points. The method on how these distinct
feature points were captured will be discuss in the succeeding sections.

Table 4. List of Keypoints.

Common Features Abbreviation Used in the Study Remarks (Layman’s Terms)

Sternocleidomastoid Process (right) SPR Neck Right
Brachioradialis (right) BR Elbow Right

Deltoids (right) DR Shoulder Right
Trapezius muscle (right) TMR Upper Back Right

Sternocleidomastoid Process (left) SPL Neck Left
Brachioradialis (left) BL Elbow Left

Deltoids (left) DL Shoulder Left
Trapezius muscle (left) TML Upper Back Left

Nose N Nose
Additional Feature

Mentalis C Chin
Lumbar L Lower Back
Thoracic T Upper Mid Back

Thoraco-lumbar TL Middle Back

3.1.3. Data Gathering—Data Capturing Tool

a. The data gathering is composed of three cameras—two mobile phones positioned
at the lateral (left and right) of the participant and one web camera positioned in
the anterior of the participant for a web conference call with the experts (Licensed
Physical Therapists).

b. The smartphones minimum specifications in capturing the videos are:

• 1280 × 720 resolution
• 30 fps

c. The web conference call was made using a Zoom Meeting. The conference call is
essential for the Licensed Physical Therapists (PTs) to facilitate the data gathering
procedures and check the sitting posture every ten (10) minutes.
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d. The two mobile phone cameras positioned in the lateral is essential for livestreaming
purposes so that the experts will be able to see the movements of the participants
in real-time. This has been achieved using server-client network wherein these two
mobile phones were connected into a single server and using a web browser, the
experts will be able to access and see the videos.

e. At the same time, the two mobile phones captured videos will be saved and recorded
for feature extraction purposes later. Since some of the participants are working indi-
viduals, audio will not be part of the video as there are some confidential information
could be leaked in the duration of the data gathering.

3.1.4. Data Gathering Setup

The setup as shown in Figure 2 below includes two smartphones camera placed in left
and right side of the participant with an angle of 90◦ and a distance of 3 ft and a height of
2.5 ft. This also shows the distance from the monitor.
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3.1.5. Data Gathering Procedures

Once the setup was done as mentioned earlier, the data gathering will take place as
seen in the steps below:

a. The participant will start to use the computer in the queue of the technical team. At
the same time, the recording process will start and run continuously. Since the partic-
ipants have computer-related jobs, the study just let them do their job throughout
the data gathering (typing, programming, and alike) in seated-typing positions.

b. To capture proper sitting posture, the experts will instruct the participants to sit
properly checking their left and right views. For the benefit of the participants (an
easier identification of body points), the study made seven (7) groups of key points.
These are the following: head, neck, shoulders, elbows, wrist, upper back, and
lower back.

c. Once they are seated properly as per the instruction and judgment of all the experts
(based on the posture states criteria mentioned in Table 5), the tool record the posture
for ten (10) minutes.

d. Each participant was instructed to take short breaks to minimize bias in between takes.
e. A total of sixty (60) recordings of ten-second videos were recorded per participant.
f. After this, to record improper sitting posture, the participants will proceed to his/her

usual seated-typing positions where he/she feel comfortable for thirty (30) minutes.
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Table 5. Posture States Criteria.

No. Landmark Remarks

1 Head Eye level with monitor, Not too forward or close to monitor

2 Neck Neutral (not too bent backward, forward or to the side)

3 Shoulders Levelled (not raised or rounded)

4 Elbows Not too flexed or extended

5 Wrist Slightly extended or neutral. Not too flexed or extended

6 Upper Back No kyphotic or lordotic posture, or rounded or shifting to one side

7 Lower Back No kyphotic or rounded or shifting to one side

3.1.6. Data Gathering- Video Annotation

After the recording process, videos of left and right cameras were saved. These videos
were saved in a cloud server (Dropbox) and access were given to the annotators. The
annotation process was performed as follow:

a. A total of three (3) PTs (Physical Therapists) served as annotators.
b. The annotation process was done blindly (each annotator will work independently).
c. The annotation is based on the criteria set in Table 5.
d. Initially, a collection of recordings of proper sitting postures were stored.
e. For the recording of improper sitting postures, a total of thirty (30) minutes per

participant was captured. These recordings were normalized in this manner:

• Video Pre-processing—cutting the thirty (30) minute video into multiple ten (10)
second videos. The first ten (10) seconds of the total video recorded was cut
since at that time, the participant was just warming up. For the pre-recorded
proper sitting postures, each recording was cut to exactly ten (10) seconds.

• Removal of “Unusable Part”—removal of “unusable part” means the removal
of positions aside from seated typing (i.e., standing, no person detected, etc.)

f. After all these necessary steps, annotation took place by getting the dominant sit-
ting posture (proper or improper) in every ten (10) second video. This was done
as follows:

• From the first (1st) to ten (10th) seconds, the annotator will check for thedomi-
nant posture.

• Dominant posture is determined by a greater number of seconds (e.g., six (6)
seconds of proper and four (4) seconds of improper, then the dominant posture
is PROPER, otherwise IMPROPER). In getting the dominant posture, it does not
necessary to read the consecutive seconds.

3.1.7. Data Preparation

Once the video annotation was finished, there will be three CSV files as the output
from the three annotators. The data preparation is performed as follow:

a. Part 1 of the CSV file contains the time, name, age, gender, category, table height,
chair height and distance. (see Figure 3)

b. Part 2 of the CSV file contains the label of the seven categories (head, neck, shoulders,
elbows, wrist, upper back, lower back, and overall). (see Figure 3)

• To do this, each of the categories will be com-pared among the three CSV files
• If two out of three (2 out of 3) annotators agreed on a label then it will be

the overall label for that instance (e.g., Row 2, PT1 = Improper, PT2 = Proper,
PT3 = Proper, then the overall label for it is PROPER).

c. This will be repeated on a total of 7200 instances (see the Equation (1) below).
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2 Improper and 4 Proper so the Overall is Proper 

Figure 3. Video Annotation File.

Based on Table 6 below, the total number of instances of the study is 7200. To calculate
this, the study captured ten (10) frames per second. Next, annotation was made every
ten (10) seconds. A total of one hundred (100) frames were processed in the duration of
10 s. An overall total of ten (10) minutes were collected per sitting posture (proper and
improper). So, a total of 6000 frames were processed for proper and another 6000 frames
were processed for improper per participant. A total of sixty (60) participants were used in
this study. Therefore, a total of 720,000 frames were process overall.

Table 6. Total # of Frames and Instances.

FPS (Frame
per Second)

Frame per Ten
Seconds

Frame per Ten Minutes
per Participant

Total # of
Participants

Total # of Frames per
Sitting Posture

Total # of
Frames

10 100 6000 60 360,000 720,000

# of Instances
per Minute

# of Instances in
Ten (10) Minutes

# of Instances per
Participant Per Posture

Total # of
Participants Total # of Instances

6 60 120 60 7200

Since annotation was made every ten (10) seconds, each participant has sixty (60)
instances of proper and sixty (60) instances of improper. A total of one hundred twenty
(120) instances per participant were collected, since the study has sixty (60) participants,
therefore, a total of seven thousand two hundred (7200) instances overall (see Equation (1)).

As seen on the equation 1 below, a total of sixty (60) participants were gathered and
twenty (20) minutes of data gathering for each participant. Twenty minutes has 1200 s
but since the annotation will be made for every ten (10) seconds, a total of one hundred
twenty (120) in-stances per participant will be recorded. Moreover, multiplying it again
on the total number of participants, the overall number of instances is seven thousand
two hundred (7200).

6 instances per minute ∗ 10 = 60 instances per posture ∗ 2 = 120 instances ∗ 60 participants = 7200 instances (1)
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3.1.8. Feature Extraction Tool

As seen in Figure 4, to choose the proper human pose estimation tool, there are two
performance evaluation for this recognition namely—mean average precision (mAP) and
Percentage of Correct Key-points (PCK). To compute for Mean average precision, four key
metrics were used (Confusion Matrix, Intersection-over-Union, precision and recall) [56].
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Figure 4. Comparison of the Performance of the Recognition [55].

Percentage of Correct Key-points (PCK) is the metric used for identifying if a detected
joint is considered correct. This can be performed by checking if the distance between
the predicted and the true joint is within a certain threshold. Specifically, this study used
PCK@0.2 = Distance between predicted and true joint <0.2 * torso diameter.

The performance of the model is shown in the Figure 4 below. The model has de-
ployed three versions namely—heavy, full and lite. As seen in the figure below, the model
outperformed the other existing solutions in mAP and PCK.

This feature extraction tool was written in C# using a machine learning solution
MediaPipe for high fidelity body pose tracking. This runs inference in small scale tools such
as desktops/laptops and mobile phones compared to other machine learning solutions that
require powerful desktop environments to generate accurate results.

This task of computer vision requires large-scale computational devices to achieve
desirable outcome and to run in a real-time basis. The Machine Learning Pipeline consisting
of pose detection and tracking each key points must be very fast and requires low latency.
Therefore, to achieve a best and fast performance of the detection and tracking, the most
visible part of the frame will be the head. So, this could calculate the and detects the
location of the person within the frame. From this, it explicitly predicts two additional
virtual key points that could describe the center of the human body, rotation and scale. The
Pose detector predicts the center of the human body, rotation and scale as a circle. This is
essential to obtain the midpoints of a person’s hips in the frame, the radius of a circle to
map the whole person in the frame and the incline angle of line connecting the shoulder
and hip midpoints.

This works by running the pose detector in the first frame of the input video that will
localize the Region-of-Interest (person) and draw a bounding box. The pose tracker will
then predict all the 33 key points and run through all the subsequent frames using the
previous frame’s ROI. This only call the detection model when it fails to reach the target
confidence score (means fails to track the person).

Mediapipe was used to recognize and track key points in fast and acceptable manner,
and the number of feature points are significantly greater than other existing models.

The output of this feature extraction tool is a csv file which contains the x and y
locations of the feature points mentioned above.

a. The feature extraction process is performed as follow:
b. The video will be fed into the tool (This could be completed one by one).
c. The video will be processed frame by frame (10 frames per second).
d. The given image resolution of 1280 × 720 pixels:
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e. Then these points will then be converted into lines using the Equation 2 below:

f ((x1, y1), (x2, y2)) =

√
((x1 − x2)

2 + (y1 − y2)
2) (2)

However, it does not cover some of the targeted points of this study such as chin,
upper, middle, and lower back (see Figure 5).
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a. To recognize these distinct key points, the study will use the common key points of
Mediapipe as its base reference for computing the location of each distinct key point
and getting its midpoints.

b. To compute for these distinct feature points, the study will use midpoint formula.

For chin,

X = shoulder
Y = nose

For Thoracic (Upper Back)

X = Left Shoulder
Y = Right Shoulder

For Lumbar (Lower Back)

X = Left Hips
Y = Right Hips

For Thoraco-Lumbar (Mid-Back)

X = Thoracic
Y = Lumbar

After recognizing these distinct features, x and y location of these points in every
frame will be recorded.

3.1.9. Feature Extraction

After the recognition of the key points mentioned above, the features were extracted as
described below. Table 7 below shows the description of the additional computed features
of the study. As seen in the table, the calculation of the difference in the Y-Axis of the distinct
features in the spine namely (thoracic, thoracolumbar, and lumbar); the distance between
nose and left or right shoulder (Trapezius Muscle); Cosine Rule for (Brach) Brachioradialis
angle (computed from left/right shoulder, elbow and wrist); Cosine Rule for (TL) Thoraco-
Lumbar angle (computed from left/right shoulder, thoracolumbar and lumbar); and the
distance between Nose and Thoracic (neck) Distance. These additional features were used
in the development of the model for the recognition of proper and improper sitting postures.
The significance of these features was also computed and shown in the results.
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Table 7. List of Features.

SN Feature Name Feature Description Image Representation

1 TYandTLYandLY diffyaxis

The difference of three (3)
points in the spine—T
(Thoracic), TL
(Thoraco-Lumbar), and L
(Lumbar) in the Y-Axis.
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Table 7. Cont.

SN Feature Name Feature Description Image Representation

7 shoulder_mid_dist_left
The distance between the
shoulder and mid
(thoracolumbar)
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For features 11–13, the study applies the cosine rule which follows the procedures below:

1. First, find the distance between point a (shoulder left) and point b (elbow left) using
the distance formula below:

distance =
√
[(x1 − x2)

2 + (y1 − y2)2] (3)

2. Second, find the distance between point b (elbow left) and point c (wrist left)
3. Then, find the distance between point c (wrist left) and point a (shoulder left)
4. Lastly, apply the cosine rule:

elbow angle = cos−1

[(
a2 + b2 − c2)

2ab

]
(4)

3.2. Pose Extraction and Classification
3.2.1. Feature Extraction

After the extraction of keypoints, the output dataset will undergo data cleaning and
normalizing which can be performed by calculating the threshold of values for every ten
(10) seconds.

These CSV files will be matched to the CSV files annotated by the PTs. Since the
annotations of the experts were taken every ten (10) seconds, these CSV files generated
by the feature extraction tool will be normalize. Standard statistical measurements will be
calculated such as mean, median, mode, standard deviation and variance.

A total of seven thousand two hundred (7200) instances will be the normalized CSV
file and to be fed on the model development. A total of one hundred twenty (120) instances
per participant will be labelled. At this point, there is a 50–50 distribution between two
labels. Sixty (60) instances for proper and another sixty (60) in-stances for improper. This is
also equivalent to ten (10) minutes of data collection for both proper and improper.

3.2.2. Feature Engineering

Tables 8 and 9 show the features or attributes collected in the data set. The study tries
to recognize two labels such as proper and improper sitting posture. The features stated
in Table 8 are name, age, gender, wrist size, category, table height, chair height, distance
between table and chair. These features were collected during the data gathering using a
google spreadsheet sent to the participants.

Table 8. List of Demographic Features.

# Feature/Attribute Description

1 Name Alphanumeric Characters
Used as an identifier

2 Age integer

3 Gender Male or Female

4 Table Height Table Height appropriate to the user’s body frame (upper part of the table o floor)/inches

5 Chair Height Chair Height appropriate to the user’s body frame (knees to the floor)/inches

6 Distance Distance between table and chair of the user (distance from the end of the table to the end of the
chair/inches

7 Category F_Small, F_Medium, F_Large, F1_Small, F1_Medium, F1_Large
M_Small, M_Medium, M_Large, M1_Small, M1_Medium, M1_Large
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Table 9. List of Final Feature Points.

# Feature Description

1 diffyaxis Thoracic, Thoraco-Lumbar and Lumbar with respect to Y Axis

2 nosetoleftshoulder Nose to Left Shoulder (Deltoids) Distance

3 nosetorightshoulder Nose to Right Shoulder (Deltoids) Distance

4 shoulder_elbow_dist Shoulder to Elbow (Brachioradialis) Distance in Left or Right Camera

5 elbow_wrist_dist Elbow (Brachioradialis) to Wrist Distance in Left or Right Camera

6 wrist_shoulder_dist Wrist to Shoulder in Left or Right Camera

7 shoulder_mid_dist Shoulder to mid (thoraco-lumbar) Distance in Left or Right Camera

8 mid_hip_dist Mid (Thoraco-lumbar) to Hip (Lumbar) Distance in Left or Right Camera

9 hip_shoulder_dist Hip (Lumbar) to Shoulder Distance in Left or Right Camera

10 nosetoneck Nose to Neck (Thoracic) Distance in Right Camera

11 SEWangleA Cosine Similarity of Angle A (Shoulder-Elbow-Wrist)

12 SEWangleB Cosine Similarity of Angle B (Shoulder-Elbow-Wrist)

13 SEWangleC Cosine Similarity of Angle C (Shoulder-Elbow-Wrist)

14 Label Proper or Improper

These features stated in Table 9 were derived using Distance Formula and Cosine
Similarity Formula. Common statistical measures were calculated for each feature stated
in Table 9.

3.2.3. Classification

The study used the 70–30 distribution for training and testing. During the training,
the study utilized the different supervising learning techniques such as Random Tree,
Random Forest, Decision Tree and Decision Stump and Rule Induction. Stated below are
the definitions of each operator.

a. Batch- X Fold Validation—This operator performs a cross-validation to estimate the
statistical performance of a learning operator (usually on unseen data sets). It is
mainly used to estimate how accurately a model will perform in practice.

b. Classification- Next is to identify the type of machine learning technique suitable
to generate an acceptable model. There are some well-known classifiers used in
different previous studies. Different machine learning algorithms such as Random
Forest algorithm, Decision Tree algorithm, Random Tree, Decision Stump and Rule
Induction were analyzed. Most of the studies stated in this proposal show that
Random Forest and Decision Tree Classifier outperformed these some-well known
classifiers in terms of accuracy.

4. Results

As stated, this study developed an objective-type of dataset with the supervision and
guidance of the field experts (Licensed Physical Therapists). A total of three experts were
part of the study. The agreement among these experts were measured using Fleiss’ Kappa
(see Table 10). Overall, the experts have a kappa of maximum of 0.5 (acceptable agreement)
between PT3 and PT1.

As much as possible, the study tries to develop a balanced dataset (same number of
samples for each class), however, the study tries to remove bias and lessen the impact of
the imbalance dataset, the study use optimization to obtain the optimal type of sampling
in splitting the data. There are four possible values namely: linear sampling, shuffled
sampling, stratified sampling and automatic. After a given number of permutations,
the most optimal type of sampling is stratified sampling. Table 11 shows the parameter
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optimization for Decision Tree and Rule Induction. These two models were selected due to
the consistent performance of these during the training.

Table 10. Kappa Agreement Among Experts.

PT1 and PT2 PT2 and PT3 PT3 and PT1

Left 0.460053319 0.141669493 0.5211901

Right 0.466282672 0.466282672 0.591223

PT1, PT2 and PT3

Left 0.387105772

Right 0.466282672

Table 11. Parameter Optimization.

# Decision Tree Rule Induction

Parameter Value Description Parameter Value Description

1 criterion

information gain,
gain ratio, gini

index
and accuracy

Order of splitting criterion information gain,
accuracy Order of splitting

2 maximal depth 0–100
Length of the tree

from its root and the
last leaf

Sample ratio 0–1
Ratio of training data

for growing
and pruning

3 confidence 0–1 It is used for
pessimistic pruning Pureness 0–1

Minimum ratio of
class to consider a

subset pure

minimal leaf size 0–100 Number of examples
in each subset

After 26,000 permutations in Decision Tree and 968 in Rule Induction, the optimal
values for each parameter are the following (see Table 11).

The comparison of both left and right camera models was presented in Figure 6.
As seen two most appropriate models were presented namely Decision Tree and Rule
Induction. Both classifiers have almost the same performance with an accuracy of ~92%
and a kappa of ~0.8. It is noticeable that the Right Camera Model performs better compared
to the Left Camera Model. One factor that can be drawn from this result is that all the
participants are right handed, therefore, more actions and movementsAppl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26 
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Tables 12 and 13 show the generated rules to recognize proper and improper sitting
posture. Table 12 shows the rules for Left Camera and Table 13 shows the rules for Right
Camera. As seen in these tables, the significant features found common in two models are
age, the distance between nose and left shoulder and table height.

Table 12. Rules for Left Camera Model.

Rules Most Likely to

If meannoseleftshoulder > 343.267 AND meanshoulder_elbow_dist > 153.040 AND
medianelbow_wrist_dist > 203.572 Proper

If meannoseleftshoulder > 343.267 AND meanshoulder_elbow_dist > 153.040 AND
medianelbow_wrist_dist ≤ 203.572 Improper

If meannoseleftshoulder > 343.267 AND meanshoulder_elbow_dist ≤ 153.040 AND
medianshoulder_mid_dist > 56.117 Improper

If meannoseleftshoulder > 343.267 AND meanshoulder_elbow_dist ≤ 153.040 AND
medianshoulder_mid_dist ≤ 56.117 Proper

IF meannoseleftshoulder ≤ 343.627 AND Age >18.5 AND stdSWEAngleA > 3.293 AND
Tableheight ≤ 30 Improper

IF meannoseleftshoulder ≤ 343.627 AND Age > 18.5 AND stdSWEAngleA ≤ 3.293 AND
meanhip_shoulder_dist ≤ 588.166 Improper

Table 13. Rules for Right Camera Model.

Rules Most Likely to

If medianwrist_shoulder_dist > 287.477 AND stdnosetoleftshoulder ≤ 8.028 AND
meanhip_shoulder_dist ≤ 328.643 AND Age > 19 Proper

If medianwrist_shoulder_dist > 287.477 AND stdnosetoleftshoulder > 8.028 AND
stdelbow_wrist_dist ≤ 24.754 AND medianelbow_wrist_dist > 157.938 Improper

If medianwrist_shoulder_dist ≤ 287.477 AND Tableheight ≤ 30.500 AND
medianSEWAngleC ≤ 122.449 And meanwrist_shoulder_dist ≤ 293.595 Improper

5. Discussion
5.1. Comparison of Left and Right Models

As seen in Figure 6 above, Decision Tree shows an accuracy of 91.5383, a kappa
statistic of 0.792 for Left Camera and 97.0591 and 0.9003 for Right Camera. Additionally,
for Left model, the true positive rate is 0.988 and 0.893, false positive rate is 0.107 and
0.012, precision of 0.976 and 0.945 and recall of 0.988 and 0.893 for improper and proper
respectively. Right model shows a true positive rate of 0.988 and 0.893, false positive rate of
0.107 and 0.012, precision of 0.976 and 0.945 and recall of 0.988 and 0.893 for improper and
proper respectively.

Moreover, additional experiments were conducted on the seven categories namely
head, neck, shoulders, elbow, wrist, upper and lower back. This study investigated the
performance of the recognition if it will be based on each category mentioned, as well as
the pattern in recognizing sitting posture. The results are as follow:

As seen in the Table 14 below, for Left camera model, highest accuracy level performed
is elbow with an accuracy rate of 98.003 and a kappa of 0.9596. On the other hand, the
lowest accuracy model performed is lower back with an accuracy rate of 92.765 and a kappa
of 0.7649. It is also noticeable that the precision and recall for both proper and improper
performs worse in upper back. This shows a precision rate of 0.573 and 0.975, recall rate of
0.373 and 0.989 for proper and improper respectively. This means that there are a smaller
number of proper sitting postures exhibited by the elbow compared to other body parts. In
seated typing position, elbow shows a major role in the recognition of proper and improper
sitting posture.
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Table 14. Performance per Category (Left and Right Camera Model).

Head Neck Shoulders Elbows

Left Right Left Right Left Right Left Right
Correctly
Classified 94.7678 98.4969 94.802 98.5342 95.9717 95.6073 98.003 97.7827

Incorrectly
Classified 5.2322 1.5031 5.198 1.4658 4.0283 4.3927 1.997 2.2173

Kappa
statistic 0.8482 0.9408 0.8362 0.9424 0.9059 0.9085 0.9596 0.952

Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp
TP Rate 0.868 0.971 0.921 0.997 0.840 0.976 0.928 0.996 0.976 0.924 0.933 0.972 0.975 0.987 0.977 0.978
FP Rate 0.029 0.132 0.003 0.079 0.024 0.160 0.004 0.072 0.076 0.024 0.028 0.067 0.013 0.025 0.022 0.023

Precision 0.896 0.962 0.980 0.986 0.899 0.960 0.976 0.987 0.966 0.946 0.958 0.955 0.989 0.969 0.962 0.987
Recall 0.868 0.971 0.921 0.997 0.840 0.976 0.928 0.996 0.976 0.924 0.933 0.972 0.975 0.987 0.977 0.978

Wrist Upper Back Lower Back Overall

Left Right Left Right Left Right Left Right
Correctly
Classified 96.7648 99.5425 96.508 98.4082 92.765 96.5223 91.5383 97.0591

Incorrectly
Classified 3.2352 0.4575 3.492 1.5918 7.235 3.4777 8.4617 2.9409

Kappa
statistic 0.9353 0.9888 0.4344 0.0474 0.7649 0.818 0.792 0.9003

Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp Prop Imp
TP Rate 0.954 0.982 0.987 0.999 0.373 0.989 0.028 0.999 0.791 0.961 0.834 0.981 0.834 0.949 0.893 0.988
FP Rate 0.018 0.046 0.001 0.013 0.011 0.627 0.001 0.972 0.039 0.209 0.019 0.166 0.051 0.166 0.012 0.107

Precision 0.983 0.952 0.998 0.995 0.573 0.975 0.265 0.985 0.829 0.950 0.841 0.980 0.869 0.933 0.945 0.976
Recall 0.954 0.982 0.987 0.999 0.373 0.989 0.028 0.999 0.791 0.961 0.834 0.981 0.834 0.949 0.893 0.988

For Right camera model, highest accuracy performed is wrist with an accuracy rate of
99.5425 and a kappa of 0.9888. On the other hand, the lowest accuracy model performed
is shoulders with an accuracy rate of 95.6073 and a kappa of 0.9085. It is also noticeable
that in this model, the precision and recall of Upper Back for proper and improper. This
shows a precision of 0.265 and 0.985 and a recall of 0.028 and 0.999 for proper and improper
respectively. This means that there are also smaller number of proper sitting postures
exhibited by upper back compared to other body parts.

Based on Table 14 below, it is noticeable that elbow and upper back performs best in
left and right model, respectively. This shows that the distinct feature points such as upper
back (Thoracic) is crucial in the recognition.

5.2. Significant Feature Points (Upper Extremity Points)

This study utilized additional feature points aside from the key points provided by
the model. Based on Tables 12 and 13, the significant features for both models are as follow:

For Left Model,

1. noseleftshoulder—nose to left shoulder distance- This is to measure if the head is
moving towards left; head should be straight.

2. shoulder_elbow_dist—shoulder to elbow distance- This is to measure if the shoulder
and elbow is levelled and in proper angle.

3. elbow_wrist_dist—elbow to wrist distance- This is to measure if the elbow and wrist
is in proper angle.

4. stdSWEAngleA—shoulder, elbow and wrist angle A- This will measure the angle of
these 3 points.

5. shoulder_mid_dist—shoulder and thoraco-lumbar (distinct feature point) distance.
This will measure if the shoulder is rounded, or the back is bending.

6. hip_shoulder_dist—shoulder and lumbar (distinct feature point) distance. This will
measure if the shoulder is rounded, or the back is bending.

For Right Model,

1. wrist_shoulder_dist—Wrist to shoulder distance—This is to measure the angle from
wrist to right shoulder.
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2. Nosetoleftshoulder—Nose to left shoulder distance—This is to measure the distance
between nose and left shoulder.

3. elbow_wrist_dist—elbow to wrist distance—This is to measure the distance between
elbow and wrist.

4. wrist_shoulder_dist—Wrist to shoulder distance—This is to measure the distance
between wrist and shoulder.

5. SEWAngleC—shoulder, elbow and wrist angle C—This will measure the angle of
these 3 points.

6. hip_shoulder_dist—hip_shoulder_dist- shoulder and lumbar (distinct feature point)
distance. This will measure if the shoulder is rounded, or the back is bending

It is noticeable that both models have almost identical attributes that are significant
in the recognition of proper and improper sitting postures. Both models have nose to left
shoulder distance and elbow and wrist distance and shoulder to lumbar distance. Nose
to left shoulder is significant to measure the posture of head and shoulder and elbow and
wrist distance is used to identify the typing position, and shoulder to lumbar distance
checks if the shoulder is rounded or the spine is bending.

5.3. Significant Features (Demographics and Ergonomic Elements)

Aside from these features mentioned, ergonomic design is also part of the dataset
which includes table height, chair height and the distance of the user from the monitor.
This study found out that table height and chair height signify a correlation to other body
feature points. Specifically, table height shows correlation to key points (from the model)
while chair height shows correlation to the computed feature points (distances and angles).

Based on the models presented in Tables 12 and 13, age and table height show relevance
in the recognition of proper and improper sitting posture. It has been noticeable that body
frame does not have any direct relationship with the recognition.

5.4. Prototype

Lastly, to create an interactive prototype for this small-scale CNN (convolutional
neural network) and the use of smartphones built-in camera to recognize proper and
improper sitting posture. The study developed a system using C# and a native application
running in Windows CPU-based only laptop. The testing setup follows the same setup
mentioned in data gathering.

As seen in Figure 7 presented below, the prototype was able to recognize key points
which include 13 body points. The system was able to calculate points distances and angles.
Aside from these, the CSV files of all these feature points values can be downloaded. Once
the video has been processed, it will show the recognition every 10 s in RED label (see
Figure 8 below).
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6. Conclusions and Recommendations

To summarize this study, three (3) important points were considered.

a. Points—This study found significant feature points to recognize proper and improper
sitting postures. This includes nose to left shoulder, shoulder to elbow, elbow to
wrist, and shoulder to mid-hip (thoracolumbar) for both Left and Right models. It
is also noticeable that age and table height are also considered significant factors in
the recognition.

b. Patterns—It has been seen that the distance between the nose and the left shoulder
is present in both the Left and Right models. This is because all the participants are
right-handed, therefore the head motions are moving towards the left side. Also, the
study found the optimal table height of higher than 30 inches across all body frame
categories. Moreover, the upper back shows less true positive rate (TP) for proper
samples in both the Left and Right models. The study found out that even if the
domain experts all agreed that the captured ten (10) second video is proper upon
their careful assessment, during the annotation process and getting the dominant
label, they found out that proper sitting posture for the upper back does not last for
more than five (5) seconds. The upper back point (thoracic) started to either drop or
extend. Lastly, the lower back category shows the lowest accuracy compared to all
other categories (Left: 92.765 and Right: 96.5223). In connection with the upper back,
the lower back also drops or extends during the annotation process.

c. Performance—Overall, the Left and Right camera datasets were compared that show
accuracy of 91.5% and 97.05% and kappa of 0.7 and 0.9 respectively. The left model
shows a lesser accuracy rate because of fewer motions exhibited on the left side.
Since the users are also using other peripherals such as a mouse, there are much
more variations between proper and improper motions on the right side compared
to the left side.

After a successful recognition of proper and improper sitting posture using virtual
markers and a small-scale convolutional neural network, this study would like to recom-
mend for future researchers to explore:

a. Since the convolutional neural network shows significant and fast-paced progress,
the need to test and evaluate other new models is needed.

b. The consideration of more feature points is also needed. For whole body points,
33 key points may not be optimal to capture other complex positions.

c. The consideration of more capturing devices such as the integration of front camera
and left camera.
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d. The study also recommends the inclusion of other attributes such as eyesight, weight,
the use of adjustable tables or chairs, and others.

e. Future studies should also implement multiple-person recognition.
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