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Abstract: Localization and tracking in multi-player sports present significant challenges, particularly
in wide and crowded scenes where severe occlusions can occur. Traditional solutions relying on a
single camera are limited in their ability to accurately identify players and may result in ambiguous
detection. To overcome these challenges, we proposed fusing information from multiple cameras po-
sitioned around the field to improve positioning accuracy and eliminate occlusion effects. Specifically,
we focused on soccer, a popular and representative multi-player sport, and developed a multi-view
recording system based on a 1 + N strategy. This system enabled us to construct a new benchmark
dataset and continuously collect data from several sports fields. The dataset includes 17 sets of
densely annotated multi-view videos, each lasting 2 min, as well as 1100+ min multi-view videos.
It encompasses a wide range of game types and nearly all scenarios that could arise during real
game tracking. Finally, we conducted a thorough assessment of four multi-view multi-object tracking
(MVMOT) methods and gained valuable insights into the tracking process in actual games.

Keywords: multi-view;tracking; soccer; system; benchmark;

1. Introduction

In recent years, there has been a surge of interest in sports analysis. This analysis
enables a range of applications, such as gathering data for coaching purposes [1] and
improving the quality of sports broadcasts [2–4]. While most studies are focused on on-ball
behavior, there is relatively little research on off-ball movement, which accounts for more
than 95% of a player’s playing time and plays a key role in game understanding [5–7].
Player tracking is the fundamental task of all off-ball research.

Recent advancements in video technology and the availability of large-scale annotated
single-view pedestrian datasets [8–12] have significantly improved the accuracy and effi-
ciency of deep-learning-based pedestrian trackers. Many modern algorithms [13–16] can
learn transferable features across datasets, resulting in inspiring performance. As a result,
single-view camera-based player tracking systems have become increasingly popular. How-
ever, difficulties in multi-object tracking occur when they are far away from the observing
sensor or if their appearances are quite similar. In wide but highly cluttered sports scenarios
especially [17], such situations make monocular detection and tracking insufficient.

Player tracking using multi-camera systems [18–27] is a promising solution for data
acquisition, which aims to calculate the position of every target at any time, and to assemble
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the complete trajectories from multi-view video streams. Using joint visual information
from multiple synchronized cameras [28–30] will provide reliable estimates in crowded
scenes.

Although multi-view multi-object tracking has flourished in the past few years, there
is currently no large-scale and high-quality public dataset that focuses on tracking players
on the field. The most commonly used MVMOT standard datasets [31–35] all target
pedestrians in limited scenes. The most similar dataset LH0 [17], recorded junior players
running by scripts on a 9 m × 26 m square, with annotations that are limited, making
it difficult to train and test algorithms. Additionally, the cameras are positioned only
slightly above the average human height, meaning that throughout the sequence, occluded
situations are very difficult to deal with. The lack of relevant datasets makes it impossible
to verify whether the existing methods can solve the problems in sports scenarios.

To accelerate the sports analysis research, we focused our attention on soccer, the most
challenging and the most popular multi-player sport. More specifically, we installed the
multi-view video recording system at several soccer fields for continuous data collection.
The system was designed under the 1 + N strategy, which consists of 5∼7 static super-high-
resolution cameras with overlapping Fields of View (FOV). Then we created a large-scale
player tracking dataset capturing unscripted games in various soccer scenarios on these
fields. The dataset comprises three parts: 17 groups of time-synchronized 2 min long videos
from multiple cameras with 20 fps tracking annotation for each player, precise joint camera
calibrations that include intrinsic and extrinsic parameters, and a total of 1100+ min of
multi-view videos.

Our experiments have demonstrated that trackers designed using publicly available
datasets perform poorly in challenging sports environments due to differences in view-
points and domain gaps.

We anticipate that the release of this multi-view multi-player tracking dataset will
inspire further research in this field. Additionally, the dataset holds substantial value for
related tasks such as multi-view human detection and tracking multiple individuals with a
single camera.

To summarize, our workflow proceeded as shown in this Figure 1, and our contribu-
tions are as follows:

1. We designed and installed 1 + N based multi-view video recording systems in four
soccer fields for continuous data collection.

2. We designed a novel 1 + N MVMOT annotation strategy based on the systems.
3. We constructed the largest densely annotated multi-view multi-player tracking dataset

and provided a total of 1100+ min of multi-view videos to encourage research in
automatic tracking of players in soccer scenarios.

4. We evaluated four state-of-the-art tracking models to understand the challenges and
characteristics of our dataset.

Figure 1. Our workflow proceeded as shown in this figure.



Appl. Sci. 2023, 13, 5361 3 of 18

2. Related Works
2.1. Datasets

The most commonly used multi-view tracking datasets are listed in Table 1.

Table 1. Public Multi-view Datasets.

Dataset Resolution Cameras FPS IDs Annotations Size/Duration Scenarios Field Size

KITTI [12] 1392 × 480 4 10 10 389 ‡ 7 min campus roads
Laboratory [21] 320 × 240 4 25 6 264 (1 fps) 4.4 min laboratory † 5.5 × 5.5 m2

Terrace [21] 320 × 240 4 25 9 1023 (1 fps) 3.5 min terrace † 10 × 10 m2

Passageway [21] 320 × 240 4 25 13 226 (1 fps) 20 min square † 10 × 6 m2

Campus [32] 1920 × 1080 4 30 25 240 (1 fps) 16 min gargen †

CMC * [31] 1920 × 1080 4 4 15 11,719 (4 fps) 1494 frames laboratory † 7.67 × 3.41 m2

SALSA [33] 1024 × 768 4 15 18 1200 (0.3 fps) 60 min lobby †

EPFL-RLC [35] 1920 × 1080 3 60 - 6132 ‡ 8000 frames lobby

PETS-2009 [36] 768 × 576
720 × 576 7 7 19 4650 (7 fps) 795 frames campus roads †

WildTrack [34] 1920 × 1080 7 60 313 66,626 (2 fps) 60 min square 36 × 12 m2

APIDIS [37] 1600 × 1200 7 22 12 86,870 (25 fps) 1 min Basketball Court † 28 × 15 m2

LH0 * [17] 1920 × 1080 8 25 26 26,000 (2 fps) 1.3 min soccer field † 38 × 7 m2

Ours
3840 × 2160
4736 × 1400
5950 × 1152

6
5
5
7

20 316 727,179 (20 fps)
+137,846 (1 fps) 1100 min soccer field

40 × 20 m2

40 × 20 m2

68.3 × 48.5 m2

101.8 × 68.5 m2

† The collection of the dataset is performed by the script. ‡ The dataset only provides annotations for detection.
* The dataset is not open to all researchers.

DukeMTMC [38] was not included in Table 1, because the dataset’s camera field of
views do not strictly overlap, with only two cameras having a slight overlap.

The Federal Institute of Technology in Lausanne [21] pioneered the creation of the
multi-view datasets for multi-person detection and tracking, including Laboratory Terrace
and Passageway. Campus [32] incorporated four sequences into its dataset, including
Garden, Auditorium, and Parking Lot. CMC [31] focuses on walking people, with five
different sequences featuring varying levels of person density and occlusion. SALSA [33]
was gathered during a social event involving 18 individuals in a limited indoor environment.
The participants wore sociometric badges equipped with microphones, accelerometers,
Bluetooth, and infrared sensors, and the event was split into two sections of roughly equal
length. However, the annotation provided by these six datasets has a low frame rate,
making it hard to train and evaluate algorithms. Furthermore, the range of activities and
the number of characters are limited, and the activity trajectories are pre-arranged, which
is not representative of the actual motion of players on the sports field.

EPFL-RLC [35] is yet another multi-view dataset, captured using only three cameras.
It offers a balanced mix of positive and negative multi-camera annotations, albeit within a
limited field of view. The primary objective of the dataset is to determine if a particular
location is occupied by a pedestrian or not. Originally, only a tiny portion of the 8000 total
frames, specifically the last 300, were labeled for testing purposes.

The PETS-2009 [36] challenge aims to detect three types of crowd surveillance charac-
teristics/events in a public outdoor scene. However, due to the broad scope of the challenge,
only a portion of the dataset is devoted to people tracking. Additionally, the presence of a
slope in the scene creates a calibration issue that can significantly degrade homography
mapping, resulting in substantial inaccuracies in the projection of 3D points between views.

WildTrack [34] is the most widely used dataset with an overlapping camera setup.
Similar to sports scenes, the multi-view camera focuses on a 36 × 12 m2 rectangular area.
The dataset annotates pure passengers without any scripted movements, with a larger
number of annotated people and annotations compared to previous datasets. However,
the dataset only includes one scene from a single time period, which limits its richness
of data.
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APIDIS [37] and LH0 [17] are among the few datasets that focus on sports scenes,
and are of particular interest to us. These datasets were created by recording short clips of
basketball and soccer training, respectively, using seven and eight static cameras. While the
duration of these clips is very short, and they are not formal game videos, they still provide
valuable information for the application of multi-view algorithms in sports scenes.

Due to the requirement for total automation, long-term stability, and precise player
tracking, the models developed using the aforementioned datasets are insufficient. It is
crucial to create a specialized dataset tailored to these specific needs.

2.2. Methods

Since 2000, there has been a significant body of literature on multi-view multi-object
tracking (MVMOT), as documented in the citation [39]. In this paper, we provide a compre-
hensive summary of works related to various aspects of MVMOT.

2.2.1. Object Detection

Object detection is a critical component of MVMOT, with recent methods relying on
deep learning models based on Convolutional Neural Networks (CNNs) [40–44]. Building
on previous approaches such as YOLO [42], Kong et al. [45] introduced the Foveabox
model, which employs deep learning to generate a robust description for candidate parts.
Such anchor-free methods have gained popularity for object detection due to their ability
to detect objects in images without the need for the two-stage R-CNN framework used by
most other methods [46,47].

2.2.2. Feature Extraction

The goal of feature extraction is to generate a robust and discriminative descrip-
tion. In recent years, deep learning has been the basis for much of the research on object
description, with numerous studies conducted [48–54].

Many approaches use local information to provide a robust, part-based description
model for objects. The local part can offer additional information that helps describe the
object more accurately. There are two categories of part generation, based on whether
additional information is used: pose-based part generation [51,54] and unsupervised part
generation [49,53]. In pose-based part generation, the person’s part is localized based on
the key points generated by existing pose estimation methods. In contrast, unsupervised
part generation is an attention learning method that generates the local part using unsuper-
vised part learning. Yao et al. [53] proposed an unsupervised part generation method for
description based on the consistency of activation of neurons in the Convolutional Neural
Network.

Global feature learning is a widely used method for representation learning, in addi-
tion to part-based methods. Some techniques [48,52] fine-tune networks on multi-target
tracking data to produce robust visual descriptions. For instance, [52] applies the VGG
architecture, converting its fully connected and softmax layers into convolution layers.
Other research [55,56] seeks to fuse visual features with pose information to create dis-
tinctive features. Simultaneously, a challenge called Multi-Person PoseTrack [56] was
proposed to combine pose estimation and tracking. For instance, Iqbal et al. [56] designed a
spatio-temporal graph to solve pose estimation and tracking simultaneously. Additionally,
some research (e.g., [55,57]) incorporates optical flow information into feature descriptions,
with [55] utilizing the Siamese network to fuse pixel values and optical flow to obtain
spatio-temporal features.

2.2.3. Data Association

Data association can be categorized as either intra-camera or cross-camera data associations.
Most existing methods address intra-camera data association through either tracklet-

to-target or target-to-target matching. In [20,58], the LSTM network was used to obtain
the historical tracklet features, while Bae et al. [18] proposed using the tracklet confidence
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to measure the performance of each tracklet. Some other methods [19,24,26] apply the
Kuhn–Munkres algorithm [59] to optimize the assignment problem. Zhou et al. [27]
proposed a tensor-based high-order graph matching algorithm to flexibly integrate high-
order information.

Various cross-camera data association methods have been proposed to merge single-
camera trajectories across different cameras for cross-camera tracking. These methods
include assignment methods based on trajectory features such as hierarchical cluster-
ing [22,32,60–63], greedy matching [28], multiple hypothesis tracking [25,64], K-shortest
path [65], and camera topology [66]. Bredereck et al. [28] proposed a Greedy Matching
Association (GMA) method that matches local tracklets obtained from different cameras
one by one. Jiang et al. [66] took camera topology into consideration to reduce the influence
of inconsistent appearance and spatio-temporal constraints in different cameras. In con-
trast to these tracklet-to-tracklet methods, other methods [67,68] solve the cross-camera
tracklet matching problem using tracklet-to-target assignment. For instance, He et al. [68]
focused on tracklet-to-target assignment and proposed the Restricted Non-negative Ma-
trix Factorization algorithm to compute the optimal assignment solution. Graph-based
approaches [68–72] based on the two-step framework have gradually been adopted by
many researchers to solve the data associations across different frames and cameras. Gmcp-
tracker [71] utilized Generalized Minimum Clique Graphs to solve the optimization prob-
lem of our data association method. Hypergraphs [69] introduced a combined maximum
a posteriori (MAP) formulation and a flow graph, which jointly model multi-camera re-
construction as well as global temporal data association. Chen [72] developed a global
approach by integrating these two steps via an equalized global graph model.

Recently, some outstanding works used a deep learning network to replace the graph-
model to complete the data association. Reference [73] proposed a self-supervised learning
framework to solve the MvMHAT problems. In References [74,75], the authors built
novel networks and achieved end-to-end real-time online tracking. Finally, in [76–78],
the researchers meticulously trained their networks to identify crowds and utilized self-
supervision to effectively harness temporal consistency across frames. This allowed them
to merge information from multiple perspectives while preserving the accurate location
of individuals.

3. The System and The Datasets
3.1. Hardware and Data Acquisition

In order to continuously collect data, compared with the temporary equipment of
the latest datasets [12,17,34], we built the multi-view video recording systems on four
completely different fields according to different game types. This system can not only
ensure that we collect high-quality and stable data, but also help reduce the difficulty of
data post-processing.

1 + N based multi-view video recording system There is a significant difference
between our dataset and other multi-view datasets. Our approach adopts the 1+ N strategy,
which consists of 1 main camera capable of covering the entire field, complemented by
N auxiliary cameras placed around the stadium for additional coverage. Providing this
main camera has the following advantages. (i). Although most existing algorithms are
currently evaluated based on a single-view metric, many fail to clearly describe how this
metric is calculated or from which view the evaluation should be performed. To address
this issue, we proposed a standardized evaluation scale based on the main camera view,
enabling direct comparison of different algorithms and reducing ambiguity between them.
(ii). Algorithm designers can easily assess potential failure points and identify problems
that require solutions through visualization using the main camera view. (iii). A main
camera view that captures the entire field not only makes it easier to visualize data but also
meets the needs of data analysis. This allows coaches and players to intuitively understand
the data without frequently switching views.
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To effectively reduce the impact of occlusion on the vision algorithm, it is advisable
to set up the camera at a high place. For larger fields, it becomes necessary to mount
the camera higher. As a result, instead of positioning the cameras just above the average
player height [17,34], we strived to make use of the existing facilities in the field and set
up cameras from different angles as high as possible. Moreover, according to the 1 + N
strategy, we ensured that players standing in any area of the field are covered by at least
two cameras, providing clearer shots from multiple camera views. The camera layout
is highly overlapping as shown in Figures A1–A4. The main cameras are identified as
camera-1 in the figure.

Data acquisition. As shown in Table 1, the dataset we constructed is not only the
largest known multi-view dataset with respect to video and annotation data, but it is
also the first publicly available multi-view dataset recorded for soccer player tracking
during real games. We selected 17 groups of video clips with dense annotations from real
competitions, which included varying lighting conditions and weather, and covered almost
all types of situations that occur in real games. A total of 316 players and referees from 34
different teams were involved in this dataset. The details of the dataset are described in
Table 2 Furthermore, we have made available to all researchers a comprehensive multi-view
video dataset of several games, totaling over 1100+ min.

Synchronization. The time synchronization difference between videos from differ-
ent cameras in the same group was obtained with 50 microseconds (1/ f ps) accuracy,
the accuracy of which can be observed in Figure 2.

Figure 2. Synchronization of multi-cameras.

Based on this system, we have generated a public benchmark with high frame rate
annotations, focusing on different challenging characteristics that occur during soccer
scenarios. Through our data acquisition system and carefully labeled dataset, we hoped
topromote the development of algorithms in this field and ultimately achieve the purpose
of automatically localizing and tracking players.

3.2. Calibration of the Cameras

Since multi-view tracking relies on integrating information using unified world coor-
dinates, it is crucial to have a reliable calibration method that provides stable and accurate
data. We used surveillance-level zoomable cameras, but we were unable to locate the
calibration parameters for our specific models in the equipment manual or on the official
website. As a result, we utilized the pinhole camera model, as described in [79], to jointly
calibrate the cameras for each field.

For a specific field, given a set of existing landmark pointsW = {wi}, wi = [xi, yi, zi =
0] ∈ R3, we manually annotated their corresponding pixel coordinates M = {Mc},
Mc = {mc

i }, mc
i = [xc

i , yc
i ] ∈ R2 on the image plane of each camera, more precisely,

C = {ci} denotes the number of cameras in this field.
Let P = {Pc} = {{Ic, Ec}} denote the calibration parameters of each camera, where

I and E denote the intrinsic and the extrinsic parameters, respectively. To this end, we
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solved the projection relationship between W and M = {Mc} jointly through bundle
adjustment [80] to achieve P, as we explain in Equation (2).

mc
i = Pc ·wi (1)

P∗ = arg min
P,W ,M

|C|
∑
c=1

|W|
∑
i=1

αc
i ‖mc

i − Pc ·wi‖ (2)

‖·‖ denotes the Euclidean distance in the image plane, and αc
i is the indicator variable

equal to 0 when the landmark point wi is not available in view c, and equal to 1 when
the landmark point wi is visible. In other words, we have formulated this problem as a
non-linear least squares approach. In this approach, the error is represented as the squared
L2 norm of the difference between the projection points of the real world 3D points w on
the image plane and their corresponding annotated pixel coordinates mc.

To improve the versatility and robustness of the calibration method, we exclusively
utilized the original landmarks on the field to calibrate the camera. These landmarks
comprised the penalty point, the kick-off point, the intersection of the marking line, the in-
tersection of the boundary line between the deep and shallow turf and the marking line,
etc.

For the 11-a-side set, camera-1 used four pinhole cameras to stitch the image plane,
and therefore we calibrated each part of the image plane separately. Similarly, we used a
similar method to calibrate the 8-a-side camera-1, which was stitched from two pinhole
cameras.

Take the 11-a-side field as an example, Figure 3 illustrates the calibration precision
of this method. (1) The field areas actually observed by each camera are sampled at an
interval of 0.2 m to obtain Dc = {dc

i }, dc
i = [xd

i , yd
i , zd

i = 0] ∈ R3. Then the projection results

of Dc on each image plane, Jc = {jc
i }, jc

i = [xj
i , yj

i ] ∈ R2 are calculated using Equation (1).
We draw Jc on the image plane in the form of small red dots, as shown in Figure 3. (2) Based
on landmark points Wc and manually annotated pixel coordinates Mc, we re-projected Mc

to the world plane to obtain Kc = {kc
i }, kc

i = [xk
i , yk

i , yk
i = 0] ∈ R3 using Equation (1). Wc

and Kc were drawn on the world plane using big red dots and small blue dots, respectively.

Table 2. Video Statistics.

Game Type Game ID Cameras Players Length/Fps Resolution
(Main)

Resolution
(Auxiliary) Field Size Split Type

5-A-Side Figure A1 1 6 16 120 s/20 3840 × 2160 3840 × 2160 40 × 20 m2 train
2 6 12 120 s/20 3840 × 2160 3840 × 2160 40 × 20 m2 train
3 6 13 120 s/20 3840 × 2160 3840 × 2160 40 × 20 m2 train
4 6 15 120 s/20 3840 × 2160 3840 × 2160 40 × 20 m2 test

7-A-Side Figure A2 5 5 15 120s/20 3840 × 2160 3840 × 2160 44 × 35 m2 train
6 5 16 120 s/20 3840 × 2160 3840 × 2160 44 × 35 m2 train
7 5 16 120 s/20 3840 × 2160 3840 × 2160 44 × 35 m2 train
8 5 17 120 s/20 3840 × 2160 3840 × 2160 44 × 35 m2 test

8-A-Side Figure A3 9 5 19 120 s/20 5120 × 1400 3840 × 2160 68.3 × 48.5 m2 train
10 5 20 120 s/20 5120 × 1400 3840 × 2160 68.3 × 48.5 m2 train
11 5 12 120 s/20 5120 × 1400 3840 × 2160 68.3 × 48.5 m2 train
12 5 12 120 s/20 5120 × 1400 3840 × 2160 68.3 × 48.5 m2 train
13 5 12 120 s/20 5120 × 1400 3840 × 2160 68.3 × 48.5 m2 test

11-A-Side Figure A4 14 7 25 120 s/20 5950 × 1450 4000 × 3000 101.8 × 68.5 m2 train
15 7 25 120 s/20 5950 × 1450 4000 × 3000 101.8 × 68.5 m2 train
16 7 25 120 s/20 5950 × 1450 4000 × 3000 101.8 × 68.5 m2 train
17 7 25 120 s/20 5950 × 1450 4000 × 3000 101.8 × 68.5 m2 test
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Figure 3. Visualization of the camera calibration precision. Details are illustrated in Section 3.2.

3.3. Annotations Process

1 + N MVMOT annotation strategy. Manually labeling a multi-view multi-player
tracking dataset is a time-consuming task.

Traditional labeling methods, as seen in other datasets listed in Table 1, employ an
interval sampling approach for all camera views. This may lead to incomplete trajectory
data during algorithm evaluation. However, labeling all views frame by frame would
require a significant investment of time and resources. Our 1 + N MVMOT annotation
strategy allows us to meet evaluation requirements while also saving on annotation costs.
Annotating on the main camera view frame by frame (20 fps) is sufficient to obtain the
complete trajectory of all players, as it provides full coverage of the field. At this point,
training MVMOT algorithm models to perform tasks such as cross-view ReID matching
and cross-view data association, only requires annotating the down-sampled frames of
auxiliary camera views at 1 fps. Finally, an evaluation is conducted on the main view to
ensure evaluation stability and reduce ambiguity.

More specifically, we firstly used the public annotation tool DarkLabel [81] to annotate
each target frame by frame in the main camera views. Next, the pre-trained detector
performed preliminary player detection on the auxiliary views. After that, we used self-
designed annotation software to load the annotation data of the main camera view and the
detection predictions of the auxiliary views. Finally, we adjusted the detection predictions
of the auxiliary views and matched them to the corresponding identities in the main view. It
is worth noting that the software also loads the calibration parameters of all cameras, which
enables quick positioning and bounding box connections across all camera views. Further
details of the self-designed software are described in Figure 4. Since annotating the multi-
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view multi-player dataset requires annotators to mentally perform spatial transformations,
these calibration parameters can significantly reduce annotation errors.

Figure 4. GUI of our self-designed multi-camera annotation software. The software allows annotators
to quickly assign corresponding identities and adjust the size of detection predictions in auxiliary
cameras by connecting them to bounding boxes in camera-1. (1) The bounding boxes in camera-1
are based on manual annotations, whereas the bounding boxes in other cameras are generated by
the detector. (2) The purple lines serve to demarcate the target area [9]. (3) The blue bounding box
has been adjusted to the correct size and aligned with the identities across multiple views. (4) The
yellow bounding boxes are being adjusted and aligned. (5) The red bounding boxes are waiting
to be adjusted and aligned. (6) The number above the bounding box indicates its identity. (7) The
software utilizes calibration parameters to approximately locate the detection predictions in auxiliary
camera views.

Each player in the dataset was assigned a unique identity, regardless of the number
of times they appear. The objective of multi-view multi-player tracking is to identify
the complete 3D trajectory of a particular player across a camera network. To provide a
rigorous evaluation of the trackers, it was decided that these unique IDs would be used as
the benchmark, which requires greater precision compared to standard tracking tasks.

3.4. Statistics

Annotated Frames and Videos. Our dataset, as shown in Table 1, is not only the
closest to soccer scenarios, but also provides the largest amount of annotations. We have
completed annotations for a total of 40,800 frames of data, with 2040 frames providing
complete annotations from all camera views. For all main camera views, we have completed
727,179 identity annotations, and for all auxiliary camera views, we have completed a total
of 137,846 identity annotations. These 865,025 annotations are an order of magnitude larger
than the next largest dataset [34,37]. Additionally, a significant proportion of the videos are
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unlabeled, and we will publicly release complete multi-view game videos that total over
1100 min. This will be of significant value for unsupervised methods and can serve as a
benchmark for the annotated portion.

Field Size and Resolution. Multi-player sports, especially soccer, have high field size
requirements. Table 2 shows that the size of the fields involved in our dataset ranges from
40 × 20 m2 to 101.8 × 68.5 m2, and the area where the players are active is much larger
than other datasets. To capture sufficient detail, we used zoomable ultra-high-resolution
cameras in all fields.

Track Length and Motion Speed. In Figure 5, we present a detailed analysis of our
dataset and compare it to the WildTrack dataset [34], which is the standard dataset used for
evaluating most state-of-the-art models.

In Figure 5a, we present the distribution of object track lengths, while Figure 5b shows
the distribution of motion speed. Due to WildTrack’s annotation frame rate of only 1
fps, we increased the data amount by interpolation. In WildTrack, the target length is
generally shorter, and the motion speed is slower, mainly due to most pedestrians walking
directly through the square, with only a few people standing still and chatting, making
them relatively easier to track. In contrast, our dataset focuses on players on the field who
move constantly throughout the clip, with more running and sprinting. Consequently, our
dataset provides longer track lengths and faster speeds for the players, requiring tracking
methods that can stably track all players for an extended duration.

Appl. Sci. 2023, 1, 0 10 of 18

unlabeled, and we will publicly release complete multi-view game videos that total over
1100 min. This will be of significant value for unsupervised methods and can serve as a
benchmark for the annotated portion.

Field Size and Resolution. Multi-player sports, especially soccer, have high field size
requirements. Table 2 shows that the size of the fields involved in our dataset ranges from
40 × 20 m2 to 101.8 × 68.5 m2, and the area where the players are active is much larger
than other datasets. To capture sufficient detail, we used zoomable ultra-high-resolution
cameras in all fields.

Track Length and Motion Speed. In Figure 5, we present a detailed analysis of our
dataset and compare it to the WildTrack dataset [34], which is the standard dataset used for
evaluating most state-of-the-art models.

In Figure 5a, we present the distribution of object track lengths, while Figure 5b shows
the distribution of motion speed. Due to WildTrack’s annotation frame rate of only 1
fps, we increased the data amount by interpolation. In WildTrack, the target length is
generally shorter, and the motion speed is slower, mainly due to most pedestrians walking
directly through the square, with only a few people standing still and chatting, making
them relatively easier to track. In contrast, our dataset focuses on players on the field who
move constantly throughout the clip, with more running and sprinting. Consequently, our
dataset provides longer track lengths and faster speeds for the players, requiring tracking
methods that can stably track all players for an extended duration.

(a) (b)

Figure 5. Comparison between our dataset and WildTrack dataset. (a) Track length comparison. (b)
Motion speed comparison.

Data split. Our dataset was designed as an evaluation benchmark, so we divided
it into two subsets—train and test. The training subset consists of 13 videos, while the
testing subset contains 4 videos. This division was performed to ensure that the videos
in each subset are distinct from each other. The trackers were trained using the videos in
the training subset and then tested using the corresponding videos in the testing subset.
For more information on how the subsets were constructed, refer to Column 9 of Table 2.

4. Benchmark
4.1. Evaluation Protocol

WildTrack [34] and other methods [28,61,74] adopted HOTA [82] and clear metrics [83,
84] directly on the world plane. However, these metrics were designed for evaluation on
the image plane. Directly implementing on the world plane will impair the fairness of these
metrics. Since we had accurate camera parameters, we reported all performance on the
main perspective plane for multi-camera tracking models. As described in NPSPT [9], we
used HOTA [82], DetA, MOTA [84], IDF1, and IDSW as the evaluation metrics.

Figure 5. Comparison between our dataset and WildTrack dataset. (a) Track length comparison. (b)
Motion speed comparison.

Data split. Our dataset was designed as an evaluation benchmark, so we divided
it into two subsets—train and test. The training subset consists of 13 videos, while the
testing subset contains 4 videos. This division was performed to ensure that the videos
in each subset are distinct from each other. The trackers were trained using the videos in
the training subset and then tested using the corresponding videos in the testing subset.
For more information on how the subsets were constructed, refer to Column 9 of Table 2.

4. Benchmark
4.1. Evaluation Protocol

WildTrack [34] and other methods [28,61,74] adopted HOTA [82] and clear
metrics [83,84] directly on the world plane. However, these metrics were designed for evalu-
ation on the image plane. Directly implementing on the world plane will impair the fairness
of these metrics. Since we had accurate camera parameters, we reported all performance on
the main perspective plane for multi-camera tracking models. As described in NPSPT [9],
we used HOTA [82], DetA, MOTA [84], IDF1, and IDSW as the evaluation metrics.

4.2. Evaluated Methods

For multiple object tracking, we provided results of the four state-of-the-art methods,
so that we can better observed the challenges in our dataset in these evaluations
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TRACTA [68] (tracking by tracklet-to-target assignment) treats multi-view multi-
object tracking as a cross-camera tracklet matching problem. There are four major modules
in the method: (1) local tracklet construction, (2) tracklet similarity calculation, (3) cross-
camera tracklet connection, and (4) global trajectory construction. The TRACTA system
employs the Restricted Non-negative Matrix Factorization (RNMF) algorithm to determine
the optimal assignment solution that adheres to practical constraints. This enabled TRACTA
to mitigate tracking errors caused by occlusions and missed detections in local tracklets
and generate a comprehensive global trajectory for each target across all cameras.

MvMHAT [73] proposed a self-supervised learning approach to address the MVMOT
challenge. The researchers started by selecting several frames from different views and
using convolutional neural networks (CNNs) to extract the embedding features for each
subject. Next, they introduced a spatial-temporal association network to consider both the
temporal relationships over time and the spatial relationships across views. This generates
a matching matrix which is self-supervised by symmetric similarity and transitive similarity
losses. During the implementation stage, they utilized a novel joint tracking and association
strategy to tackle the problem.

DAN4Ass [74] approached the MVMOT problem for C > 2 views as a constraint opti-
mization challenge and created a novel end-to-end solution. This solution consists of two
components: building the affinity matrix and assigning multi-view multi-cliques. The affin-
ity network calculates the similarity between subjects detected in different views, while
the Deep Assignment Network represents the multi-view constraints as differentiable loss
functions during unsupervised training. DAN integrated four specific constraints into the
model and combined image feature extraction, affinity matrix calculation, and assignment
optimization into one unified framework for joint training.

MVFlow [76] proposed a weakly supervised approach to detect people flow given
only detection supervision. The approach starts by incorporating a detection network that
predicts people flow in a weakly supervised manner. The existing association algorithms
are then modified to generate clear tracks using the predicted flows. This is followed
by transforming two consecutive sets of multi-view frames into human flow using the
proposed multi-view prediction model. The human flow is then utilized to rebuild detection
heatmaps. The flow-based framework benefits from the temporal consistency across video
frames and enforces consistency in scale and motion over various viewpoints.

To ensure the fairness of the experiment, we used the open source code provided by
the authors to train, and used the unified evaluation method mentioned above to evaluate.
After getting the results close enough to the results in the authors’ papers, we used the
same training methods to train and test on each subset of our dataset separately.

5. Results Analysis

Table 3 presents the tracking results of the four candidate trackers on different subsets
of our dataset. The parameters of each method were optimized using the HOTA metric on
the same training data as the corresponding detector. Our results reveal that the dataset
poses a substantial tracking challenge, with lower HOTA metric scores compared to those
observed in previous benchmark tests such as [34].

The reason why TRACTA has the worst tracking performance is because tracklets are
generated within each view, and multi-view fusion is based on a manually set algorithm
that has certain limitations in different scenes. On the other hand, the other three methods
integrate information from multiple perspectives when generating detection. In the data as-
sociation stage, MvMHAT relies on the similarity matrix to establish connections. However,
players on the same team wear jerseys of the same color, making it difficult to distinguish
them by their appearance. On the other hand, the data association methods adopted by
DAN4Ass and MVFlow are more robust. Therefore, the comprehensive performance of
these two methods is better.
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Table 3. Comparison of the candidate methods on our dataset.

GameType Algorithms HOTA ↑ DetA ↑ MOTA ↑ IDF1 ↑ IDSW ↓

5-A-Side TRACTA 57.42 72.77 90.12 70.30 155
MvMHAT 58.87 71.65 91.27 71.97 143
DAN4Ass 60.75 73.38 92.68 74.28 137
MVFlow 62.52 75.95 93.08 74.11 124

7-A-Side TRACTA 70.33 80.89 94.27 80.41 79
MvMHAT 75.91 82.55 95.02 82.50 70
DAN4Ass 77.52 82.29 95.26 83.97 51
MVFlow 76.82 81.89 94.83 82.89 46

8-A-Side TRACTA 67.33 80.26 90.99 77.71 101
MvMHAT 68.80 80.98 91.57 80.75 89
DAN4Ass 70.22 85.75 93.50 81.87 80
MVFlow 72.57 87.31 94.89 83.75 76

11-A-Side TRACTA 60.75 79.59 81.89 62.33 111
MvMHAT 60.62 80.11 80.25 64.35 107
DAN4Ass 63.27 82.86 79.75 63.71 102
MVFlow 64.89 83.77 85.73 69.92 93

↑ indicates that a larger value is desirable; ↓ indicates that a smaller value is desirable.

To our surprise, 5-a-side games are not necessarily the simplest to track, and 11-a-side
games are not necessarily the most challenging. The difficulty of tracking and detection
is not solely determined by the number of players or the size of the image. Other factors,
such as the camera setup, the proportion of the target within the image, and others, also
play a role in influencing tracking performance.

The experiments demonstrate that the existing algorithms are far from perfect. There
is still much work to be explored in this challenging scenario

6. Conclusions

The advancement of multi-view multi-object tracking methods for sports scenes is
hindered by the limited availability of suitable datasets. To address this issue, we have
developed multi-view recording systems and introduced a new dataset with high-quality
and dense annotations. Our approach provides researchers with a rich and diverse set of
data, allowing them to conduct more accurate and detailed analyses of the soccer scenarios.
By leveraging our new dataset and recording systems, researchers can gain deeper insights
into the behaviors and interactions of the players, ultimately leading to more advanced
and impactful research in a range of fields.

Despite significant advances in computer vision and machine learning, our experi-
ments revealed that the accuracy of four leading methods is not optimal, indicating that
tracking in soccer and sports poses significant challenges to the research community. Ad-
dressing these challenges could have a significant impact on various areas, by enabling
more precise and informative insights into player tracking.

Furthermore, the dataset is distinguished by a considerable volume of unlabeled video
clips, in addition to a substantial amount of annotated data. This unique feature of the
dataset makes it highly valuable for unsupervised learning techniques, as it presents the
opportunity to evaluate the performance of such models on both the labeled and unlabeled
portions of the dataset, enabling the potential discovery of new patterns and insights in the
data.

To further automate game analysis, we recognize the limitations and challenges of our
current system, which relies on commercial surveillance cameras. When strong backlighting
occurs, it becomes difficult to obtain clear features of athletes. Additionally, the cameras are
mounted at a high height and cover a large area, which makes it impossible to accurately
recognize the players’ postures and the movements of the football. To address these
limitations, we plan to incorporate more optical sensors such as Lidar and UWB sensors
into our recording system. This will allow us to obtain more comprehensive and in-depth
information about the game. Additionally, we will release more labeled data that captures
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the combination of human and ball movement. This richer and deeper dataset will enable
machine learning algorithms to better understand the complexities of game situations.

As we continue to develop our system, we remain open to feedback from the research
community regarding its effectiveness and limitations. We believe that this feedback will
be crucial in helping us improve the quality of our data and the accuracy of our automated
analysis. Ultimately, our goal is to create a more accurate and reliable system for automated
game analysis that can benefit players, coaches, and researchers.
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Appendix A

Figure A1. Camera layout of 5-a-side. (1) Camera 1 is the main camera. (2) All these six cameras are
installed 3 m away from the restricted area and are 6 m high.

https://www.true-think.com
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Figure A2. Camera layout of 7-a-side. (1) Camera 1 is the main camera, it is installed 5 m away from
the post line and 18 m high. (2) Cameras 2, 3, 4, and 5 are installed 0.5 m away from the corner point
and are 6 m high.

Figure A3. Camera layout of 8-a-side (1) Camera 1 is the main camera, it is installed 1 m away from
the middle-side-line and is 6 m high. (2) Cameras 2, 3, 4, and 5 are installed 1 m away from the corner
point and are 6 m high.
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Figure A4. Camera layout of 11-a-side (1) Camera 1 is the main camera, it is installed 15 m away
from the middle-side-line and is 15 m high. (2) Cameras 2, 3, 6, and 7 are installed 15 m away from the
corner point and are 30 m high. (3) Cameras 4 and 5 are installed 10 m away from the middle-side-line
and are 12 m high.
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