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Abstract: IEEE 802.11ad is the practical networking technology widely used as a 60 GHz millimeter-
wave communication method ahead of Beyond 5G and 6G networks. However, compared with the
existing Wi-Fi systems that use 2.4/5 GHz, it is difficult to manage the communication quality due
to the high carrier frequency, e.g., the signal strength suddenly and significantly degrades due to
various factors such as distance and obstacles. For IEEE 802.11ad to be widely adopted, a simple and
inexpensive measurement method is needed for non-specialists, including end users, to build and
manage a stable IEEE 802.11ad network. In addition, easy-to-understand performance indicators
are required. This paper then proposes a multilayer measurement methodology with open-source
tools, i.e., iperf3, ping, and iw, for IEEE 802.11ad communication. Our methodology selects indicators
necessary to evaluate IEEE 802.11ad communication performance. The tools iperf3 and ping mainly
evaluate the IP layer indicators such as throughput, jitter, packet retries, packet loss, and RTT. On the
other hand, the RSSI and Tx bitrates of the iw results are used to investigate the wireless link quality.
Through empirical results with our measurement methodology in real environments, we show that
in addition to traditional indicators such as through-put, the Tx bitrate output by iw can be a new
indicator for understanding the IEEE 802.11ad communication quality.

Keywords: IEEE 802.11ad; mmWave; measurement; multilayer; Tx bitrate; Beyond 5G; 6G

1. Introduction

In the Beyond 5G and 6G eras, advanced high-speed communication is essential
for the emergence of new attractive services such as AI-empowered applications, virtual
reality, and tactile Internet [1–4]. Millimeter-wave (mmWave) communication, which can
provide multi-Gbps data rates, will make it possible to offload the user’s computation
and storage resources to the edge/cloud computing server to enable such new services [5].
However, since mmWave communication has a higher directional link due to its high
carrier frequency, i.e., 30 GHz to 300 GHz, the communication quality is sensitive to various
factors. In addition, the communication range is relatively short.

IEEE 802.11ad [6], the main product of mmWave communication at 60 GHz, will
spread rapidly and be applied in many Wi-Fi networks after this. As its communication
performance significantly differs from the existing Wi-Fi products due to the high carrier
frequency, it is essential to properly understand the communication performance for the
building of a network and during operation to obtain the most powerful performance. So
far, many papers have analyzed the communication performance of IEEE 802.11ad. They
provide valuable insights through mathematical and empirical analysis. The mathematical
analysis reveals the logical characteristics, and the empirical study contributes to the
network design based on an actual environment.

We need a measurement method to understand the communication performance for
building and managing an effective IEEE 802.11ad network, i.e., in the operational phase.
In particular, a simple and inexpensive measurement is necessary because non-specialists,
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such as end-users, will also set up their IEEE 802.11ad networks that do not require a license.
However, although many papers provide the details of communication performance by
using various measurement methods, so far we still do not yet have enough of a discussion
on a measurement method for non-specialists, as far as we know.

Thus, this paper proposes a multilayer measurement methodology with open-source
tools for evaluating IEEE 802.11ad communication quality. Although users usually pay
attention to throughput, which directly affects the communication performance of applica-
tions, there is a requirement to check communication quality through multilayer indicators
to build and manage a stable IEEE 802.11ad network.

The measurement methodology consists of the following three contents:

(1) Simple and inexpensive measurement tools;
(2) Easy-to-understand measurement indicators;
(3) Concrete measurement methods.

Although many papers introduce excellent measurement methods to investigate
the details of target communication quality, almost all of them need special skills and
expensive equipment. Since the IEEE 802.11ad network does not require a license, non-
specialists must also build and manage their network. However, it may be difficult for
non-specialists to execute the same measurement, such as those from existing studies,
and understand communication performance for the measurement results. We then select
open-source measurement tools and propose the indicators. In addition, we show the
concrete measurement methods. Therefore, this paper contributes to providing a reference
model of measurement methodology for non-specialists by presenting a measurement
methodology for building and managing their wireless networks using high frequencies,
which will be the mainstream in the future.

Note that this paper takes over the basic idea of our previous study [7]. The major
updates are as follows: First, we add extensive surveys on measurement related to mmWave
and IEEE 802.11ad. Second, we reinvestigate the existing open-source measurement tools
and indicators, and we also use iw as a more appropriate wireless network performance
measurement tool instead of iwconfig. In addition, the scope of applications for these tools
is clarified. The paper then explains our proposal in detail and provides more empirical
results and discussions.

The rest of the paper is organized as follows: Section 2 introduces related work on
mmWave and IEEE 802.11ad communication evaluation. Section 3 proposes our measure-
ment methodology with open-source measurement tools. Section 4 presents evaluations
for each indicator, and Section 5 concludes with our remarks.

2. Related Work

This section extensively presents evaluation studies of IEEE 802.11ad communication
performance to discuss a simple and inexpensive IEEE 802.11ad measurement for non-
specialists. We also describe the differences between this study and others throughout
this survey.

Many existing works provide analytical/simulation models and empirical results on
mmWave and IEEE 802.11ad communication performance. Reference [8] proposed an
analytical/simulation model to analyze the dependencies of the contention period and
the number of sectors on the MAC delay and throughput. In [9], 6G wireless channel
measurements, characteristics, and models were comprehensively reviewed for their trends
and challenges. Simulation models have also been developed to evaluate the protocol per-
formance with parameters in different scenarios [10–14]. References [10,11] implemented
the IEEE 802.11ad model for ns-3 [15], which is known as one of the dominant network sim-
ulators. References [12–14] proposed an integrated simulation framework to evaluate the
communication performance of UAVs in the mmWave environment. Simulators are very
helpful and cost-effective for investigating communication and protocol performances in
various scenarios. Such analytical/simulation models are indispensable for understanding
the general characteristics at the R&D stage.
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Empirical studies based on real environments are also crucial in the diffusion and
operational phases. The subsequent studies provided practical evaluations for various
characteristic aspects. References [16–18] focus on the characteristics of a wireless link, and
reference [19] attempts to understand the interference characteristics and effectiveness of
interference mitigation techniques using 802.11ad commercial off-the-shelf (COTS) devices.
However, since special equipment such as a vector network analyzer and a software
radio system is required, a high level of expertise and trained experience are necessary.
References [20–24] target the communication performance, i.e., throughput, with iperf3 [25].

Furthermore, the measurement studies in [26–31] investigated communication perfor-
mance in various fields. In [26], the authors studied the actual impact of consumer-grade
hardware in real environments. References [27–29] investigated the influence of attenua-
tion factors, such as interference, materials, and non-LOS, on communication performance
in a vehicular environment. In [30], the authors measured drone communication using
mmWaves in a real environment. Reference [31] also measured communication perfor-
mance and throughput, RSSI, and power consumption for IEEE 802.11ad COTS devices
in an indoor environment. In addition, these studies employed a throughput indicator
with iperf3. References [32–34] developed original measurement tools that could lead to a
sophisticated measurement tool. In [35], RSSI was measured by a smartphone application.

As described above, many studies investigated the communication performance of Wi-Fi,
including IEEE 802.11ad, in different ways, with different tools, and in various environments.
On the other hand, reference [36] concluded, “Generally none of the examined metrics on its
own, can be used for accurately determining the quality of a link. However, each metric can
reveal interesting behavioral aspects of the link. A potential technique that would intelligently
combine some of the metrics could yield an accurate representation of the link quality”. Hence,
organizing easy-to-understand metrics contributes to stable IEEE 802.11ad networks.

Table 1 summarizes the measurement tools and the performance indicators for the
existing IEEE 802.11ad measurement studies described above. Almost all studies employ iperf3
to measure throughput because the indicator is directly related to an application. In addition,
the metric is easy to understand, even for non-specialists. However, since the throughput
shows the communication performance for end-to-end, it does not necessarily represent the
wireless link quality, or is signal strength alone sufficient. Thus, we need more information
that is easy to understand, even for non-specialists. Since the above existing studies have their
original objective, they employ different indicators using different measurement tools. Thus,
this paper discusses a simple and inexpensive methodology that non-specialists can use. For
this purpose, we discuss which open-source tools and metrics can be used to measure the
communication quality of IEEE802.11ad.

Table 1. Measurement tools and performance indicators for existing work on IEEE 802.11ad.

References [20] [21] [22] [23] [24] [26] [27–29] [30] [31]

Target Protocol TCP TCP TCP
UDP TCP TCP TCP UDP TCP TCP

UDP

Measurement
tools

iperf3 Thrpt Thrpt ThrptRTT Thrpt
RTT

Thrpt Thrpt Thrpt Thrpt

OpenWRT

MCS
SQI
SNR
etc.

Sys Info. Voltage
PwC

Wi-Fi driver RSSI
MCS
SQI
etc.

RSSI

Other sys. PwC

Notes: Abbreviations: Thrpt—throughput; MCS—modulation and coding scheme; SQI—signal quality indicator;
SNR—signal-to-noise ratio; PwC—power consumption.
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3. Multilayer Measurement Methodology

This section proposes a multilayer measurement methodology with open-source tools
for evaluating IEEE 802.11ad communication quality. As described above, building and
managing a stable IEEE 802.11ad network requires a measurement method without the
need for expensive equipment and high expertise. Section 3.1 first describes the objective
and requirements for our measurement methodology, and then Section 3.2 proposes our
measurement methodology considering open-source tools and performance indicators.

3.1. Objectives and Requirements

While IEEE 802.11ad provides multi-Gbps communication performance, the commu-
nication quality is vulnerable due to its high frequency of 60 GHz compared to the existing
2.4/5 GHz Wi-Fi networks. To spread unlicensed IEEE802.11ad networks, measurement
indicators that are relatively easy to understand, even for non-specialists, are necessary.
Thus, this paper proposes a measurement methodology that considers indicators on multi-
layers. In addition, the following two requirements should be satisfied to avoid the need
for expensive equipment and advanced expertise:

(1) Utilizing open-source measurement tools;
(2) Employing easy-to-understand indicators.

As described in Section 2, the existing studies are based on the various viewpoints
of their research. However, a low-cost and easy-to-understand measurement concept is
necessary to build and manage a stable IEEE 802.11ad network because non-specialists, such
as end-users, may be involved in network management. Therefore, as for requirement (1),
open-source tools are strong candidates for low costs. Additionally, as for requirement (2),
easy-to-understand indicators at multiple layers, such as throughput, delay, and signal strength,
are desired to understand communication performance in an IEEE 802.11ad network.

3.2. Measurement Tools, Performance Indicators, and Measurement Methodology

This section describes a measurement methodology that considers open-source mea-
surement tools and performance indicators. First, Section 3.2.1 presents the performance
indicators of open-source measurement tools. Section 3.2.2 proposes a measurement
methodology with them.

3.2.1. Performance Indicators of Open-Source Measurement Tools

Our methodology employs the open-source tools iperf3, ping, and iw for obtaining
performance indicators of multilayers. Here, we explain the characteristics of each mea-
surement tool. The iperf3 is one of the representative measurement tools, and its main
feature is its active measurement of the throughput by TCP and UDP traffic at the transport
layer. The throughput indicator is often used as a primary communication performance
indicator because it directly affects applications. In addition, the measurement log provides
various metrics for TCP and UDP communications. In a TCP measurement log, while a
sender (iperf3 client) provides throughput and retries results, a receiver (iperf3 server) does
throughput. On the other hand, in UDP measurement, a sender provides throughput, and
a receiver does throughput, jitter, and lost datagrams. Table 2 summarizes the performance
indicators employed in this paper.

The ping is a well-known network command to verify connectivity at the IP layer. It
provides RTT and packet loss information as a network performance indicator.

The iw command is a configuration utility for wireless devices. It runs on Linux and
provides various functions, such as device configuration, scanning, and station statistics
for RSSI, Tx/Rx bytes, Tx/Rx packets, Tx/Rx bitrates, and Tx failed. We employ RSSI and
Tx bitrate to help to evaluate wireless link quality. RSSI is commonly used to show wireless
conditions and is familiar to non-specialists. On the other hand, the Tx bitrate indicates
the logical transmission speed for the modulation and coding scheme currently used at
the Phy/MAC layers. Although it is not a familiar indicator, it is also easier to understand
wireless conditions due to using concrete transmission speed values. Note that we employ
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only the Tx bitrate because our preliminary experiments showed that the Rx bitrate was
the same value as the Tx bitrate.

Table 2. Measurement tool and performance indicators employed for multilayer measurement.

Measurement
Tools

Indicators
Sender Receiver

TCP UDP TCP UDP

iperf3
Throughput 4 4 4 4

Retry 4

Jitter 4

ping RTT 4 4 4 4

Packet loss 4 4 4 4

iw
RSSI 4 4 4 4

Tx bitrate 4 4 4 4

3.2.2. Measurement Methodology

These measurement tools can evaluate network performance from different perspec-
tives, as shown in Table 2. In our concepts, the measurements are divided into two layers:
the IP network layer and the wireless network layer. The IP network layer measurement
evaluates end-to-end communication performance, and the wireless network layer mea-
surement evaluates wireless link performance. Since the communication performance
of the IP network layer includes that of the wireless network layer, it is unnecessary to
investigate all indicators in every evaluation.

The measurement methodology is as follows: The communication performance of
the IP network layer is evaluated with iperf3 and ping first. Throughput is the most
straightforward indicator that judges whether the communication performance meets the
application’s requirements. If the result is satisfactory, no further consideration would be
necessary. Alternatively, if a user is concerned about the communication performance for
real-time applications such as network games, then packet loss, RTT, and jitter should also
be examined.

If the communication performance of the IP network layer is unsatisfactory, further
investigation of the wireless condition is required. The measurement tool iw provides RSSI
and Tx bitrates as the wireless link information. RSSI is a well-known indicator of a wireless
link. However, it is insufficient for properly understanding the wireless condition because
the RSSI value cannot detect interference. Hence, the communication performance may be
poor even if the RSSI value is high. Additionally, it would be difficult for non-specialists to
understand such a condition.

Our methodology introduces Tx bitrates. Tx bitrates would be a helpful indicator
for understanding a wireless link performance because the logical transmission speed
is directly related to the throughput. Since IEEE 802.11ad employs a rate adaptation
mechanism in that the bitrate is adjusted according to the wireless network conditions,
checking the bitrate is effective for judging whether the wireless network environment
is proper.

Figure 1 illustrates concrete measurement methods. Our methodology introduces
measurement nodes, i.e., sender and receiver, and an operational PC. For instance, in
Figure 1a, the AP is a measurement node for STA1. However, it is difficult for users to
run the tools on separate nodes simultaneously. Of course, users can operate both nodes
via either of the nodes, but the operation may cause unnecessary traffic within the target
communication flow. In addition, it is also difficult to operate two devices via the IEEE
802.11ad link if either device is not within the same communication range or if both are at a
distance where the communication is unstable. Therefore, our methodology employs an
operation PC to manage the measurement nodes.

As shown in Figure 1, the operation PC communicates with the measurement nodes
via ssh over an ad hoc mode and wired line. That is, in addition to an IEEE 802.11ad
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interface, the STA has a Wi-Fi interface, i.e., 2.4/5 GHz, to establish the ad hoc connection.
It means that as the operation PC controls the nodes via an ad hoc connection, unnecessary
traffic does not generate in the IEEE 802.11ad communication.
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In Figure 1a, since we use a configurable AP running hostapd [37], the AP can execute
the measurement tools. However, a commercial AP generally cannot run them. So, as
illustrated in Figure 1b, we introduce another measurement node connected to an AP via a
wired line. Only the wireless node, i.e., STA, can obtain the iw result in the measurement.

4. Experimental Evaluation

This section demonstrates the measurement experiments conducted with our method-
ology and discusses the empirical results. First, Section 4.1 explains the experimental
scenarios and settings; then, Sections 4.2–4.4 analyze the characteristics of the commu-
nication performance indicators for the three target scenarios. Section 4.5 discusses the
measurement methodology.

4.1. Experimental Scenarios and Settings

This section evaluates communication performance by IEEE 802.11ad in the following
three scenarios:

Scenario 1 (S1): antenna direction;
Scenario 2 (S2): distance between STA and AP;
Scenario 3 (S3): multiple STAs.
S1 evaluates the impact of antenna direction on communication performance due to a

highly directional link from IEEE 802.11ad, and S2 examines the relationship between dis-
tance and communication performance. Finally, S3 evaluates communication performance
affected by two STAs at different distances. Note that the experiments are based on the
topology of (a) in Figure 1.

As for the experimental settings, the stations (STAs) and access point (AP) use an Intel®

NUC Kit NUC7i7DNHE [38] attached with an SX-PCIAD [39], which implements IEEE
802.11ad in the 60 GHz band. They use Ubuntu 16.04.6 LTS, and the hostapd software [37]
is run to work as an AP.

The three tools execute simultaneously during measurement. The tool iperf3 measures
TCP and UDP communication performance, while for TCP measurement, the server and
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client programs run on the AP and STA sides; in UDP measurement, the STA sends data to
the AP at 2 Gb/s. In addition, ping obtains the indicators, including the RTT and packet
loss, every 100 msec, and then iw works to get the wireless information every 500 msec.
Note that a one-minute measurement is executed ten times.

4.2. Scenario 1: Antenna Direction

This scenario evaluates the performance impact by antenna direction. Section 4.2.1
describes the experimental environment, and Sections 4.2.2 and 4.2.3 explain the communi-
cation performance of IP and wireless network layers, respectively.

4.2.1. Experimental Environment of Scenario 1

S1 examines the impact of the antenna direction on communication performance. As
shown in Figure 2, the distance between the STA and AP is 50 cm, and the four sides of the
antenna are investigated. Side A/A means that Side A of the STA’s antenna faces Side A of
the AP’s antenna. The traffic flow is from the STA to the AP.
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4.2.2. Results of IP Network Layer in Scenario 1

Figure 3 shows the throughput results of the TCP and UDP communications on the
AP side. Both graphs have almost the same performance trend, except for the A/D and
B/B combinations. In addition, we can see that the UDP result is slightly superior to the
TCP result because UDP has no traffic control like TCP. The results show that even at close
range, the direction of the antenna may have some impact.
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We next examine retry and jitter as the other indicators of iperf3. The results demon-
strated no retry for TCP communication. Figure 4 shows the jitter results of UDP communi-
cation on the AP side, and we can see that the jitter is relatively stable. Hence, the iperf3
results provide the necessary information to verify that the communication requirements
of the application are met. If an application requires real-time, we also examine the results
of the ping tool.
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The ping provides RTT and packet loss between a sender and a receiver. In the mea-
surement, the results had no packet loss. That is, we can see that the network did not
have problems such as congestion and link quality degradation. In Figure 5, the RTT
of A/D is higher than the others during TCP communication. In addition, during UDP
communication, the RTTs of A/D, B/B, and D/D on the STA side have a somewhat
significant variance compared with the other combinations. However, the results are con-
sidered to show adequate communication performance in IEEE 802.11ad communication by
actual equipment.

4.2.3. Results of Wireless Network Layer in Scenario 1

If the communication performances of the IP network layer have some degradation,
the communication performance of the wireless network layer should be examined to check
the causes of the degradation. Here, we investigate the results of the wireless network layer
when the communication performance is considered to be adequate. Understanding the
reference characteristics is helpful for later discussions and comparisons.

Since three measurement tools are simultaneously run to collect the logs in our method-
ology, we can assess the communication performance from the iw results for the wireless
network layer as needed. The methodology focuses on values of RSSI and Tx bitrates in
the information that the iw provides. Although RSSI is a familiar indicator for showing
wireless conditions, it is difficult to estimate the communication quality from the RSSI value.
Furthermore, even if the RSSI value is high, it cannot detect performance degradation due
to radio interference and other factors. Thus, to supplement it, our methodology employs
Tx bitrates that show the logical transmission speed by the rate adaptation algorithm
implemented in IEEE 802.11 series products as an additional indicator. For instance, the
IEEE 802.11ad interface that we used supports eight bitrates: 27.5, 385.0, 770.0, 962.5, 1155.0,
1540.0, 1925.0, and 2310.0 Mb/s.

Figure 6 shows the RSSI results. From the graphs, we can see that the RSSI fluctuates to
some extent, but estimating the actual communication quality, such as throughput, packet
loss, RTT, and jitter, is difficult from these values. On the other hand, Table 3 shows the
percentage of each Tx bitrate observed by the iw every 500 ms. Note that the values in bold
in the table indicate the mode of the Tx bitrate at each distance. Since the Tx bitrate changes
quickly in intervals shorter than 500 ms, collecting actual Tx bitrates for all transmissions is
impossible. However, since the table shows that a Tx bitrate of 2310 Mb/s is statistically
used in more than 95% of the transmissions, we can assess that the wireless link is relatively
stable. In addition, there were no transmission failures during the measurement. On the
contrary, if many low Tx bitrates are used, the communication quality is assessed to be
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degraded. Hence, RSSI can check primary wireless conditions, and Tx bitrate helps confirm
the occurrence of communication quality degradation.
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4.3. Scenario 2: Distance between STA and AP

The communicable distance is essential information in a wireless network because fluc-
tuating RSSIs or interruptions occur as the communication distance increases.
Section 4.3.1 explains a measurement environment for evaluating communicable distance.
Then, Sections 4.3.2 and 4.3.3 examine the communication performances of the two
network layers.

4.3.1. Experimental Environment of Scenario 2

Figure 7 illustrates the measurement environment for evaluating the communicable
distance. In the measurement, the distance between STA and AP is taken every 10 m up to
60 m and every 5 m after 60 m. The operation PC connects to the AP via a wired line and to
the STA via an ad hoc connection.
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Table 3. Tx bitrates on sender side (Scenario 1).

Tx Bitrates On TCP Sender Side

Mb/s A/A A/B A/C A/D B/B C/C D/D

27.5 0 0 0 0 0 0 0
385.0 0 0.08 0.42 0.42 0.17 0 0
770.0 0 0 0 0.33 0.25 0 0
962.5 0.42 0.33 0.25 1.17 0.50 0 0.50

1155.0 0 0 0.25 1.58 0.83 0 0
1540.0 0.75 0 0.50 1.92 1.83 0 0
1925.0 2.75 2.92 7.08 8.50 7.08 4.42 2.75
2310.0 96.08 96.67 91.50 86.08 89.33 95.58 96.75

Tx Bitrates on UDP Sender Side

Mb/s A/A A/B A/C A/D B/B C/C D/D

27.5 0 0.17 0.08 0.08 0.08 0 0.25
385.0 0 0 0 0 0 0 0
770.0 0 0 0 0 0 0 0
962.5 0 0 0 0 0 0 0

1155.0 0 0 0 0 0 0 0
1540.0 0 0 0 0 0 0 0
1925.0 0 0 0 0 0 0 0
2310.0 100 99.83 99.92 99.92 99.92 100 99.75

4.3.2. Results of IP Network Layer in Scenario 2

First, we look into the communication performance obtained by the iperf3. Figure 8
shows the throughput of TCP and UDP communications on the AP side. From the graphs,
we can see that the increase in distance significantly impacts communication performance.
In the measurement, the communication at 40 m experienced a degradation of almost 40%,
and the degradation trend is not linear for the distance. In addition, there is practically no
communication at 90 m. Therefore, compared with the reference data acquired in the stable
environment, it can be seen that the communication quality begins to deteriorate at 10 m.

Table 4 shows the average number of retransmitted TCP packets and connection
failures for ten measurements. The retransmission of the TCP packets increased after
65 m. In addition, we can see that it is unsuitable for the communication environment
because of its connection failure after 95 m. From the results, since the retransmission of
the TCP packets leads to significant TCP communication degradation, a distance where
retransmission does not occur is desirable.

Table 4. The average number of retransmitted TCP packets and connection failures (Scenario 2).

Dist. (m) 10 20 30 40 50 60 65 70 75 80 85 90 95 100

Retry 0 0 0 0 0 0 0.2 4.4 0.2 0.3 0 0.1 67.9 17
Failure 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.4

Next, we examine the performance indicators of UDP communication. Figure 9 shows
the jitter result of UDP communication on the AP side. Note that the results of 95 m and
100 m are omitted because they cannot be appropriately evaluated due to some connection
failures. The left graph shows that the jitter values start to vary at 40 m. Furthermore, in
the right figure with the y-axis scale spanning from 0 to 0.4 ms, the jitter and the variance
increase as the distance increases. From the results, we can see that even if an application
requirement meets the throughput, the jitter requirement may not be met.

Let us look at the communication performance for the ping. Figures 10 and 11 show
the RTT and packet loss rates of TCP and UDP communication on both sides, respectively.
Packet loss was observed after 60 m, and RTT increased after 60 m.
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4.3.3. Results of Wireless Network Layer in Scenario 2

We now examine the results of the wireless network layer. Figure 12 shows the RSSI
of TCP and UDP communications on both sides. Compared with the RSSI results of
Scenario 1 (see Figure 6), the RSSI at 10 m is already significantly degraded, i.e., approxi-
mately 10 dBm. After that, there is a relatively small difference in the RSSIs, but RSSI values
suddenly dropped at 30 m. In addition, by analyzing the log file in detail, we found that
the log file records two types of errors. One error is that the iw result included inaccurate
values of 0 in RSSI. The other is that all information about the wireless interface, including
Tx bitrates, was not logged. Since this type of erroneous information is output when the
wireless connection is unstable, it would be helpful as one of the decision indicators.

Table 5 summarizes the occurrence of invalid and missing values. The table indicates
the average number of RSSI values of 0 and no information. The invalid RSSI began to
emerge at 30 m. On the other hand, no information began to occur at 65 m. The results
show that assessing the trend between throughput and RSSI is difficult.

Table 6 shows the percentage of each Tx bitrate observed by the iw on the STA. Note
that the values in bold in the table indicate the mode of the Tx bitrate at each distance.
For instance, the mode of Tx bitrate at 20 m is 1925.0 Mb/s, and the Tx bitrate for the
mode degrades as the distance increases. Even if the RSSI is not significantly reduced,
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the throughput will also be reduced as the Tx bitrate degrades. Therefore, the Tx bitrate
is a more appropriate indicator of wireless link quality than RSSI, and it is an easy-to-
understand metric for non-specialists.
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Table 5. Invalid RSSI values observed with the iw tool (Scenario 2).

Distance (m) 10 20 30 40 50 60 65 70 75 80 85 90 95 100

TCP
sender

Invalid 0 0 0 1.4 0 0 1.6 1 0 0 0 0.1 4.9 1.8
Missing 0 0 0 0 0 0 1.2 0 0 0 0 0 34.9 40.5

TCP
receiver

Invalid 0 0 0.2 0.7 0 0 1.8 0 0 0.1 0.2 0.2 5.4 2.8
Missing 0 0 0 0 0 0 1.2 0 0 0 0 0 34.5 40.4

UDP
sender

Invalid 0 0 0 0 0 0.2 14 0.3 0.6 0 0 2.9 6.8 0.1
Missing 0 0 0 0 0 0 3 0 0 0 12 1 589 968

UDP
receiver

Invalid 0 0 0 0 0.2 0.4 7.8 0.4 1 0.1 0 7.9 4.1 0.8
Missing 0 0 0 0 0 0 1.1 0 0 0 1.3 0.6 57.4 96.5
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Table 6. Tx bitrates on sender side (Scenario 2).

Tx Bitrates on TCP Sender Side

Mb/s 10 m 20 m 30 m 40 m 50 m 60 m 65 m

N/A 0 0 0 0 0 0 1.00
27.5 0 0 0.08 0.33 0.08 0.08 2.50

385.0 0 0 0.16 0.33 1.83 0.33 1.41
770.0 0 0 0.83 0.91 12.91 5.41 5.50
962.5 0 1.00 3.58 3.41 47.50 8.50 9.66

1155.0 0 1.83 14.41 93.91 34.58 85.50 71.16
1540.0 0 19.16 73.50 1.08 2.83 0.16 8.75
1925.0 4.08 70.58 7.41 0 0.25 0 0
2310.0 95.91 7.41 0 0 0 0 0

Mb/s 70 m 75 m 80 m 85 m 90 m 95 m 100 m

N/A 0 0 0 0 0 29.08 33.75
27.5 10.33 4.25 6.00 0.16 2.50 63.08 60.50

385.0 19.83 18.58 30.41 7.00 11.58 7.25 5.66
770.0 43.00 75.75 62.58 87.16 36.66 0.58 0.08
962.5 26.83 1.41 0.91 5.66 47.08 0 0

1155.0 0 0 0.08 0 2.16 0 0
1540.0 0 0 0 0 0 0 0
1925.0 0 0 0 0 0 0 0
2310.0 0 0 0 0 0 0 0

Tx Bitrates on UDP Sender Side

Mb/s 10 m 20 m 30 m 40 m 50 m 60 m 65 m

N/A 0 0 0 0 0 0 0.25
27.5 0 0 0.08 0.16 0 1.00 1.91

385.0 0 0 0.33 0.33 0.83 4.50 4.33
770.0 0 0 1.50 0.91 10.33 8.91 9.66
962.5 0 0.75 1.58 1.91 40.91 15.58 15.75

1155.0 0.16 0.33 16.50 96.66 46.91 70.00 65.16
1540.0 0.50 18.25 79.16 0 1.00 0 2.91
1925.0 7.83 75.16 0.83 0 0 0 0
2310.0 91.50 5.50 0 0 0 0 0

Mb/s 70 m 75 m 80 m 85 m 90 m 95 m 100 m

N/A 0 0 0 1.00 0.08 49.08 80.66
27.5 6.66 4.00 2.41 0.66 1.25 50.33 18.83

385.0 29.83 72.33 51.25 10.00 13.75 0.58 0.50
770.0 59.83 23.50 45.91 82.00 71.08 0 0
962.5 3.66 0.16 0.33 6.08 13.83 0 0

1155.0 0 0 0.08 0.25 0 0 0
1540.0 0 0 0 0 0 0 0
1925.0 0 0 0 0 0 0 0
2310.0 0 0 0 0 0 0 0

4.4. Scenario 3: Multiple STAs

As primary investigations, the above two scenarios evaluated the communication
quality between one STA and one AP. However, multiple STAs exist in an actual envi-
ronment. Therefore, this section explains how to assess the scenario, and it examines the
impact of communication quality by multiple STAs. As an example, we employ the two
STAs located at different distances. The scenario will give more interesting insights than
a scenario for two STAs at the same distances. Section 4.4.1 explains the measurement
environment, and Sections 4.4.2 and 4.4.3 examine the impact of communication quality on
the IP and wireless network layers, respectively.
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4.4.1. Experimental Environment of Scenario 3

Figure 13 illustrates a measurement environment for evaluating the impact of com-
munication quality by multiple STAs. The two STAs are located at different distances. The
distance between AP and STA1 is fixed at 10 m, and between AP and STA2 it is set to 10, 30,
50, and 70 m. That is, we have the following four measurements:

Measurement 1 (M1): STA1 at 10 m and STA2 at 10 m;
Measurement 2 (M2): STA1 at 10 m and STA2 at 30 m;
Measurement 3 (M3): STA1 at 10 m and STA2 at 50 m;
Measurement 4 (M4): STA1 at 10 m and STA2 at 70 m.
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As in the previous experiments, the operation PC is connected to the AP and the two
STAs via a wired line and ad hoc connections.

4.4.2. Results of IP Network Layer in Scenario 3

Figure 14 shows the throughputs of TCP and UDP communications. The x-axis
label indicates each STA for the four measurements. “M[1–4]” indicates the measurement
number. The first distance is STA1, and the second is STA2. That is, M1_10m, M2_30m,
M3_50m, and M4_70m are for STA2. In TCP communication, two STAs have almost the
same throughput trend, even if the distance of the STA2 increases. On the other hand, there
is no consistent trend for UDP communication. Therefore, in TCP communication, an STA
with poor communication affects another STA with stable communication.

Table 7 shows the retransmitted TCP packets and the connection failures in the TCP
communication. Compared to the results of Section 4.3.2, the retransmissions of the TCP
packets occur at relatively close distances. The occurrence can lead to a decrease in the
throughput. On the other hand, no connection failures occur in the measurements.

Figure 15 shows the jitter results for UDP communication. While the left graph shows
that the jitter outliers of STA2 grow as the distance increases, there is no characteristic trend
in the distribution in the right figure.

Figure 16 shows the ping results of STA1, STA2, and the AP. Each STA sends ICMP
packets to the AP, whereas the AP sends ICMP packets to each STA, i.e., the AP executes
two ping commands for the two STAs. Compared to the throughputs in Figure 14, the RTTs
increase as the throughputs decrease. There seems to be a correlation. On the other hand,
for UDP communication, the RTT is relatively stable, except for the STA2 of 70 m. Note
that there are no lost packets in the ping results.

Table 7. The average number of retransmitted TCP packets and connection failures (Scenario 3).

Measurement 1 Measurement 2 Measurement 3 Measurement 4

Distance
(m)

STA1
10 m

STA2
10 m

STA1
10 m

STA2
30 m

STA1
10 m

STA2
50 m

STA1
10 m

STA2
70 m

Retry 7.1 8.6 6 5.3 9.6 7.6 24.4 18.9
Failure 0 0 0 0 0 0 0 0
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4.4.3. Results of Wireless Network Layer in Scenario 3

Figure 17 shows the RSSI of two STAs and an AP. The graphs show the same trend for
both TCP and UDP communications, and as described above, it is difficult to adequately
detect degradation in communication quality. Therefore, although the RSSI is sensitive to
environmental changes such as obstacles, it is not sensitive to an increase in traffic, such as
an increase in STAs.

Table 8 shows the invalid RSSI values in the iw results. There were no invalid values in
the experiments, but there were missing values on the STA1 side. The occurrence increases
as the distance from STA2 increases.
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Table 9 indicates the percentage of the Tx bitrates used at both STAs. Note that the
values in bold in the table indicate the mode of the Tx bitrate at each distance. While
the Tx bitrate value of STA2 decreases as the distance of STA2 increases, the Tx bitrate of
2310.0 Mb/s is used above 90% on STA1. This result indicates that using a lower bitrate
affects the throughput of other STAs because the wireless medium is a shared medium.

4.5. Discussions

We showed the benefits and importance of multilayer measurements using open-
source tools from the empirical results of the above three scenarios. Let us summarize the
results for the three measurement scenarios.

In Scenario 1, we evaluated communication performance by the impact of antenna
direction. The results showed no significant differences in communication quality for the
impact of antenna direction at a close range, but its performance would depend on the
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hardware used. In addition, the methodology indicated that if real-time performance is
required, it is necessary to check not only throughput, but also jitter and RTT.
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Table 8. Invalid RSSI values observed with the iw tool (Scenario 3).

TCP Communication UDP Communication

STA1 STA2 AP
(STA1)

AP
(STA2) STA1 STA2 AP

(STA1)
AP

(STA2)

M1
STA2 = 10 m

Invalid 0 0 0 0 0 0 0 0
Missing 12 1 12 0 2 0 0 0

M2
STA2 = 30 m

Invalid 0 0 0 0 0 0 0 0
Missing 5 2 2 9 22 0 0 0

M3 STA2 = 50 m
Invalid 0 0 0 0 0 0 0 0
Missing 22 1 2 41 67 6 3 2

M4
STA2 = 70 m

Invalid 0 0 0 0 0 0 0 0
Missing 45 15 3 87 166 128 2 62
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Table 9. Tx bitrates detected at STA1 and STA2 (Scenario 3).

TCP Communications

Mb/s STA1
10 m

STA2
10 m

STA1
10 m

STA2
30 m

STA1
10 m

STA2
50 m

STA1
10 m

STA2
70 m

N/A 0 0 0 0 0 0 0 0
27.5 1.00 0.16 0.41 1.83 1.83 5.58 3.75 13.83

385.0 0 0 0 0.08 0 1.00 0 3.50
770.0 0.16 0 0 0.83 0.08 0.58 0.08 25.66
962.5 0.08 0 0 0.50 0.16 0.91 0.08 54.83

1155.0 0.08 0 0 0.83 0.08 5.25 0 2.16
1540.0 4.16 1.16 0 7.41 0.33 69.66 0.08 0
1925.0 1.83 21.00 1.16 25.00 5.25 16.83 1.83 0
2310.0 92.66 77.66 98.41 63.50 92.25 0.16 94.16 0

UDP Communications

Mb/s STA1
10 m

STA2
10 m

STA1
10 m

STA2
30 m

STA1
10 m

STA2
50 m

STA1
10 m

STA2
70 m

N/A 0 0 0 0 0 0 0 0
27.5 0.08 0 0.16 0 0.08 0.50 1.25 10.66

385.0 0 0 0 0.16 0 0.16 0 5.25
770.0 0 0 0 0 0 0.50 0 45.16
962.5 0 0 0.25 0.33 0 1.41 0 38.58

1155.0 0.16 0.25 0.16 1.33 0 15.91 0 0.33
1540.0 0.50 1.50 0.50 19.16 0.91 81.50 0.66 0
1925.0 1.50 3.50 0 70.33 7.41 0 2.33 0
2310.0 97.75 94.75 98.91 8.66 91.58 0 95.75 0

In the results of the wireless network layer, assessing the impact of RSSI variations on
the communication quality was difficult, even if AP and STA were at a short distance. On
the other hand, we showed that Tx bitrate helps confirm the occurrence of communication
quality degradation as a supplemental indicator. Thus, the measurement of Scenario 1 is
essential for understanding the quality of communication as a reference value to evaluate
the communication performance in Scenarios 2 and 3.

Scenario 2 examined the effect of communication distance as an essential evaluation for
building a network. It was found that the throughput degrades significantly with increasing
distance, even within a short distance of a few tens of meters. It may be reassuring if the
throughput required by the application is achieved, but the throughput may already be
degraded due to various factors. Consequently, the reference values obtained in Scenario 1
are helpful for the assessment. In addition, if retry or communication failure appears, a
significant degradation of communication quality is likely to cause or have caused this.

The features of the wireless network layer in Scenario 2 are two types of errors.
One error is that the iw result included inaccurate values of 0 in RSSI. The other is that
all information about the wireless interface, including Tx bitrates, was not logged. For
instance, if the errors appear, we can understand that the communication performance
significantly degrades. In addition, checking the Tx bitrate used in the wireless layer is easy
to understand. On the other hand, it is difficult to judge the degradation of communication
quality from only RSSI.

Scenario 3 evaluated the communication quality in a multiterminal environment. The
results are only an example, but we found that in TCP communications, an STA with a poor
communication link affects the other STAs with a good communication link. On the other
hand, in UDP communication, there was no advantage due to the distance to the AP, and
the STA that was far from the AP sometimes had better communication quality. However,
it is difficult to determine how much the communication quality is actually degraded from
the results of the IP network layer. In addition, in the wireless network layer, it is difficult
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to determine the degradation only from RSSI. Thus, by checking the Tx bitrate, it is possible
to assess the degree of degradation from the mode of Tx bitrate.

4.6. Future Work

This paper has shown that it is possible to evaluate the impact of IEEE802.11ad on
communication quality using the tools and indicators. Since IEEE802.11ad will be widely
used in addition to existing wireless LANs, developing an inexpensive evaluation software
with open-source tools would be desirable.

However, we need to overcome the following challenging issues to achieve it. First of
all, our premise is that non-specialists, such as end-users, must be able to use it easily.

X Integration of measurement tools: Although we can freely use them, obtaining and
maintaining them may be difficult and troublesome for non-specialists. These tools
must be integrated and auto-updated in a small product such as Raspberry Pi.

X Simple User Interface: Configuring the settings should be simple when executing the
measurement. An easy-to-understand display and explanation are required.

X Procedure guide and explanation of results: The functions to explain what steps to
take and the results of those steps in an easy-to-understand manner are required.

X Recording location information: Measuring the distance from the AP is tedious, so
a system that can automatically measure and record the distance is required. For
example, information from distance measurement applications could be used.

X Effective use of measurement logs: The product provides measurement logs in the
same format. By collecting measurement logs from many users, it may be possible
to give an overall forecast for a particular measurement without having to take
measurements at many locations.

5. Conclusions

This paper proposed a multilayer measurement methodology with open-source tools,
i.e., iperf3, ping, and iw, for evaluating IEEE 802.11ad communication. IEEE 802.11ad is one
of the most promising wireless communications in the beyond 5G and 6G era. However,
compared with existing Wi-Fi networks, various factors easily affect communication quality
due to the high carrier frequency. It is necessary to measure various metrics of communi-
cation qualities to build an optimal network, and it is desirable to establish a simple and
inexpensive measurement method for non-specialists, such as end-users, to use easily.

To this end, this paper employed three open-source tools: iperf3, ping, and iw. Iperf3
and ping mainly evaluate the IP layer indicators of throughput, jitter, packet retries, packet
loss, and RTT. These indicators are considered relatively familiar to non-specialists because
they are relevant to the communication quality of an application. However, they do not
necessarily represent the quality of the wireless link, so indicators are also needed to
understand the characteristics of the wireless link.

On the other hand, the RSSI and Tx bitrates of the iw results were used to investigate
the quality of the wireless link. Although RSSI is a familiar metric for end-users, it is
difficult to fully assess communication quality from only this metric. Thus, this paper
proposed the use of Tx-bitrate as a supplemental indicator. Since the Tx-bitrate indicator
shows the percentage of bitrate values used, end-users can intuitively understand the
wireless link quality. Furthermore, two types of errors may be used as other supplemental
indicators. The appearance of the errors is helpful for indicating that the wireless link
quality is starting to deteriorate or has already deteriorated.

This paper also presented three specific measurement methods and measurement
results. We consider that these measurements can provide a measurement method needed
by users. The next step of this study is to develop integrated applications with them.
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