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Abstract: Purpose: To assess the feasibility of a three-dimensional deep convolutional neural network
(3D-CNN) for the general triage of whole-body FDG PET in daily clinical practice. Methods: An
institutional clinical data warehouse working environment was devoted to this PET imaging purpose.
Dedicated request procedures and data processing workflows were specifically developed within
this infrastructure and applied retrospectively to a monocentric dataset as a proof of concept. A
custom-made 3D-CNN was first trained and tested on an “unambiguous” well-balanced data sample,
which included strictly normal and highly pathological scans. For the training phase, 90% of the
data sample was used (learning set: 80%; validation set: 20%, 5-fold cross validation) and the
remaining 10% constituted the test set. Finally, the model was applied to a “real-life” test set which
included any scans taken. Text mining of the PET reports systematically combined with visual
rechecking by an experienced reader served as the standard-of-truth for PET labeling. Results: From
8125 scans, 4963 PETs had processable cross-matched medical reports. For the “unambiguous” dataset
(1084 PETs), the 3D-CNN’s overall results for sensitivity, specificity, positive and negative predictive
values and likelihood ratios were 84%, 98%, 98%, 85%, 42.0 and 0.16, respectively (F1 score of 90%).
When applied to the “real-life” dataset (4963 PETs), the sensitivity, NPV, LR+, LR− and F1 score
substantially decreased (61%, 40%, 2.97, 0.49 and 73%, respectively), whereas the specificity and PPV
remained high (79% and 90%). Conclusion: An AI-based triage of whole-body FDG PET is promising.
Further studies are needed to overcome the challenges presented by the imperfection of real-life
PET data.

Keywords: FDG PET; artificial intelligence; deep learning; convolutional neural network

1. Introduction

Positron emission tomography (PET) has become a key imaging modality for cancer
care worldwide [1]. Over the past decade, improved access for the medical community has
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spurred the extension of its clinical applications. In particular, whole-body PET imaging
with 18F-fluorodeoxyglucose (FDG PET) is now widely used for numerous oncological,
inflammatory and infectious purposes in daily practice [2–6].

Given the growing imbalance between patients flow and the number of trained nuclear
medicine physicians, a high-throughput automated triage of simple scans could reduce
oversight and misdiagnosis in general practice by increasing the physician reading time
devoted to more complex medical imaging cases. Recently, deep learning—a branch of
machine learning using neural networks—has received increased interest for its poten-
tial ability to assist medical imaging practitioners in various segmentation, detection or
classification tasks [7–10]. More specifically, these new image-processing methods use
convolutional networks that have surpassed empirical methods by allowing the extraction
of intrinsic features from images. Recently, several network architectures have emerged,
such as ResNet, which have proven their superior performance of 2D classification tasks.
PET-CT imaging consists of volumetric acquisition, which is why we decided to develop a
3D convolutional algorithm based on ResNet for our study.

However, the validation of these new approaches requires a large amount of imaging
data, which is often limited by access to large structured medical databases in practice [11].
In this proof-of-concept study, an EDS environment was dedicated for the first time to PET
imaging to assess the feasibility of a three-dimensional deep convolutional neural network
(3D-CNN) for the general triage of whole-body FDG PET scans in daily clinical practice:
the CLARITI project.

2. Materials and Methods
2.1. Dataset

In this retrospective monocentric study, all the whole-body FDG PET/CT scans per-
formed on adult patients willing to have their data reused for research between 2015
and 2019 at the Hôpitaux Universitaires Paris Saclay/AP-HP (CHU Bicêtre) were prepro-
cessed. The project was approved by the institutional review board (authorization number
IRB 00011591) of the scientific and ethical committee (CSE EDS n◦18–38, CLARITI). All
scans were performed from vertex to mid-tight on the same PET/CT device (mCT flow,
Siemens Healthineers, Erlangen, Germany) after an intravenous injection of 3.5 MBq per
kg and fulfilled the international procedure guidelines for FDG PET imaging in standard
clinical routine [3]. Image reconstruction was the same for all patients (3D OSEM with
2 iterations and 21 subsets with time-of-flight and point spread function modeling; matrix
size: 400 × 400 voxels; voxel size = 2.036 × 2.036 × 2.027 mm; Gaussian postfiltering of
3 mm FWHM). Only the PET data corrected from the CT-based attenuation correction were
used for this study’s purpose.

2.2. Data Preprocessing and Labeling

The Entrepôt de données de Santé (EDS) stores the medical data of millions of patients
treated at the greater Paris University hospitals—Assistance Publique—Hôpitaux de Paris
(AP-HP). The University hospitals are in full agreement with the European General Data
Protection and Regulation (GPDR) and the French Data Protection Authority (CNIL) for
health data processing (reference method MR-004). The EDS provided centralized virtual
working environments with dedicated computing platforms.

The pseudonymized targeted 3D PET data (DICOM format) [12] were transferred,
together with their corresponding matched report metadata, from the general storage space
to a personalized dedicated working space by using advanced request procedures based on
HiveQL (https://hive.apache.org/ accessed on 22 April 2023)—a query language which
allows Hive to process and analyze structured massive data in the Metastore—and PySpark
(http://spark.apache.org/ accessed on 22 April 2023), a Python application programming
interface for massive structured data processing. In this dedicated working space, the
3D PET data were processed and downsampled by the removal of the body-surrounding
background, the conversion of voxel values from float32 to float16 and matrix size reduction

https://hive.apache.org/
http://spark.apache.org/
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by a 3D kernel of 3 × 3 × 3 mean pooling and then normalized by z-scoring of the SUV
values with standardization of the slice number (n = 549). All the 3D PET data were then
labeled “normal” or “abnormal” through a two-step cross-validation procedure:

• First, an “in-house” automated text mining procedure was developed to automatically
classify the PET scans based on the anonymized written imaging reports.

All the reports were written following a predefined “normal” template. Reports that
did not differ from this template were considered “normal” and the others were set aside
for a deeper report verification.

• Second, the maximum intensity projection of all the PET data was converted into
nine 2D projections (from 0◦ to 180◦ rotation) to be carefully qualitatively reviewed
by an experienced nuclear medicine physician (A.B., who had 5 years of expertise in
PET imaging). For this purpose, any well-grounded nonphysiological uptake was
considered abnormal.

2.3. CNN Architecture, Training and Testing Procedures

The preprocessed 3D PET data were converted into tensors and fed as input, together
with their corresponding binarized “label” predictions as output, to a 3D CNN. The CNN
architecture is illustrated in Figure 1.
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Figure 1. Architecture of the CNN used: five blocks composed of a 3D convolution (3 × 3 × 3),
a 3D batch normalization and a 3D max-pooling (2 × 2 × 2) layer, followed by a fully connected
layer (3 layers, from 12,288 neurons to 2 neurons), with a binary output for prediction.

Briefly, we used a simplified convolutional neural network combining 5 blocks of a
three-dimensional convolutional layer, a batch normalization layer and a 3D max-pooling
layer, followed by a fully connected layer and a final 2-way activation layer (SoftMax func-
tion) for output binary classification purposes [13]. Rectified linear units (ReLUs) were used
as activation functions at all the hidden convolutional layers to add nonlinear complexity.
To verify the ability of the CNN to recognize normal scans, an ideal dataset was created by
selecting all the strictly normal and highly pathological PET data, excluding injection hot
spots, drug-related digestive hypermetabolism, urinary catheters, renal transplants and so-
phisticated surgical anastomoses. This ideal sample of strictly normal/highly pathological
PET data (ratio approximately 50/50, respectively), named the “unambiguous” sample,
was first used to train and test the CNN under optimal conditions. For this purpose, the
“unambiguous” data sample was split into training and test sets (ratio 90/10). Eighty
percent of the training set served to educate the CNN about the binary cross-entropy loss
function for a maximum of 100 epochs, with a batch size of 4 per iteration, using the Adam
optimizer [14] with a learning rate of 1e−3. To prevent overfitting, the training was stopped
once the model loss reached the minimum on the validation set. To check the model’s
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stability, the trained CNN was assessed on the remaining 20% of the training set by using
a stratified 5-fold cross-validation procedure [15] and tested on the test set (10% of the
unambiguous dataset). We ensured that no patients from the training set were included in
the test set.

In the second step, the CNN was trained by starting on the full dataset using a stratified
5-fold cross-validation procedure with the same training parameters, named the “real-life”
data sample; it was then evaluated on the previously defined test set using the best fold.
All the experiments were run inside the EDS dedicated environment on a GPU NVIDIA
P40 (24 Go VRAM) and 48 CPU (188 Go of memory). All the CNN frameworks were built
using the PyTorch backend.

2.4. Performance Assessment

To assess the full classification performance of the CNN, the sensitivity (Sen), speci-
ficity (Spe), positive and negative predictive values (PPV and NPV), Accuracy (Acc) and
likelihood ratios (LR+ and LR−) were calculated from the true-positive, true-negative,
false-positive and false-negative predicted classifications of the test sets. The F1 score, a
surrogate of accuracy, which is the harmonic mean of precision (the positive predictive
value) and recall (sensitivity), was also calculated.

3. Results

A flowchart of the data selection process is provided in Figure 2.
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6050 had available reports and 5247 had processable cross-matched PET reports at the
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time of analysis (803 PETs with blank or incomplete reports dues to import or compati-
bility problems were discarded). After a visual evaluation of the 2D MIP projections of
the overall available PET data, 252 exams were discarded due to poor quality (injected
dose error, incomplete examination or patient movement artifacts that did not allow for
the interpretation of the examination). Of the remaining 4964 PET data (3883 patients),
1084 PET data (986 patients) were included in the “unambiguous” dataset.

3.1. ”Unambiguous” Data Sample

The patients’ characteristics from the “unambiguous” data sample (1084 PETs) are
provided in Table 1.

Table 1. Patients’ characteristics from the “unambiguous” data sample.

Overall Training Set Test Set

n 1084 976 108

Age in years 58.5 ± 14.7 58.5 ± 14.9 58.5 ± 13.5

Weight in kg 72.1 ± 16 72.2 ± 16 71.3 ± 16.3

Activity in MBq 251.7 ± 57 252 ± 57 248.9 ± 57.8

Sex
F 481 (44.4%)

603 (55.6%)
440 (45.1%)
536 (54.9%)

41 (38%)
67 (62%)M

Clinical context
Oncological 940 (86.7%) 847 (86.8%) 93 (86.1%)

Non-Oncological 144 (13.3%) 129 (13.4%) 15 (13.9%)

Label
Normal 520 (48%) 468 (48%) 52 (48.1%)

Abnormal 564 (52%) 508 (52%) 56 (51.9%)

A total of 909 patients (92%) had one PET and 77 patients (8%) had two or more PETs.
The training procedure took 20 h 30 min (with a mean of 4 h 06 min per block) and the loss
curves showed that the CNN learned efficiently (Figure 3).
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Figure 3. Evolution of the loss function on the training set (a) and the validation set (b) as a function
of the number of steps during the cross validation. Each colored curve represents the loss function of
a fold.

The learning process was stopped after 18 epochs. The results of the 5-fold cross
validation are provided in Table 2.
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Table 2. Results of the 5-fold cross validation of the “unambiguous” data sample.

TP TN FP FN NPV (%) PPV (%) Sensibility (%) Specificity (%) Accuracy (%) F1 Score (%) LR+ LR−
fold 1 96 94 0 6 94.0 100 94.1 100 96.9 97.0 >100 0.059

fold 2 85 92 1 17 84.4 98.8 83.3 98.9 90.8 90.4 75.727 0.169

fold 3 91 92 1 11 89.3 98.9 89.2 98.9 93.8 93.8 81.091 0.109

fold 4 89 94 0 12 88.7 100 88.1 100 93.8 93.7 >100 0.119

fold 5 89 92 2 12 88.5 97.8 88.1 97.9 92.8 92.7 41.952 0.122

Mean 90 92.8 0.8 11 89.0 99.1 88.6 99.1 93.6 93.5 66.257 0.116

Variance 16 1.2 0.7 15 0.1 0 0.1 0 0 0.1 450.223 0.002

Std deviation 4.00 1.09 0.84 3.91 3.4 0.9 3.8 0.9 2.2 2.4 21.218 0.039
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Fold 1 provided the best results, with a Sen of 94%, Spe of 100%, PPV and NPV of
100% and 94%, respectively, corresponding to an F1 score of 97%. The pretrained CNN
then analyzed the independent remaining test set (108 PETs) and achieved a Se of 84% and
Spe of 98%, a PPV and NPV of 98% and 85%, respectively, a F1 score of 90% and LR+ and
LR− of 42 and 16%, respectively. The heatmaps derived from the gradient weighted-class
activation map method (Grad-CAM) [16] for one patient are provided in Figure 4.
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Figure 4. The heatmap shows the area of interest used by the algorithm for prediction, which
corresponds well with the visualized right lung hypermetabolic tumor. The red arrows show the
metabolic anomaly of interest. On the right, the continuous color scale represents the weight assigned
to each voxel to make the prediction (dark blue: low weight, to red: maximum weight).

The pretrained CNN then analyzed the remaining database composed of the “ambigu-
ous” PETs (3911 PETs) and achieved a Se of 26% and Spe of 86%, a PPV and NPV of 97.8%
and 5%, respectively, and a F1 score of 0.41.

3.2. “Real-Life” Data Sample

The patients’ characteristics from the “real-life” test set (4964 PETs) are provided
in Table 3.
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Table 3. Patients’ characteristics from the “real-life” data sample.

Overall Training Set Test Set

n 4964 4220 744

Age in years 60.7 ± 14.7 60.5 ± 14.5 62.0 ± 15.5

Weight in kg 70.5 ± 16 70.4 ± 16 71.1 ± 16.4

Activity in MBq 246.5 ± 58 246 ± 58 249.2 ± 58.7

Sex
F 2453 (49.4%) 2111 (50.0%) 342 (46%)

M 2511 (50.6%) 2109 (50.0%) 402 (54%)

Clinical context
Oncological 4370 (88.0%) 3739 (88.6%) 631 (84.8%)

Non-oncological 594 (12.0%) 481 (11.4%) 113 (15.2%)

Label
Normal 1226 (24.7%) 1042 (24.7%) 184 (24.7%)

Abnormal 3738 (75.3%) 3178 (75.3%) 560 (75.3%)

The training procedure took 110 h and 30 min (with a mean of 22 h 06 min per block).
The results of the 5-fold cross validation are provided in Table 4.

Fold 4 provided the best results, with a Sen of 62%, Spe of 77%, PPV and NPV of 89.1%
and 39.8%, respectively, corresponding to an F1 score of 73%. Finally, when this 3D-CNN
was applied to the real-life independent test set (744 PETs), it showed moderate decreases
in Sen (61%), NPV (40%), LR+ (2.97) and LR− (0.49), whereas the Spe and PPV remained
good (79% and 90%, respectively). The F1 score showed an almost 20% decrease (from
90% in the “unambiguous” test set to 73% in the “real-life” test set) and the accuracy was
equivalent (64%–IC95% [62.5–69.3]). There was no statistically significant difference in its
performance based on gender. An illustrative heatmap of a wrong classification is provided
in Figure 5.
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Figure 5. Heatmap of a wrong classification scan from the “real-life” data sample. Here, the heatmaps
of two false-positive examinations do not correspond to the metabolic abnormalities on the PET scan.
Grey scale images show a coronal slice of a normal FDG-PET scan. Continuous color scale images
represents the weight assigned to each voxel to make the prediction (dark blue: low weight, to red:
maximum weight).
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Table 4. Results of the 5-fold cross validation of the “real-life” data sample.

TP TN FP FN NPV (%) PPV (%) Sensibility (%) Specificity (%) Accuracy (%) F1 Score (%) LR+ LR−
fold 1 340 181 27 296 37.9 92.6 53.5 87.0 61.7 67.8 4.1183 0.5348

fold 2 367 161 47 269 37.4 88.6 57.7 77.4 62.6 69.9 2.5537 0.5464

fold 3 422 147 61 214 40.7 87.4 66.4 70.7 67.4 75.4 2.2625 0.4761

fold 4 391 161 48 244 39.8 89.1 61.6 77.0 65.4 72.8 2.6811 0.4988

fold 5 406 139 70 229 37.8 85.3 63.9 66.5 64.6 73.1 1.909 0.5422

Mean 385.2 157.8 50 250.4 38.7 88.6 60.6 75.7 64.3 71.8 2.705 0.52

Variance 1048.7 257.2 265 1062.3 0.0 0.1 0.3 0.6 0.1 0.1 0.713 0.001

Std deviation 32.38 16.04 16.29 32.59 1.4 2.7 5.1 7.8 2.3 3.0 0.844 0.031

Table 5. Results of the “real-life” based trained CNN.

Total TP TN FP FN NPV PPV Sensibility Specificity Accuracy (CI95%) F1 Score LR+ LR−
All test sets 744 403 143 41 403 0.26 0.91 0.50 0.78 0.73 ± 0.032 0.64 2.24 0.64

Unambiguous PET studies 177 99 67 11 99 0.40 0.90 0.50 0.86 0.94 ± 0.036 0.64 3.54 0.58

Ambiguous PET studies 567 304 76 30 304 0.20 0.91 0.50 0.72 0.67 ± 0.039 0.65 1.77 0.70
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For a better understanding of the model, the algorithm’s performance was evaluated
by separating the “unambiguous” from the “ambiguous” PET studies (Table 5). A better
performance was obtained on the “unambiguous” sub-test set with a PPV and NPV of 90%
and 40%, with a slight decline in the NPV (20%) on the “ambiguous” sub-test set.

4. Discussion

To our knowledge, this study is the first attempt to propose a general AI-based whole-
body 3D PET automated triage for general practice purposes, with a comparison of its
performance in ideal conditions versus real-life practice. AI-based medical imaging support
could become a major healthcare issue, especially due to the growing imbalance between
the available dedicated manpower and the daily mass of imaging data [17]. In recent
years, several PET studies have highlighted the promising performance of AI applied to
basic segmentation or classification tasks [18,19]. However, its clinical relevance to patient
workflow remains an open question, especially because of the drawbacks presented by
very limited data samples (mono- or multicenter), very limited application scopes and
strictly nonambiguous data samples.

Taking advantage of an institutional clinical data warehouse, nearly 5000 monocentric
miscellaneous FDG PET data were fully exploited. This proof-of-concept study assessed the
accuracy of a fully 3D-CNN at automatically classifying normal and abnormal whole-body
FDG PETs in standard practice. Our results showed the 3D-CNN had a very impressive
deep-learning capability to classify miscellaneous whole-body FDG PET scans when the
corresponding PET data were voluntary and unequivocal. In this hyperselected context, the
automated classification reached a Sen and Spe of 84% and 98%, respectively, with a PPV
and NPV of 98% and 85% and a LR+ and LR− of 42 and 0.16, respectively. Interestingly,
the model showed high specificity and NPV, emphasizing its capability to accurately
identify “completely normal” from “highly pathological” scans. Our results from the
“unambiguous” dataset are close to those obtained by Kawauchi et al. for the classification
of clinical FDG PET MIP into benign/malignant or equivocal categories [19]. In their
study, a ResNet-based 2D-CNN architecture reached 87.5–99% accuracy depending on the
category. A low representation of non-oncological patients and equivocal scans, together
with unknown characteristics of the training and test sets, should position their study as
done under ideal conditions. Indeed, when applied to the remaining test set composed
of ambiguous PET studies, our model performance dropped dramatically, reaching an
NPV of only 5%. Recently, Sibille L. and coworkers [20] showed that their 2D neural
network was highly efficient at identifying and delineating suspicious and nonsuspicious
whole-body PET/CT uptakes in a monocentric cohort of 629 lymphoma and lung cancer
patients. Similarly, when their PET Assisted Reporting System prototype (PARS) was
applied to two additional external cohorts (119 lymphoma patients and 430 miscellaneous
cancers) it failed to confirm the high initial performance [7]. One should consider the issues
related to patient selection bias which leads to overrated models in AI-based imaging
studies, especially in the high-pressure publishing context of a hot-topic field. In this sense,
a recent review of AI-based radiological detection methods for COVID-19 highlighted
the major methodological drawbacks and lack of model transparency in the majority of
related models published in recent years, diminishing their clinical relevance to real-life
practice [21]. Considering the intrinsic physiological variability of FDG distribution in the
body, PET labeling conceptually appeared to be a hard task in our study. In particular,
numerous inflammatory conditions show subtle FDG PET abnormalities, which would
be, for the same patient, of low relevance in the case of oncological purposes. Thus, the
right definition of a “normal” scan is challenging and needs to be further refined outside
of optimized clinical contexts, in order to make automated general triage feasible in real
clinical practice. From such a general triage perspective, we think training models which
classify malignant from benign diseases have limited value in practice for at least two
reasons: FDG PET systematically needs a histological confirmation in the case of abnormal
findings, and there is much overlap between non-oncological and oncological diseases
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in terms of FDG pattern distributions or avidity degrees. It appears illusory to aim to
totally free the imaging expert from his interpretation task, especially because AI does not
integrate the holistic dimension of the analysis [22]. From this realistic perspective, and
despite the technical challenges of the intrinsic variability within the PET data, we believe
in the relevance of the automated identification of nonambiguous normal scans for general
high-throughput triage in clinical practice.

Our study has several limitations. First, this was a monocentric and single vendor
PET-CT, retrospective study. However, approximately 5000 structured PET data were used
in this proof-of-concept study, increasing the majority of already published cohorts in this
field by a factor of five to 20. Second, the “real-life” test set was highly unbalanced in
favor of abnormal scans, contrary to the unambiguous dataset. This could explain the poor
performance we observed when we initially tested the CNN pretrained with unambiguous
data on the remaining equivocal data (NPV of 5%). We thus retrained the CNN from
scratch, with the same training parameters and architecture, using the whole dataset (“real
life”). This trained CNN showed an overall weaker performance with a PPV and NPV
of 91% and 26%, but was comparable to its performance on the “unambiguous” data.
These results may indicate better feature learning when realistic PET data ambiguity is
integrated from the training phase. In this context, the definition of FDG PET normality
is crucial but not absolute: without the particular context, the inherent heterogeneity in
patients’ whole-body FDG uptake patterns is high, regardless of the monocentric and
multicenter designs.

Although the performance of the model is promising, its routine clinical use is not
yet possible. There are several avenues of improvement to explore. First, there is the
clinical contextualization for each examination, allowing a subjective but clinically relevant
definition of a “normal” examination. Our results suggest that increasing the number
of examinations could allow for better learning of the extrinsic variabilities of the tracer
distribution. Automated labeling based on NLP algorithms [23] or the use of k-fold
averaging to test for general robustness [24] are also promising approaches to improve
CNN performance.

5. Conclusions

AI-based automated classification of whole-body FDG PET is a promising method
for high-throughput triage in general clinical practice. Before reaching multicenter oper-
ability, further studies are necessary to overcome the numerous conceptual and contextual
challenges presented by the inherent heterogeneity of PET molecular imaging in humans.
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