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Abstract: In vitro culture of muscle stem cells on a large scale could bring light to the treatment of
muscle-related diseases. However, the current work related to muscle stem cell culture is still only
performed in specialized biological laboratories that are very much limited by manual experience.
There are still some difficulties to achieve an automated culture of complex morphological cells in
terms of live cell observation and morphological analysis. In this paper, a set of bright-field cell in
situ imaging devices is designed to perform non-contact and invasive imaging of muscle precursor
cells in vitro, and a neural network structured lightweight unsupervised semantic segmentation
algorithm is proposed for the acquired images to achieve online extraction of cell regions of interest
without manual annotation and pre-training. The algorithm first uses a graph-based super-pixel
segmentation to obtain a coarse segmentation, then aggregates the coarse segmentation results with
the help of Laplace operators as a reference to a four-layer convolutional neural network (CNN).
The CNN parameters learn to refine the boundaries of the cells which helps the final segmentation
accuracy and mean intersection—merge ratio reach 88% and 77%, respectively.
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1. Introduction

Muscle is an important motor and metabolic component in the human body, but
there is no viable treatment for muscular degeneration caused by aging and disease, as
well as muscle atrophy induced by long-term spaceflight in a weightless environment [1].
Alternatively, cell replacement therapy may be a breakthrough that injects healthy cells into
the injury to replace dead cells to repair the injured tissue and restore the lost function [2,3].
The premise of the therapy is to obtain a large number of functional cells required for
transplantation. The in vitro expansion technology of adult stem cells has been relatively
mature in biological laboratories [4—6]. Cell culture depends greatly on manual experience,
subject to subjective facts: The quality of cells cultured by different experimenters varies
widely and the same experimenter’s judgement also varies with time. Manual control
alone cannot achieve refined control in mass production. Therefore, the automatic culture
of muscle stem cells in vitro by microscopy and computer technology must be considered
for industrialization.

The most common method for gaining a suitable live cell image is fluorescence imag-
ing which uses markers to label cells and capture the specific fluorescence for imaging.
Guo et al. [7,8] have performed nuclear and cytoplasmic segmentation on the fluorescently
stained images of smear muscle fibers by the threshold segmentation algorithm. How-
ever, fluorescence imaging also has conspicuous shortcomings: the dye is toxic and the
fluorescence has a quenching time for that long-term observation cannot be guaranteed.
Hence it is necessary to resort to a safe and long-lasting imaging method for long-term live
cell monitoring.
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It is critical to judge the cell culture state by computer measurement of cell morpho-
logical parameters like cell fusion length, and diameter after receiving the images. Thus
many open-source cell image processing tools have been developed like CellProfiler [9],
Image J [10], Cytokit [11] and most of them integrate cell segmentation functionality be-
cause the result of image segmentation directly affects the accuracy of measurement. The
segmentation algorithms of these tools typically call packages from algorithm libraries
such as OpenCV and SciPy. The current mainstream cell image segmentation algorithms
can be divided into two major categories: one is based on heuristic image algorithms
such as watershed, region-growing, level-set, etc. [12-15]. Since these algorithms perform
well on regularly shaped circular and elliptical cells as well as nuclei segmentation. Users
often need to continuously adjust parameters for specific images and the segmentation
performance for irregular and overlapping cells may not always meet expectations. The
outstanding semantic segmentation algorithms typically belong to another category: neural
network-based image segmentation algorithms [16], many of which are primarily based on
convolutional neural networks (CNN), such as U-NET [17], FCN [18], QCANet [19], etc.
Because of CNN’s ability to automatically extract image features, these types of algorithms
perform exceptionally well in cell segmentation. Nevertheless, high-performance segmen-
tation algorithms rely on a large number of pixel-level labels that are quite time-consuming
and labor-intensive. The training process of the model counts on GPU resources which
is costly as well. Hence it is still worth trying to perform unsupervised segmentation of
images in order to save the above resources to the greatest extent.

In this study, we address the problem of non-contact, non-invasive imaging of muscle
stem cell in vitro culture and propose an unsupervised semantic segmentation algorithm
to extract the portion of the muscle precursor cell (MPCs) images that need to be measured.
We design a set of bright field imaging equipment for long-lasting cell monitoring in
situ directly through a petri dish for that neither additional marking nor smearing is
required. Furthermore, an unsupervised algorithm is applied to segment the unstained
MPCs images online. The algorithm performs well in unstained cell images in which targets
and backgrounds are highly similar due to the colorless transparency of both cells and
culture medium. The superiorities of the algorithm are as follows:

A new idea using the super-pixel segmentation results aggregated by the Laplacian
operator to guide the neural network learning is provided that effectively locates the edges
of the strip cells.

We adopt the strategy of executing while training, and directly segmenting the target
online on a shallow CNN network thus high-performance hardware resources are not
required. The parameter quantity of the proposed network is only 22.8 K while the number
of the most trendy U-net and FCN-GoogLeNet is 7.76 M and 6 M, respectively.

The algorithm is completely unsupervised and does not require manual annotation,
which effectively saves expensive labor. The work of collecting and labeling thousands of
samples is avoided here as well as the several days to weeks of pre-training that mainly
depends on the scale of the image data.

2. Materials and Methods
2.1. Cell Culture and Image Acquisition

The muscle stem cells (MSCs) used for in vitro proliferation and culture are mainly
muscle-derived cells like muscle satellite cells discovered by Mauro A [20]. After the
muscle satellite cells are activated, their unipolar or bipolar poles will stretch to form
spindle-shaped MPCs which later fuse to form strip myotube [21]. The cells used in the
experiment are obtained from the muscle tissue of the limbs of mice. The MSCs were firstly
cultured in the medium of F10 + 20% FBS + PS for 2-3 days and then were washed three
times with PBS once the cells proliferated to a certain density on the third day. After that,
they were transferred into a differentiation medium and cultured for another 4 days. The
pictures used for segmentation are taken at the end of the fourth day in which both MPCs
and myotubes are existing and the cell confluency is about 40%. The region of MPCs and
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myotubes are both of interest and in this paper, the myotube images are used to refer to the
acquired images.

The device used for filming is a self-designed in situ microscopic imaging system for
cells. As shown in Figure 1, the Petri dishes are simply placed on the culture rack made
of a hollowed-out acrylic plate, and a white LED panel designed as the lighting source is
suspended above the culture rack. A camera fixed on a three-axis motor is arranged under
the culture rack by which the cells in the culture medium are directly filmed through the
transparent culture dish and the three-axis motor drives the camera to find the exact focus
and realize the field of view switching. The camera used here is a Basler-aca2500 equipped
with a 10X optical lens as shown in Table 1.

@ White LED plate

L

l Microscope

Slides of three axis

ansparent petri dish (®90)

N
—

Figure 1. Cell in situ microscopy imaging system.

Table 1. Parameters of imaging system.

e Resolution . Number of . .
Camera Type Magnification (Pixel) Size (cm) Culture Dish Pixel Size (um)
Parameter  Basler-aca 2500 10x 2592 x 1944 W45 x 145 x H30 6 22 x22

2.2. Image Segmentation

The proposed algorithm is a neural network learning method based on superpixel
segmentation. As shown in Figure 2, the main structure of the algorithm can be divided into
two key parts: one is the process of generating a reference image in an automatic way, and
the other part is the learning network. At the outset, a graph-based segmentation is adopted
to obtain appropriate superpixels. Then the Laplacian operator for image enhancement
is employed in the original cell image to assist in merging superpixel regions to obtain a
reference image for the CNN network. The original image is then put into the CNN and
the cross entropy loss between the output and the reference image is calculated and back
propagated for the network to study. The network’s final output is the last epoch’s training
outcome at the same time and the ultimate segmentation of the cell image is the network’s
output blended with the superpixels region.
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Figure 2. Structure of the proposed algorithm.

3. Experiment and Results
3.1. Superpixel

Superpixels refer to irregular pixel blocks with certain visual significance composed of
adjacent pixels with similar texture, color, brightness, and other characteristics [22]. The
superpixel blocks generated in a proper way instead of a large amount of single pixels can
effectively abstract the image information in line with human visual characteristics so that
the volume of the image data will be remarkably compressed in the subsequent processing.

There are two main kinds of superpixel segmentation algorithms. One is based on
graph theory in which images are regarded as a set of weighted undirected graphs. As
well, segmentation is performed by evaluating the adjacent relationship of pixels, such as
Felzenszwalb’s segment algorithm [23], Normolized Cut [24], and Superpixel lattice [25].
The other is based on gradient descent and adopts the basic idea of clustering. The
clusters are iteratively updated by gradient descent on the basis of a coarse clustering,
like Watershed [26], Quick-shift [27], and SLIC [28]. Different superpixel segmentation
algorithms perform differently and the performance of the same algorithm also varies from
natural images to medical images [29]. We compared several superpixel segmentation
algorithms on muscle cell images. The results are shown in Figure 3, the Felzenszwalb’s
graph-based algorithm gives the best cell edge and obtains the highest boundary recall.

(a) (b) () (d)

Figure 3. Results of different superpixel segmentation algorithms on myotube image. (a) Quick-shift;
(b) Watershed; (c) SLIC; (d) Felzenswalb’s.

3.2. Image Enhancement

The grayscale of the cell and background are too close to distinguish cells from the
background simply through gray values due to the similar transparency of cells and the
culture medium. The size 6 of 10 x 10 pieces of the cell and the background from one
grayscale image are cropped independently and the histogram is plotted as shown in
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Figure 4. Although both of them are Gaussian distribution, there are some deviations in
means and variances which shows that the distribution of values inside the cells is relatively
dispersed with richer details while the background part has relatively concentrated values
and lacks rich texture. According to this difference between cells and background, the
image enhancement operation in pre-processing is chosen rationally.
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Figure 4. Histograms of cells and background.

As a second-order differential operator, the Laplacian operator can emphasize regions
of the picture with rapidly changing density, which is often used for boundary detection.
There are more drastic changes inside the cells than the background, which is possible
since the fact that cells are three-dimensional and do not have a uniform liquid surface
as the culture medium. As shown in Figure 5, it is clear that the cellular region has more
“boundaries” relative to the background region after filtering by Laplace operator.

Figure 5. Laplace filtering and its local enlargement for cell image.

In the actual processing, the original map is firstly Gaussian filtered to reduce noise,
followed by the Laplace operator. After taking the absolute value of the Laplace image,
the median filter and binarization are executed so that the cell region and the background
region can be initially distinguished. The results of each step are shown in Figure 6 for the
Gaussian blur, Laplace processing, median filtering, and the final binarized image.

Figure 6. Images of enhancement. (a) Gaussian blur; (b) Laplace process; (¢) Median filter; (d) Bina-

rization.
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3.3. Image Merging

Each superpixel is a collection of neighboring pixels that are related to each other, and
the enhanced image based on the structure of the cellular optical features is non-contiguous.
By traversing the pixel value of the corresponding enhanced binarized image in each
superpixel and assigning the pixel value with the largest number to the superpixel as
a category helps to merge the superpixel image to obtain a new binarized image as the
reference image in the following network, the image fusion equations are as follows:

n=Y_1I binary (d;) 1)
I_label(d;) = {1' fn2 N (k)2 @)

where

d; is the pixel range of the i-th superpixel block,

I_binary is the enhanced binarized image,

N is the number of pixels per superpixel block,

I_label is the new binarized image for reference.

The initial superpixel segmentation image and the obtained fused reference image is
shown in Figure 7a,c, respectively.

@) (b) (©)

Figure 7. Images of superpixel merging. (a) Superpixel image. (b) Enhanced binarized image.

(c) Merged reference image.

3.4. Convolutional Neural Network

The fused reference results are applied to a CNN to further enhance the segmentation
effect. The network adopts an end-to-end network structure as shown in Figure 8, with
a total of 4-layer network structures, and the acquired 3-channel RGB cell images are put
into the neural network, successively going through four layers.

448x448x3 448x448x64 448x448x32 448x448x64 448x448x2

AN

m Convolution+BatchNormalization+RelLU

Figure 8. The architecture of CNN.
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Different from the general CNN model which first trains the model with a large
amount of labeled data and then infers the new input image. The network parameters
trained here by a single image online are used as inference at the same time and there is no
necessary connection between different images. Each image needs to be trained online to
generate its own unique network parameters and the set of network parameters is only
suitable for the current image.

Figure 9 shows the comparison between the reference image and the learning result
after training 20 epochs. Although the learning result of CNN is obtained according to the
reference label, the adjusted result is significantly better than the reference label. The red
boxed areas in Figure 9 shows that the reference image incorrectly segments the background
area as the foreground area of the cells while the CNN segmentation results can distinguish
the foreground cells from the background more finely.

(@ (b) ()
Figure 9. Images of CNN learning. (a) Original image; (b) Reference image (c); Refinement of CNN.

This is because the designed network is mainly composed of convolution with small
kernels (3 x 3and 1 x 1). Convolution is a local operation that can more finely perceive
the difference between pixels when extracting features. Coupled with the process that the
network training and inference are performed with the current image, the network can
fit the mapping relationship between the current image and the reference features better.
The trained network will not be totally over-fitted due to the network’s generalization
capabilities, and even if more epochs are trained, the loss will only converge to a certain
number rather than plummeting to zero. The finer parts of the original image can be
correctly distinguished rather than giving unimproved segmentation results that are exactly
the same as the reference features.

3.5. Results and Analysis

In this part, online semantic segmentation is performed on the images acquired by
the cellular in situ imaging device. The original image size of 2592 x 1944 is acquired and
cropped to 1944 x 1944, which is then resized to 448 x 448 with the purpose of improving
computing efficiency. Since the cells are in the process of differentiation and fusion, there are
relatively large gaps in cell size and density in different culture petri, myotube images with
different fusion orientations and densities are selected for presentation. The segmentation
results are shown in Figure 10. Meanwhile, the intersection ratio and segmentation accuracy
for each step are calculated to prove that the algorithm process is practical and effective
in Table 2. The performances on myotube images of an algorithm which is also using a
single image doing unsupervised semantic segmentation are compared with the proposed
method in Table 3.
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Figure 10. Results of every single step of the proposed algorithm for different myotube images.
(a) Original images. (b) Enhanced images. (c) Superpixel segmented images. (d) Reference images
merged by (b,c). (e) Images of CNN refinement. (f) ground truth.

Pixel accuracy (PA) and mean intersection-merge ratio (mlOU) are used to evaluate
the performance of segmentation. Pixel accuracy indicates the proportion of correctly
segmented pixels to the total pixels and the mean intersection-merge ratio is calculated as
the average of the ratio of the intersection and merge of the two sets of true and predicted
values for each category:

ko
pixel accuracy = kzl:iokp”
Yi=0 j=o Pij
1§ pii

mIOU =
k+1 358 o pji— pii
where

pij is the number of pixels whose true value is i and is predicted to be j,

k + 1 is the total number of categories (including empty categories),

pii is the number of pixels with the same predicted and true values,

pji and p;; denote false positives and false negatives, respectively.

The number of parameters (Param) refers to the total amount of weight parameters of
all layers with parameters in the model, which is used to describe the space complexity of
the model. While counting the parameters’ number, non-linearly varying layers such as
Relu are not included since they do not have parameters to learn.

The segmentation algorithm proposed by Asako Kanezak [30], which is also an unsu-
pervised semantic segmentation algorithm with a single image as input and the network
structure is lightweight as well, has achieved okay results on natural images. However,
as shown in Figure 11 and Table 3, Asako Kanezak’s algorithm is not significantly more
dominant in the segmentation of myotube images. The proposed algorithm with image pre-
processing and the appropriate superpixel segmentation algorithm shows more significant
performance after improving the network training inference mechanism.
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Table 2. Performance of every single step of the proposed algorithm for different myotube images.
No. 1 No. 2 No. 3 No. 4
Enhancement Reference CNN Enhancement Reference CNN Enhancement Reference CNN Enhancement Reference CNN
PA 0.80 0.86 0.89 0.81 0.87 0.90 0.77 0.84 0.88 0.80 0.85 0.88
mIOU 0.65 0.73 0.77 0.68 0.78 0.81 0.63 0.72 0.78 0.66 0.74 0.77
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Table 3. Performance of Asako Kanezak’s and the proposed algorithm.

PA mIOU Param
Asako Kanezak's 0.62 0.35 103.6 k
The proposed 0.89 0.78 228k

Figure 11. Segmentation of Asako Kanezak’s and our algorithm. (a) The original image. (b) Segmentation
of Asako Kanezak’s algorithm (c) Segmentation of the proposed algorithm (d) Ground truth.

4. Discussion

The non-destructive observation and morphological analysis of cells are the key
technologies for the automated culture of muscle cells in vitro. In order to achieve long-term
non-destructive monitoring of the cell culture process, a set of cell in situ observation tools
that perform non-staining and non-smear imaging of muscle cells in culture is developed.
Accurate segmentation of such unstained cell images is crucial for future assessments of
morphological features. While automatic segmentation is greatly hampered by the irregular
shape of muscle precursor cells and the resemblance of unstained cells to the backdrop, the
proposed method utilizes Laplacian to increase the contrast between cells and background
and make use of the coarse segmentation output of superpixels to produce images that
resemble pseudo-labels. The algorithm’s prediction component adopts the strategy of
executing while training. In order to guarantee the unsupervised segmentation impact of
this lightweight network, tiny convolution kernels are utilized in the network to improve
its segmentation effect on the current input image.

The proposed algorithm has relatively low hardware platform requirements and can
be more readily implemented into different embedded platforms in the future precisely
because of the network’s lightness, which also makes it possible to be applied on inte-
grated platform gadgets like automated cell culture systems and high-content screening.
The strategy of executing while training causes it to take a few seconds to determine the
outcome of each input, which restricts its applicability in videos of rapidly moving cells.
Another flaw is that the algorithm only does semantic segmentation at the moment, is
unable to differentiate the contour lines of the connected sections of the cells and only
able to distinguish between the cells and the background. In the future, we will con-
centrate on the optimization of the algorithm’s running speed and make an attempt at
segmenting instances.

5. Conclusions

In this paper, we proposed a novel unsupervised segmentation algorithm based on a
shallow CNN to perform the segmentation of mixed images of myocytes and myotubes
in culture medium backgrounds. The reference image without manual annotation is
generated with the aid of an imaging feature caused by the difference in cellular thickness
and homogeneous culture medium while in-situ imaging. The final segmentation accuracy
and the mIOU are about 88% and 77%, respectively. Meanwhile, the network does not need
to be trained in advance so that the online output of the segmented results can be obtained
directly from the input of a single image, Expensive computational resources are saved
since the algorithm model is quite lightweight.
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