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Abstract: The main purpose of this research was to introduce a classification method, which combines
a rule induction procedure with the Takagi–Sugeno inference model. This proposal is a continuation of
our previous research, in which a classification process based on interval type-2 fuzzy rule induction
was introduced. The research goal was to verify if the Mamdani fuzzy inference used in our previous
research could be replaced with the first-order Takagi–Sugeno inference system. In the both cases
to induce fuzzy rules, a new concept of a fuzzy information system was defined in order to deal
with interval type-2 fuzzy sets. Additionally, the introduced rule induction assumes an optimization
procedure concerning the footprint of uncertainty of the considered type-2 fuzzy sets. A key point in
the concept proposed is the generalization of the fuzzy information systems’ attribute information to
handle uncertainty, which occurs in real data. For experimental purposes, the classification method
was tested on different classification benchmark data and very promising results were achieved. For
the data sets: Breast Cancer Data, Breast Cancer Wisconsin, Data Banknote Authentication, HTRU 2
and Ionosphere, the following F-scores were achieved, respectively: 97.6%, 96%, 100%, 87.8%, and
89.4%. The results proved the possibility of applying the Takagi–Sugeno model in the classification
concept. The model parameters were optimized using an evolutionary strategy.

Keywords: fuzzy sets; interval type-2 fuzzy sets; Takagi–Sugeno model; fuzzy information systems;
classification; fuzzification optimization

1. Introduction

Classification is one of the most important and challenging machine learning tasks.
As the main goal is to investigate similarities between groups of objects, the classification
accuracy strongly depends on the initial data sets used for training. There are a lot of
issues to be handled, such as unbalanced or biased training data, but also incomplete
or vague information which is often the case for real data. A lot of research was done
to address this problem, especially using fuzzy classification and by extending to type-2
fuzzy sets as well. For example, recently in [1], a new fuzzy reasoning method for an
interval type-2 fuzzy classification system including cluster-based rules was introduced.
Authors propose to incorporate the introduced reasoning procedure with a new Possibility-
based fuzzy measure to handle uncertainty of cluster centers in an interval type-2 fuzzy
rule-based classification system. In [2], a robust sparse representation for classification
of medical images is proposed based on an introduced adaptive type-2 fuzzy dictionary
learning. Remote-sensing image classification techniques using type-2 fuzzy sets were
introduced [3–5] where, for example recently, considering the last cited research, a novel
robust interval type-2 possibilistic fuzzy clustering model for the classification of complex
remote sensing land cover was presented.

There are many fuzzy control applications based on the use of type-2 fuzzy sets.
Recently, type-2 fuzzy logic system for ergonomic control of indoor environments was
proposed [6]. The system calculates the effective working time and time-dependent change
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in carbon dioxide levels and aims to evaluate ergonomic comfort conditions. The authors
proved better system performance using type-2 fuzzy sets for ergonomic control in fuzzy
environments. Important medical application was proposed in [7]. An interval type-2 fuzzy
stochastic modeling and control strategy to consider the uncertainties of the COVID-19
pandemic in order to control the number of infected people was introduced. A common
strategy for fuzzy model parameter tuning is the use of evolutionary algorithms. In [8],
authors applied a genetic algorithm to tune the parameters of an interval type-2 fuzzy
proportional–derivative controller, in order to track the trajectory of a snake robot in the
presence of system uncertainties. In [9,10], slime mold and particle swarm optimization
algorithms were used for parameter tuning of interval type-2 fuzzy controllers, respectively.
In [11], the design of membership functions for interval type-2 fuzzy tracking controllers
was optimized using a metaheuristic algorithm.

In general, type-2 fuzzy sets provide better generalizations [12,13] as the main as-
sumption here is the additional fuzzification of the membership values of type-1 fuzzy sets
involved. Therefore, type-2 fuzzy sets can handle better with imprecise information [14,15].

Additionally, to deal with information issues, data discovery is used to induce knowl-
edge. Information systems and rough sets, originally introduced by Pawlak [16–18], are
often used to represent knowledge. Basic mathematical concepts, using rough sets theory
to induce fuzzy rules, have been worked on for a long time. In [19], fuzzy learning methods
for the automatic generation of membership functions and fuzzy if-then rules from training
examples were introduced. Fuzzy decision rules induction was presented in [20] using the
tolerance-based rough sets model. Rough sets were used to reduce the dimensionality of
complex datasets as preprocessing for fuzzy rule induction [21].

The above guided us to investigate the possible combination of fuzzy reasoning with
Pawlak’s information systems. We have already introduced our concept of a fuzzy infor-
mation system [22]. This research is a continuation of our previous research, by evolving
and combining our concept with the Takagi–Sugeno fuzzy model [23]. Fuzzy information
systems introduce a relation between attributes and fuzzy sets [24]. Applications of fuzzy
information systems can be found in the fields of decision-making [25,26] and rule extrac-
tion [26,27]. Recently, new decision-making concepts were introduced in [28] by combining
regret theory with three-way decisions in fuzzy incomplete information systems, or in [29],
by multi-attribute predictive analysis using fuzzy rough sets.

In this research, a fuzzy information system to induce rules was applied with respect
to classification attribute values. Next, a transformation into fuzzy rules was proposed, and
finally, the fuzzy sets used were expanded into type-2 fuzzy sets. To provide classification,
the Takagi–Sugeno model was applied in order to simplify our previous concept, which
was related to the Mamdani fuzzy model [30]. The Takagi–Sugeno model does not require
rule consequents defined as fuzzy sets, but introduces additional parameters. For that
reason, in this research, an optimization procedure was applied to determine the best fuzzy
classifier for the benchmark data considered. The research experiments were provided for
binary classification problems defined with well-known benchmark data.

Therefore, our research goal was to provide a classification method, by replacing the
Mamdani model used in our previous research with the first-order Takagi–Sugeno fuzzy
inference. This simplified the induction of type-2 fuzzy rules in the classification process,
as fuzzy sets were not required to be defined as rule consequents. The main research
advantage of this work states the proposal of a fuzzy information system used to induce
type-2 fuzzy rules, incorporated with the Takagi–Sugeno inference to provide classification.

The rest of the paper is organized as follows: in Section 2, the benchmark data used
and some theoretical background are introduced; in Section 3, the introduced classifi-
cation procedure is explained; in Section 4, the classification results are presented; and
finally, Sections 5 and 6 draw corresponding discussion, possible further developments
and conclusions.
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2. Material and Methods
2.1. Materials

In this research, classification experiments were provided on well-known benchmark
data [31] for binary classification. This is the same benchmark data as those used in our
previous study [22], with details given in Table 1.

Table 1. The benchmark data used.

Benchmark Number of
Attributes Number of Samples Class Proportions

Blood Transfusion 7 748 76%/24%

Breast Cancer Data 4 569 63%/37%

Breast Cancer
Wisconsin 9 683 65%/35%

Data Banknote
Authentication 4 1372 56%/44%

Haberman 3 305 73%/27%

Heart 13 303 46%/54%

HTRU 2 8 17,898 9%/91%

Immunotherapy 7 90 79%/21%

Indian Liver Patient 10 583 71%/29%

Ionosphere 34 351 64%/36%

Parkinson 22 187 74%/26%

Pima Indians
Diabetes 8 768 65%/35%

Vertebral 6 310 68%/32%

2.2. Methods
2.2.1. Type-1 and Type-2 Fuzzy Sets

A Type-1 fuzzy set F consists of a non-empty domain X and a function µF : X→ [0, 1],
called a membership function [32]. Considering a continuous membership function, a
fuzzy set of type-1 as defined in Equation (1):

F =df

∫
X
µF(x)/ x, x ∈ X (1)

The above integral denotes the collection of all points x ∈ X with associated mem-
bership grade µF(x) ∈ [0, 1]. The function values define the grade of membership of the
elements of X to the fuzzy set F. Membership functions are assumed to describe imprecise
or vague information.

The type-1 fuzzy sets concept was expanded by fuzzifying the membership function

values themselves and type-2 fuzzy sets were introduced. A type-2 fuzzy set, denoted as
~
F,

is defined in Equation (2) [5]:

~
F =df

∫
x∈X

∫
u∈Jx

µ~
F
(x, u)/(x, u), Jx ⊆ [0, 1] (2)

where
s

denotes the union over all admissible x and u. The most widely used special cases
of type-2 fuzzy sets, mostly because of their easy interpretation, are the interval type-2
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(IT2) fuzzy sets [5]. Uncertainty about
~
F is handled by the so-called footprint of uncertainty

(FOU) of
~
F, as shown in Equation (3):

FOU(
~
F) =df

⋃
x∈X

Jx, Jx ⊆ [0, 1] (3)

The area of a FOU is directly related to the uncertainty that is conveyed by an interval
type-2 fuzzy set, and what follows, a FOU with more area is more uncertain than the one
with less area. The lower membership function (LMF) and upper membership function

(UMF) of
~
F are two type-1 membership functions F and

−
F that bound the FOU, which are

used to describe Jx, see Equation (4):

Jx =df [µF(x), µ−
F
(x)
]

(4)

which leads to Equation (5):

FOU(
~
F) =df

⋃
x∈X

[
µF(x), µ−

F
(x)
]

(5)

Figure 1 illustrates the graphical interpretation of the above definitions.
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~
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sets: F and
−
F.

2.2.2. Takagi–Sugeno Type-2 Fuzzy Inference

The major difference between the type-1 and type-2 Takagi–Sugeno fuzzy models
obviously lies in the incorporation of type-2 fuzzy sets in the inference process. This
requires corresponding fuzzy rule interpretation and type–reducer mechanism.

A type-1 fuzzy rule in terms of the Takagi–Sugeno model, takes the following form:

R :df IF (x1 is X1)o . . . o(xi is Xi) THEN f(x1, . . . xi)

where Xi (i = 1, . . . , I) are type-1 fuzzy sets defined over corresponding domains. The
operator ‘o’ is assumed as a ⊗, ⊕ : [0, 1]2 → [0, 1] are the t- and s-norms [33], respectively.
These binary operators are applied in fuzzy logic as generalizations of the conjunction
and disjunction Boolean logic operators. The Zadeh’s t- and s- norms defined by the min
and max operators, were applied, respectively. The rule consequents are multivariable
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functions, defined as combinations of polynomials. The most popular solution, i.e., first-
order Takagi–Sugeno model, assumes combinations of linear functions. Therefore, any rule
consequent takes the form:

Consequent: f(x1, . . . ,xi) =df∑
i
k=1 (akxk + bk) = ∑i

k=1 akxk + ∑i
k=1 bk, where ak and

bk are the parameters of the corresponding linear functions, defined with respect to each xi.
It is interesting to note that in the Takagi–Sugeno model, there is no need to define the

consequents as fuzzy sets and therefore, there is no need to define any membership function
in the consequents as it should be done using, for example, the Mamdani model [30].

The final output of the system is the weighted over all rule outputs, as defined in
Equation (6):

Final Output = df
∑N

k=1 wkfk

∑N
k=1 wk

, (6)

where N is the number of rules, wk is the rule-firing value derived from the kth rule
antecedent and fk is the value of the kth rule consequent.

Considering type-2 fuzzy sets, for an input vector x= {x′1, x′2, . . . , x′i
}

, typical compu-
tations of an IT2 fuzzy system consist of the following steps:

(1) Compute the membership intervals of x′i for each
~
X

n

i ,
[
µXn

i
(x′i), µ––

X
n
i
(x′i)] , i = 1, . . . , I;

n = 1, . . . , N (N is the number of rules),
(2) Compute the firing interval of the nth rule:

Fn
(−

x
)
=df

[
µXn

1

(
x′1
)
o . . . o µXn

i

(
x′i), µ−

X
n

1

(
x′1
)
o . . . o µ––

X
n
i
(x′i)

]
,

(3) Use type reduction to combine Fn
(−

x
)

with corresponding rule consequents.

The most popular one is the center-of-set (COS) type reducer [34] using the Karnik–
Mendel algorithm [34,35] or their modifications [36,37].

In order to apply the Karnik–Mendel algorithm, a single type-2 fuzzy set must be
derived using the rules outputs. For a Takagi–Sugeno type-2 fuzzy system, the aggregate
set is generated using the following procedure:

1. Sort the rule outputs from all rules into ascending order,
2. For each output, define the UMF value using the maximum firing range of the consid-

ered rule,
3. For each output, define the LMF value using the minimum firing range of the consid-

ered rule.

As an example, consider the data shown in Table 2. Let us assume five rules with
output values and firing range limits. For these data, the aggregate type-2 fuzzy set shown
in Figure 2 will be generated.

Table 2. Example aggregate set generation.

Rule Rule Output Value (fk) Minimum Firing
Value

Maximum Firing
Value

1 6.8 0.1 0.6

2 1.6 0.3 0.7

3 5.3 0.2 0.5

4 0.4 0.4 0.8

5 3.1 0.2 0.9

Sorted in ascending order:

4 0.4 0.4 0.8

2 1.6 0.3 0.7
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Table 2. Cont.

Rule Rule Output Value (fk) Minimum Firing
Value

Maximum Firing
Value

5 3.1 0.2 0.9

3 5.3 0.2 0.5

1 6.8 0.1 0.6
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Defining the above aggregate type-2 fuzzy output set, the Karnik–Mendel algo-
rithm [34,35] can be applied in order to derive the final output system value. As the
complete Takagi–Sugeno type-2 fuzzy inference procedure is well-described in the litera-
ture, we will omit further details.

3. Fuzzy Information System with Tagaki-Sugeno Reasoning
3.1. Type-1 Fuzzy Information System and Fuzzy Rule Induction

This research is based on our interpretation of a fuzzy information system, introduced
in [22]. We assume that the values of the system information function are linguistic variables
which corresponds to fuzzy sets. This is a granulation information proposal. A classic
information system [16] is defined by the elements: (U, A, V, f), where U is a universe, A is
a set of attributes, V represents attributes domains: V = df

⋃
aVa, with nonempty domain

Va of the a-th attribute (a ∈ A), and f is the information function f: U×A→ V, ∀x ∈ U, a ∈
A f(u, a) ∈Va. The indiscernibility binary relation (IND), defined over U (IND ⊆ U2), plays
in theory an important role. It is an equivalence relation, defined in Equation (7):

IND(B) = df {(ui, uj) ∈ U ’ U: ∀a∈B f(ui, a)=f(uj, a)}, ui, uj ∈ U, B ⊆ A (7)

The above binary relation is used to define the lower and upper approximations of
any subset of U. Any such a pair is defined as a rough set [17,18].

In accordance with our interpretation of a fuzzy information system over any attribute
domain Va, three fuzzy subsets are defined: {low, medium, high}. The information func-
tion values are replaced with corresponding fuzzy sets, with respect to the maximum
membership value: max{µlow(object, attribute), µmedium(f(object, attribute), µhigh(f(object,
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attribute)}. The membership function of the medium fuzzy set assumes Gaussian distribu-
tion of the attribute data for any a ∈ A.

Therefore, the membership functions for the considered fuzzy sets can be easily
defined, see Equation (8):

µmedium(a) =df e
−(a−a0)

2

2σ2 , µlow(a) =df

{
1− e

−(a−a0)
2

2σ2

0 : a ≥ a0

: a < a0

}
,

µhigh(a) =df

{
0 : a < a0

1− e
−(a−a0)

2

2σ2 : a ≥ a0

}
, a ∈ Vawith expected value(a0)

and standard deviation (δ)

(8)

The above attribute fuzzification introduces a very simple initialization of the infor-
mation function as well as values’ generalization. For example, let us consider the below
matrix (Table 3) which represents a fuzzy information system: U = {object1, object2, object3,
object4}, A = {attibute1, attribute2, attribute3}, V = Vattribute1∪ Vattribute2∪ Vattribute3 and we
assume for each set Vattributei a Gaussian distribution in order to obtain the fuzzy sets {lowi,
mediumi, highi}.

Table 3. Fuzzy information system example.

attribute1 attribute2 attribute3

object1 low medium low

object2 medium high high

object3 medium high high

object4 low medium low

So, for example, f(object2, attribute2) is introduced as high because the following in-
equality is satisfied: µhigh(f(object2, attribute2)) ≥ max{ µlow(f(object2, attribute2),
µmedium(f(object2, attribute2)} or f(object1, attribute3) is introduced as low, as µlow(f(object1,
attribute3)) ≥max{ µmedium(f(object1, attribute3), µhigh(f(object1, attribute3)}.

The corresponding partition (P) with respect to IND has two equivalence classes:

P/IND{attribute1, attribute2, attribute3} = {{object1, object4}, {object2, object3}}

Next, if a decision attribute (A*) is added to the set of attributes: A = A ∪ A* an
information system can be represented by a decision table. Assuming such an extension, the
Skowron and Suraj rule induction method can be applied [38,39] and next, transformation
of the rules induced for each decision into fuzzy rules is introduced.

For example, for pairs: (object1, attribute1): low, (object2, attribute2): high, (object3,
attribute1): medium, and a rule for decision D is induced as follows:

decision D: (f(object1, attribute1) ∧ f(object2, attribute2)) ∨ f(object3, attribute1),
the above rule can be transformed into the following fuzzy rule:
If ((f(object1, attribute1) is low) ⊗ (f(object2, attribute2) is high)) ⊕ (f(object3,
attribute1) is medium) Then D.

An explanation of the rule induction procedure and the generation of fuzzy rules
directly from a decision table can be found in our previous research in more detail ([22],
Sections 2.2.3 and 2.2.4).

The most important issues here are: (1) the possibility of attribute value generalization
by applying fuzzy sets directly as values in the decision table. Therefore, the information
function values are related directly to membership functions of fuzzy sets. (2) The rule
induction procedure and the transformation of the rule induced into type-1 fuzzy rules.
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3.2. Involving Type-2 Fuzzy Sets

The idea of applying type-2 fuzzy sets is very simple and related to our previous
research [22]. It is enough to change the values of the standard deviation of the Gaussian-
type membership function of the fuzzy set medium to define the bounds of the FOU for

the type-2 fuzzy set m̃edium. In such a way, the assumed fuzzy sets {low, medium, high}

can be replaced with the {l̃ow, m̃edium, h̃igh} type-2 fuzzy sets. Figure 3 clarifies the issue.
This transformation is done after rule induction and transformation into type-1 fuzzy rules.
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Nevertheless, the assumption of Gaussian distribution for each attribute value is
hard to be fulfilled. That is the reason why we assumed the experiment with the fuzzy
rule premises in terms of standard derivation values (defining the corresponding FOU)
parameter named as sigma_offset and different configurations of membership functions.

Meaning, we extend the assumption of using only three type-2 fuzzy sets {l̃ow, m̃edium,
h̃igh}. Without changing our previous research, the configurations assumed are shown in
Table 4 below. This concerns the number of Gaussians in the rule premises, the applied
sigma_offset, and the expected value for the medium membership function. For more details,
see ([22], Section 2.2.6) concerning the fuzzy sets defined in the fuzzy rule premises.

Table 4. The IT2 fuzzy sets used (presentation of the concept with respect to a chosen attribute of the
blood transfusion dataset, assuming normalization as well).
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3.3. Takagi–Sugeno Reasoning with Optimization

Consequently, for each rule premises, configuration of different sigma_offset are con-
sidered. Additionally, in terms of first-order Takagi–Sugeno systems, two parameters
defining the corresponding linear function for each fuzzy set in the rule premises should be
calculated. The assumed varieties of type-2 fuzzy sets along with the sigma_offset value and
the linear function parameters define an optimization problem. A finite set of membership
functions is considered, generated with respect to the medium membership function. The
assumed numbers of membership functions are: {3, 5, 7, 9 11}. Considering the member-
ship function configurations and the sigma_offset, the grid search algorithm in a k-fold
cross-validation manner for these hyperparameters optimization was applied. The linear
function parameters for each attribute, were optimized using the Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES) [40], i.e., as each cross-validation step defines a
new training set, the induced rules also differ. Therefore, at each cross-validation step, we
applied CMA-ES for linear function parameters optimization.

Additionally, in the conducted experiments as possible data pre-processing, a dimen-
sion reduction procedure using the well-known principal component analysis method
(PCA) and the Random Oversampling (ROS) [41–43] to handle with class imbalance were
applied. The oversampling was important in terms of rule induction, as the inconsistency
elimination step ([22], Section 2.2.3, algorithm 1) strongly favors classes with large presence
of data.

The complete set of hyperparameters to be optimized is given in Table 5. On the other
hand, Table 6 presents the hyperparameter values used in the CMA-ES procedure itself.
The number of folds for each dataset are given in Table 7.

Table 5. Tuned hyperparameters of sets of membership functions.

Hyperparameter Value

Number of Gaussian functions 3, 5, 7, 9, 11

Whether the std applied to Gaussians are the same Yes/No

If the mean value of the medium membership
function is derived directly from mean value of the
corresponding feature

Yes/No

Sigma_offset [0.5, 0.9] with step of 0.05

Use PCA Yes/No

Use ROS Yes/No

Table 6. CMA-ES hyperparameters.

Hyperparameter Value

Initialization Random

Maximum evaluations of fitness function 20,000

Number of restarts 1

Population size increase ratio after restart 2

Standard deviation in each coordinate 0.7

Population size 20

Stagnation tolerance 100 evaluations

Parameters values range [−400, 400]
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Table 7. Number of folds applied in the cross-validation process.

Benchmark k-Value

Blood Transfusion 10

Breast Cancer Data 10

Breast Cancer Wisconsin 10

Data Banknote Authentication 10

Haberman 6

Heart 5

HTRU 10

Immunotherapy 4

Indian Liver Patient 10

Ionosphere 6

Parkinson 4

Pima Indians Diabetes 10

Vertebral 5

The experimental procedure pipeline in this research was defined as follows:

1. Split a considered dataset into k-folds.
2. For each set of hyperparameters:

a. For each cross-validation step:

i. Set one fold as held-out for validation, use the rest for training.
ii. Induce the knowledge base using the training set.
iii. Infer the crisp value for each sample in the training set with the

Takagi–Sugeno model.
iv. Classify the sample with the threshold function set at 0. Treat the sample

as negative if the crisp value is lower than 0.
v. Calculate the F1 metric.
vi. Optimize the parameters of linear functions with CMA-ES, defining the

F1 metric as the fitness function.
vii. Evaluate the model on the validation set when the fitness function is

optimized or the maximum number of evaluations passes. Otherwise
return to (iii).

b. Choose a set of hyperparameters which maximize the mean value of the F1
metric over the validation sets.

In order to evaluate the model for each dataset, we conduct the following procedure:

(1) Choose the best hyperparameters set for a dataset.
(2) Optimize the fitness function on the training set.
(3) Choose the best parameters of linear functions.
(4) Evaluate the model on a test set.

Repeat the procedure n times (n = 10) to minimize CMA-ES possible local extrema
solutions and choose the best result.

4. Binary Classification Results

In Table 8 the best binary classification results achieved for the best hyperparameters
setup are presented.
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Table 8. Classification results.

Dataset F1 Score
(%)

Accuracy
(%)

Sensitivity
(%) Hyperparameters ROS PCA

Blood
Transfusion 56.6 69.3 83.3

<11 Gaussian,
equal, mean,
0.75>

Yes No

Breast Cancer
Data 97.6 98.2 95.2

<3 Gaussian,
equal, center,
0.5>

Yes Yes

Breast Cancer
Wisconsin 96.0 97.1 100.0

<3 Gaussian,
progressive,
mean, 0.85>

Yes Yes

Data Banknote
Authentication 100.0 100.0 100.0

<3 Gaussian,
equal, mean,
0.65>

Yes No

Haberman 40.0 66.1 43.8
<9 Gaussian,
equal, mean,
0.55>

No No

Heart 85.2 85.2 92.9 <3, progressive,
mean, 0.6> Yes Yes

HTRU 2 87.8 97.8 85.4
<9 Gaussian,
equal, center,
0.5>

No Yes

Immunotherapy 66.7 83.3 75.0
<9 Gaussian,
equal, mean,
0.75>

Yes No

Indian Liver
Patient 57.4 58.1 97.1

<11, Gaussian,
equal, center,
0.8>

Yes Yes

Ionosphere 89.4 93.0 84.0
<7 Gaussian,
equal, mean,
0.55>

No Yes

Parkinson 80.0 89.7 80.0
<5 Gaussian,
progressive,
mean, 0.8>

Yes No

Pima Indians
Diabetes 66.2 68.8 87.0

<11 Gaussian,
equal, center,
0.9>

Yes Yes

Vertebral 87.1 82.3 88.1
<7 Gaussian,
progressive,
mean, 0.75>

Yes No

In Table 9, we present the best classification results achieved in comparison with our
previous research [22] and other classifiers as well.
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Table 9. Comparison with other methods, concerning the F1 score measure.

Dataset
The Presented Approach
(Using the Takagi–Sugeno
Model) (%)

Our Previous Approach
(Using the Mamdani
Model) (%)

Other Classifiers (%)

Breast Cancer Data 97.6 91.2
Immune-inspired
semi-supervised Algorithm,
introduced in [44]: 97.3

Breast Cancer Wisconsin 96.0 95.7

Extreme Learning Machine
Neural Networks, introduced in
[45]: 97.8
Immune-inspired
semi-supervised algorithm,
introduced in [44]: 96.5
Support vector machines
combined with Feature Selection,
introduced in [46]: 99.7

Data Banknote Authentication 100.0 99.3

Deep Neural Network with PCA
and LDA, introduced in [47]: 99
Decision tree approach,
introduced in [48]: 99.4
Random Forest approach,
introduced in [49]: 94.8
Neural Network-Genetic
Algorithm, introduced in [50]: 100

HTRU 2 87.8 89.0

Classical classifiers: C4.5: 74;
MLP: 75.2; NB: 69.2; SVM: 78.9
GH-VFDT Algorithm, introduced
in [51]: 86.2
A hybrid ensemble method,
introduced in [52]: 91.8 (with
respect to a voting threshold
parameter)

Ionosphere 89.4 88.8 Clustered Bayesian classification,
88.5 [53]

5. Discussion

This research is a continuation of a previous one, published in [22]. Both papers
present our newly introduced definition of a fuzzy information system, which has the
following advantages:

• The information function values are interpreted as fuzzy sets, labeled with correspond-
ing linguistic variables. This gives the possibility to generalize information—we do
not consider numerical values for pairs (object, attribute), but general descriptions
such as ‘small’, ‘medium’, and ‘high’.

• The decision table used is generated in an automatic manner for a considered data set,
as the value ‘medium’ is assumed as the Gaussian distribution of the data for each
attribute. Then, the sets ‘low’ and ‘high’ are easy to be defined using the ‘medium’
membership function. Next, a corresponding label (identifying the corresponding
fuzzy set) is given for a pair (object, attribute), by using the maximum membership
value.

Additionally, we propose an easy transformation in order to change the applied type-1
fuzzy sets into type-2 fuzzy sets.

Therefore, by defining such a decision table, the rule induction procedure described
in [38,39] is applied and next, type-2 fuzzy rules are derived. What is more, different
fuzzification strategies are possible (see Table 4).
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In this research, the goal was to incorporate our fuzzy information system concept
with the Takagi–Sugeno model, as it does not require the model outputs to be defined
as fuzzy sets. Such an achievement would create new possibilities, using the advantages
of the Takagi–Sugeno model. To incorporate the model, we had to optimize the model
parameters with respect to the corresponding benchmark data. We have applied the CMA-
ES (Covariance Matrix Adaptation Evolutionary Strategy) for this purpose. We conducted
experiments with the same binary classification problems and the same fuzzification
experiments, as presented in [22], in order to compare the results.

While performing experiments, we have discovered further promising features and
potential disadvantages of the method proposed. The classification process is able to fit
training data, but sometimes has issues with generalization. Applying PCA allows us to
minimize this issue, making the method proposed more robust. Additionally, performing
optimization with an evolutionary strategy allows the model to find very well-fitting
decision boundaries. Therefore, one might achieve even better performance by applying
additional regularization methods.

To solve the problem of imbalanced data, Random Oversampling was used, which
was not beneficial in a few cases. If the imbalance is very high, ROS may produce too
much redundancy; therefore, the information system may produce biased rules, ignoring
important information contained in the data. In such a scenario, other sampling techniques
should be applied instead.

Regarding the attribute fuzzification procedure, only Gaussians were assumed as
membership functions. We suppose, there is room for improvement, adjusting membership
functions to the attributes’ characteristics. Additionally, not only the first-order Takagi–
Sugeno model could be applied.

Despite such constraints, good classification results for several datasets were achieved.
We believe that the application of the Takagi–Sugeno model in our approach will support
the solving of multi-class classification problems. This is because, in the model used, there
is no need to define decision classes, contrary to the Mamdani fuzzy model.

Summarizing, a new classification concept was proposed in this research with the
following main advantages:

– Defining a decision table with fuzzy values. The fuzzification is provided in an
automatic manner directly from a data set.

– Using the rule induction method based on the information system concept, which
has a solid mathematical background. Each rule is related to a corresponding class,
regarding the classification problem considered.

– Transformation of the induced rules into type-2 fuzzy rules.
– Application of the Takagi–Sugeno model in the classification process. Therefore, there

is no need to define the fuzzy rule consequents as fuzzy sets.

6. Conclusions

In this research, a novel classification method, which incorporates our previously
introduced concept of a fuzzy information system with the first-order Takagi–Sugeno
model, was introduced. A fuzzification procedure with membership function optimization
and a corresponding rule induction of type-2 fuzzy rules were proposed as well. The
research was a continuation of our previous approach. Here, the aim was to replace the
fuzzy model previously applied with the Takagi–Sugeno model. The model parameters
optimization was conducted with the CMA-ES evolutionary strategy with respect to the
classification problem considered. The achieved classification results proved that the
Takagi–Sugeno-type inference is fully implementable with our fuzzy type-2 rule induction
concept. Therefore, there is no need to define the fuzzy rule consequents as fuzzy sets,
which simplify the whole classification method and potentially support the solving of
multi-class classification problems. Nevertheless, some improvements could be applied,
such as better feature selection, detection of outliers, or data augmentations in order to
increase the classification results. Limitations of the method proposed might occur if the
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generalizations applied in the decision table are too high. This means that if there is a low
number of fuzzy sets and attributes, the rules induced will not differentiate the decision
classes appropriately. Additionally, categorical variables are not appropriate due to the
required data fuzzification.

As further research, we consider the possibility to use representation learning in order
to generate attribute values for a considered problem and to fuzzify them. Therefore, we
intend to involve the deep learning phase in the method proposed. We consider the concept
proposed as a general approach, which is applicable to real-world classification problems,
meant for data containing vague and incomplete information.
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