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Abstract: A low-permeability reservoir contains many fine pore throat structures, which result in
excessive injection pressure of the water injection well and difficult water injection in the production
process of a low-permeability reservoir. In this study, a new silane coupling agent was synthesized
via the ring-opening reaction between dodecyl amine and KH-560 (γ-propyl trimethoxysilane).
The modified KH-560 was reacted with nano-SiO2 to synthesize the modified nano-SiO2 as an
antihypertensive additive. Fourier infrared spectroscopy, thermogravimetric analysis and laser
scattering were used to characterize this modified nano-SiO2. The results show that the particle size
of the modified nano-SiO2 is less than 60 nm. The test results of the water contact angle show that
the dispersion system can increase the rock contact angle from 37.34◦ to 136.36◦, which makes the
rock surface transform from hydrophilicity to hydrophobicity and reduce the binding effect of rock
with water. The dispersion test shows that the modified nano-SiO2 has good dispersion stability
under alkaline conditions with TX-100 (Polyethylene glycol octylphenyl ether) as the dispersant. The
antiswelling test results show that the antiswelling rate of this modified nano-SiO2 is 42.9%, which
can efficiently prevent the clay expansion in the formation to reduce the injection pressure. The core
displacement test results show that its depressurization rate reaches 49%. The depressurization rate
still maintains 46% at a 20 PV water flow rate, indicating that its depressurization effect is remarkable
and it has excellent erosion resistance.

Keywords: nano-SiO2; hydrophobicity; ultra-low-permeability reservoir; pressure reduction

1. Introduction

In recent years, given the newly added geological reserves in China, low-permeability
and very-low-permeability geological reserves have increased yearly [1,2]. Based on
previous statistical results, the porosity of low-permeability reservoirs is less than 15%
and their permeability is less than 20 mD [3]. Many fine pore throat structures exist in
low-permeability reservoirs [4]. Owing to the existence of microcapillary forces, the solid–
liquid interface and the electrochemistry effect, a start-up pressure difference exists in low-
permeability reservoirs [5,6]. Moreover, the clay in the formation is easy to expand [7,8],
which leads to the high pressure of the water injection well. So, it directly affects the
efficiency of water injection, increases the burden of the water injection system and causes
high energy consumption. In addition, a casing rupture will occur when the water injection
system is under a long-term high-pressure condition, which would result in a reduction
in sweep efficiency and oil recovery efficiency [9]. Therefore, the development of high-
efficiency pressure-reducing and injection-enhancing agents is key to the exploitation of
low-permeability reservoirs.
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The pressure-decreasing and augmented injection in low-permeability reservoirs
have been extensively studied. At present, the technology of pressure-decreasing and
augmented injection has two main methods: reservoir modification and surface modifi-
cation [10]. Reservoir reconstruction technology is used to expand the effective diameter
of rock pores by acidizing plugging removal and hydraulic fracturing [11,12] to reduce
injection resistance to achieve the result of reduced pressure and increased injection [13–15].
In the process of hydraulic fracturing and acidification, it is easy for the reservoir to be
injured by the intrusion of external fluids, resulting in a serious decline in the exploitation
degree [16–18]. Therefore, how to reduce the damage to the reservoir and the equipment
during the use of reservoir reconstruction technology is also a main problem that needs to
be solved urgently. Surface modification technology is utilized to change the rock surface
properties of pores [19] and prevent clay from swelling by injecting modifiers into rock
pores [20], so as to achieve the effect of reducing pressure and increasing injection [21–24].

Hydrophobically modified nano-SiO2, as a modifier to reduce pressure and increase
injection, is a newly developing technology. The hydrophobic nano-SiO2 dispersion is in-
jected into the formation to achieve the pressure-decreasing and augmented injection of the
reservoir. The surface of the modified nano-SiO2 particles has unsaturated bonds and strong
adsorption capacity. After entering the formation, the nano-SiO2 adsorbs onto the surface
of the rock pores, replacing the existing hydration film and forming a new adsorption layer,
making the rock pores hydrophobic. It reduces the flow resistance and the contact between
the water and the rock pores, achieving the effect of the pressure-decreasing and augmented
injection [25,26]. Liu [27] synthesized an environmentally responsive modified nano-SiO2,
which was covalently modified by organic compounds containing hydrophobic groups and
double bonds. The chemical adsorption method was used to cover a layer of hydrophilic
organic matter on the surface of the modified nano-SiO2 to ensure its good dispersibility
in water. Owing to the change in the environment (temperature, pH and salinity), the
nano-SiO2 would be released from the dispersion and adsorbed onto the rock pores when
the nano-SiO2 enters the injection well from the normal environment, thereby achieving
the effect of reduced pressure and increased injection. Dai [28] used dimethyldichlorosilane
to modify nano-SiO2. The core-flow experiment shows that the modified nano-SiO2 exerts
a better effect on depressurization and injection in low-permeability reservoirs, and the
depressurization rate reaches 45%. Zhao [29] used n-propyl trichlorosilane to modify nano-
SiO2 and evaluated the effect of the pressure-decreasing and augmented injection through
core-flow experiments. The results showed that the depressurization rate of the modified
nano-SiO2 in ultra-low permeability reservoirs reached 31.47%. A roughness reduction
mechanism was proposed to explain their pressure reduction mechanism. Hydrophobic
silica nanoparticles can adsorb onto the sand surface, reduce the roughness of the flow
channel, partially change the wettability of the flow channel and reduce its water wettability.
Flow resistance and injection pressure are reduced accordingly.

The above-mentioned pressure-reducing and injecting agent has an unsatisfactory
depressurization effect under the condition of ultra-low-permeability (less than 10 mD).
Based on this problem, a new modified nano-SiO2, used as a depressurization and injection
enhancement agent, was synthesized in this study, which has excellent pressure-decreasing
and augmented injection effects under the formation condition with permeability less
than 10 mD. The structure and particle size of prepared nano-SiO2 were characterized
using infrared spectrometry and dynamic light scattering. The wettability, thermal sta-
bility, dispersion stability and antiswelling properties of the modified nano-SiO2 were
simultaneously studied in this study. The performance of the pressure-decreasing and
augmented injection of modified nano-SiO2 was evaluated via an indoor core displacement
experiment. This study hoped to provide a new modification strategy for solving the
problem of excessive injection pressure in low-permeability reservoirs.
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2. Experimental Sections
2.1. Experimental Materials and Instruments

Materials: nano-SiO2, Shanghai Aladdin Biochemical Technology Co., Ltd.; lauryl
amine, AR, Shanghai Xianding Biological Technology Co., Ltd.; γ-propyl trimethoxysilane
(KH560), BR, Shanghai Yuanye Bio-Technology Co., Ltd.; sodium hydroxide (NaOH), abso-
lute ethanol (C2H5OH) are both AR, Chengdu Kelong Chemicals Co., Ltd.; Polyethylene
glycol octylphenyl ether (TX-100), CP, Chengdu Kelong Chemicals Co., Ltd.; kerosene,
Unified Petrochemical Co., Ltd.; bentonite, Chengdu Hua Chemical Reagent Co., Ltd.;
artificial core.

Instruments: heat-collecting-type constant-temperature-heating magnetic stirrer, Bei-
jing Kewei Yongxing Instrument Co., Ltd.; Analytical Balances, Mettler-Toledo Instruments
Co., Ltd.; constant temperature drying oven, Chengdu Test Instrument Co., Ltd.; ultrasonic
cleaner, Shanghai Kedao Ultrasonic Instrument Co., Ltd.; centrifuge, Shanghai Medical
Devices Co., Ltd.; rotary evaporator, Gongyi Yuhua Instrument Co., Ltd.; infrared spec-
trometer, Thermo Electron Corporation; contact angle measuring instrument, German
Kruss Scientific Instruments Shanghai Co., Ltd.; synchronous integrated thermal analyzer,
Netzsch Group; zeta potential analyzer, American CD Company; laser scattering system,
Brookhaven Instruments, Inc.

2.2. Experimental Method
2.2.1. Preparation of Modified Nano-SiO2

Owing to the hydrophobicity of a long carbon chain, it is often used to endow hy-
drophobicity to nano-materials. Wang [30] declaimed that the ring-opening reaction could
occur between amino groups and epoxy groups. In this article, the silane coupling agent
(KH560) was used as an intermediate to connect a long carbon chain and nano-SiO2.

Specifically, dodecyl amine was utilized as a modifier to graft long carbon onto the
KH560, and then the modified KH560 containing a long carbon chain was branched to
nano-SiO2. After the experiment mentioned above, the nano-SiO2 with hydrophobicity
was prepared. The experimental steps were as follows.

(1) Dodecyl amine (2.2242 g) was dissolved in 10 mL of absolute ethanol, and then it
was placed into a three-hole round-bottom flask and stirred in a thermostatic heating
magnetic stirrer at 60 ◦C. At the same time, 2.83 g of KH560 was added into the
three-hole round-bottom flask drop by drop and it reacted for 2 h. Then, the cooled
dispersion liquid was placed in a rotary evaporator at 50 ◦C for 20 min until the
ethanol rotary evaporation was complete. Finally, the viscous oil-like liquid (3.67 g)
was obtained, which was modified KH-560. Additionally, the yield was 72.6%.

(2) About 0.8 g of nano-SiO2 was dried at 120 ◦C for 2 h. Then, it was added to 20 mL
of absolute ethanol. The above liquid was ultrasonically processed in an ultrasonic
cleaner for 30 min to ensure the uniform dispersion of the nano-SiO2. Subsequently,
1.6 g of modified KH560 was dissolved in 20 mL of absolute ethanol and stirred evenly,
and it was added to the nano-SiO2 dispersion slowly. The mixture was stirred in a
constant-temperature-heating magnetic stirrer for 10 min to mix it evenly. Then, the
thermostatic heating magnetic stirrer was adjusted to 60 ◦C, and the thermostatic
reaction continued for 4 h under the condition of nitrogen gas. The reaction dispersion
liquid was centrifuged at a high speed for 5 min and washed with absolute ethanol
three times until the remaining modified KH560 was removed. The precipitation in
the centrifugal tube was taken and dried for 4 h in a drying oven at 120 ◦C. Finally,
the modified nano-SiO2 was obtained.

2.2.2. Infrared-Spectroscopy Analysis

A Fourier infrared spectrometer was used to characterize the modified nano-SiO2.
Small amounts of modified nano-SiO2 and KBr were mixed uniformly and pressed into
tablets after grinding. Then, they were placed in an infrared spectrometer to obtain the



Appl. Sci. 2023, 13, 5248 4 of 14

infrared spectrum of modified nano-SiO2. The measured wavenumbers ranged from 0 cm–1

to 4000 cm–1, the wavenumber precision was 0.01 cm–1 and the resolution was 4 cm–1.

2.2.3. Wettability of Modified Nano-SiO2

The wettability of modified nano-SiO2 was evaluated by measuring the contact angle
with the German KRUSS DSA30S interface parameter-measuring instrument (Shanghai
KRUSS Scientific Instrument Co., Ltd., Shanghai, China). First, the modified nano-SiO2
with different concentration gradients was dispersed in TX-100. Subsequently, the core
was cut into thin slices (3 mm) and soaked in the prepared mixture for 24 h. Then, the
prepared sample was put into a constant-temperature drying oven and dried at 120 ◦C.
Finally, the contact angle of the water droplet and core was measured using an interface
surface parameter-measuring instrument.

2.2.4. Dynamic Light Scattering Test

The particle size of the modified nano-SiO2 was analyzed via dynamic light scatter-
ing. The particle size distribution was measured using a laser scattering system from
Brookhaven Instruments, USA. First, the modified nano-SiO2 was dispersed in TX-100,
and then the particle size distribution of modified nano-SiO2 was obtained via dynamic
light scattering.

2.2.5. Thermogravimetric Analysis (TGA)

The TGA of the nano-SiO2 and modified nano-SiO2 was performed using a thermo-
gravimetric analyzer from 0 ◦C to 1000 ◦C. Under nitrogen flow, the samples were continu-
ously heated to 1000 ◦C with a step size of 10 ◦C/min, and the data of the change in sample
weight with temperature were collected. By analyzing the weight change in the samples at
each stage, the amount of groups grafted onto the nano-SiO2 was quantitatively evaluated.

2.2.6. Zeta Potential Test

Equal amounts of modified nano-SiO2 were dispersed in TX-100 and NaOH-regulated
TX-100, respectively. The zeta potential of the two dispersions was measured using a
Zeta PALS 190 Plus Potential Analyzer (Brookhaven Instruments, Austin, TX, USA). Zeta
potential was used to evaluate the stability of the two dispersions.

2.2.7. Dispersibility and Stability

The modified nanosilica was dispersed in water, TX-100, ethanol, kerosene and NaOH-
adjusted TX-100. The dispersion conditions of the five kinds of dispersion liquids were
observed. After storing them for 30 days, the dispersion conditions of the five kinds of
dispersion liquids were observed again to judge the stability of the dispersion liquids.

2.2.8. Antiswelling Test

The antiswelling rate of modified mano-SiO2 was evaluated using the centrifugal
method. The antiswelling ratio was evaluated by measuring the swelling volume of
bentonite in kerosene, modified nano-SiO2 dispersions and pure water. Bentonite (1 g) was
added into 20 mL of kerosene, water and modified nano-SiO2 dispersions, respectively,
before shaking at room temperature for 2 h. After storing it for 24 h, the swelling volume
of bentonite was recorded.

The antiswelling rate was calculated as follows:

B1 =
V2 − V1

V2 − V0
× 100% (1)

where B1 is the antiswelling rate, %; V0 is the swelling volume of bentonite in kerosene,
mL; V1 is the swelling volume of bentonite in modified nano-SiO2 dispersion, mL, and V2
is the swelling volume of bentonite in pure water volume, mL.
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2.2.9. Evaluation of the Effect of Blood Pressure Reduction and Injection

The prepared physical parameters of the low-permeability cores are shown in Table 1.

Table 1. Physical parameters of core.

Length (cm) Diameter (cm) Porosity (%) Permeability
(10−3 µm2) Dry Weight (g)

10 2.5 9.4 2.409 78.47

The confining pressure of the core was set as 8 MPa, and the core was vacuum dried
at 100 ◦C for 24 h. First, the mass (W1) of the dry core was measured, and it was immersed
in water for 24 h. Then, the mass (W2) of the core under a wet state was measured. As
shown in Figure 1, the pipeline of the displacement experiment was connected. Brine was
injected into the core at a constant flow rate of 0.1 mL/min, and the displacement pressure
was recorded until the pressure P1 stabilized. Water permeability was then calculated. The
modified nano-SiO2 dispersion of 0.5 PV was injected at a constant flow rate of 0.1 mL/min
and aged at 60 ◦C for 48 h. During the subsequent water flooding, brine was injected
at a constant flow rate of 0.1 mL/min until the pressure was stable after water flooding,
and the stable pressure P2 was recorded. Subsequently, 30 PV of brine was injected at a
constant flow rate of 0.1 mL/min to flush the core, and the pressure during displacement
was recorded to evaluate the depressurization and boosting effect as well as the erosion
resistance of the modified nano-SiO2.
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The core parameters were calculated as follows:

PV =
W1 − W2

ρ
(2)

k =
Qµl
∆pA

(3)

where ρ is the density of water, g/cm3; Q is the flow rate of fluid passing through the core
per unit time, cm3/s; µ is the viscosity of liquid, mPa/s; l is the core length, cm; ∆p is the
pressure difference before and after the liquid passes through the core, MPa, and A is the
cross-sectional area of the liquid passing through the core, cm2.

3. Results and Analysis
3.1. Characterization of Modified Nano-SiO2

The FR-IR spectra of nano-SiO2, modified KH-560 and modified nano-SiO2 are pre-
sented in Figure 2. The characteristic peaks at 472 and 1105 cm−1 belong to the bending
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vibration and stretching vibration of the Si-O. The antisymmetric tensile vibration absorp-
tion peak and bending vibration absorption peak of the hydroxyl emerged at 3446 and
1633 cm−1. Compared with the data of nano-SiO2, the peak intensity at 3446 cm−1 of the
modified nano-SiO2 decreased, indicating that the hydroxyl on the nano-SiO2 had reacted.
In addition, the characteristic peaks of methyl and methylene can be found at 2925 and
2858 cm−1. The two characteristic peaks mentioned above can be simultaneously observed
in the spectra of modified nano-SiO2 and modified KH-560, indicating that the modified
KH-560 successfully grafted onto the modified nano-SiO2.
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3.1.1. Dynamic Light Scattering

Nano-SiO2 has strong hydrophilic properties, and it easily agglomerates between par-
ticles, thereby enlarging the particle radius. Figure 3 displays the particle size distribution
of modified nano-SiO2. All of the particle sizes of the modified nano-SiO2 were less than
60 nm, and the median particle size was 15 nm, in line with the nanoparticle size range.
The modified nano-SiO2 had less agglomeration, and the obtained particles had smaller
and uniform particle size. When it was injected into low-permeability oil reservoirs, it was
not easy to block and it more easily adsorbed onto the surface of rock pores evenly.
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3.1.2. TGA

Figure 4 shows the TGA of SiO2 before and after modification. With increased temper-
ature, the weight of the sample gradually decreased, and the mass change with temperature
was divided mostly into two stages. In the first stage, with increased temperature from
25 ◦C to 120 ◦C, the mass of the sample decreased from 100% to 98%, which was primarily
caused by the loss in adsorbed water on the sample surface. In the second stage, with
increased temperature from 120 ◦C to 1000 ◦C, the weight of nano-SiO2 decreased from
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98% to 92%, which was due to the weight change caused by the dehydration and polycon-
densation of the hydroxyl groups on the nano-SiO2 surface. However, the weight of the
modified nano-SiO2 decreased from 98% to 89% with increased temperature. On the one
hand, this was due to the dehydration and polycondensation of the unreacted hydroxyl
groups on the surface of the modified nano-SiO2, the same as with the above-mentioned
SiO2. On the other hand, the weight of the modified KH560 grafted onto the surface of
SiO2 was further reduced due to the fracture of the modified KH560 owing to the excessive
temperature. At 1000 ◦C, the weight of SiO2 before and after modification differed by 3%,
indicating that 3% of KH560 was grafted onto the surface of SiO2.
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3.2. Performance Evaluation of Modified Nano-SiO2
3.2.1. Contact Angle

Wettability is very important as it directly affects the effect of pressure reduction and
injection. Core wettability was evaluated by measuring the contact angle. Figure 5 shows
the contact angles of core slices immersed in modified nano-SiO2 dispersion and saline.
In the control experiment of core sections soaked in salt water, the core contact angle was
37.34◦, indicating that the initial surface wettability of the core was hydrophilic. However,
the contact angle of the core slices immersed in the modified nano-SiO2 dispersion solution
was 104.26◦, indicating that the modified nano-SiO2 can change the core from hydrophilic
wetting to hydrophobic wetting, and the change in wettability can reduce the adhesion force
of the rock surface to water to promote water flow. Consequently, the effect of lowering
the pressure and increasing injection was achieved. With an increased concentration of
modified nano-SiO2, the contact angle increased from 104.26◦ to 136.36◦ and gradually
became stable. This finding indicated that with increased concentration, the adsorption
amount on the core surface increased, and the hydrophobic degree on the core surface also
increased. However, with a further increased concentration of modified nano-SiO2, the
adsorption gradually became saturated. The adsorption capacity was basically unchanged
and the contact angle tended to be stable.

3.2.2. Stability and Zeta Potential

Modified nano-SiO2 was dispersed in pure water, TX-100, ethanol and kerosene to
explore the dispersibility of nano-SiO2. As shown in Figure 6, due to the large specific
surface area and high surface energy of modified nano-SiO2, it was unable to disperse in
water and agglomerate seriously. In ethanol solution, the dispersion effect was poor, and
some modified nano-SiO2 agglomerated and precipitated. In TX-100, the dispersion effect
of modified nano-SiO2 was better, but the solution was cloudy. The nano-SiO2 had good
dispersibility in the kerosene dispersion system, and the solution was clear and transparent.
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To explore the dispersion stability, the dispersion liquid was stored for 30 days, and
then the solution dispersion was observed. Figure 7 shows the dispersion situation of the
above-mentioned solution. Compared with the dispersion solution not stored for 30 days,
precipitation occurred in the surfactant aqueous dispersion system. The precipitation in
the ethanol dispersion system increased significantly, but the kerosene dispersion system
remained well dispersed.
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A large amount of working fluid is generally used on site; so, using kerosene as a
dispersant is costly and has high safety risks during storage and transportation. Therefore,
the dispersion system of adding NaOH to the surfactant aqueous solution needed to be
explored. As shown in Figure 8, the dispersion of the aqueous surfactant dispersion system
without NaOH was turbid, whereas the dispersion of the aqueous surfactant dispersion
system with NaOH was well dispersed, and the dispersion was clear and transparent. Then,
the dispersion before and after NaOH adjustment was stored for 30 days. As shown in
Figures 7 and 8, the precipitation formed in the dispersion system without NaOH, whereas
the dispersion with NaOH remained clear and transparent.
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Nano-SiO2 dispersion is a colloidal system, and zeta potential is also an important
parameter affecting its stability. In addition to the stability experiments mentioned above,
the zeta potentials of the surfactant aqueous dispersions before and after the introduction
of NaOH were also measured. The larger absolute value of the zeta potential indicated
that the system was more stable. As shown in Figures 9 and 10, after NaOH addition, the
zeta potential of the system increased from −24.1 mV to 62.7 mV. Analysis revealed that
surfactant TX-100 can form a steric hindrance effect through adsorption onto the surface of
modified nano-SiO2, which can prevent mutual collision and coalescence between particles
and improve the system stability. After adding NaOH, OH− adsorbed onto the surface of
the modified nano-SiO2 through hydrogen bonds, whereas Na+ was arranged around the
modified nano-SiO2 via diffusion, forming a diffusion electric double layer. Consequently,
the charge on the surface of nano-SiO2 increased, which improved the repulsion between
particles and the system stability.

3.2.3. Antiswelling Test

The water expansion of bentonite in the rock channel reduced the effective diameter
of the channel and increased the injection pressure. The antiswelling performance is also
an important index affecting the influence of the modified nano-SiO2 dispersion under
pressure reduction and injection. The swelling volumes of bentonite in kerosene, nano-
SiO2 dispersion and water are, respectively, shown in Table 2. The swelling volume of
bentonite in kerosene was 1 mL, the swelling volume of bentonite in nano-SiO2 was 1.8 mL
and the swelling volume of bentonite in water was 2.4 mL. According to Equation (1), the
antiswelling rate of modified nano-SiO2 was 42.9%, and the modified nano-SiO2 had a good
antiswelling effect. After analysis, given that the modified nano-SiO2 was hydrophobic,
the modified nano-SiO2 was adsorbed onto the surface of bentonite, and a hydrophobic
layer formed on the bentonite surface, blocking the contact between water and bentonite to
achieve the effect of antiswelling.
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Table 2. Swelling volume of bentonite in different solutions.

Solution Type Expansion of the Volume (mL) The Expansion Rate (%)

Kerosene 1
42.9Modified nano-SiO2 1.8

Water 2.4

3.2.4. Depressurization and Injection Enhancement Performance

During the start-up process of water injection, given that the low-permeability core
needed to overcome a certain start-up pressure, the pressure initially increased to the
maximum value and then decreased to the equilibrium value. The low-permeability core
surface had a layer of hydration boundary, and fluid flow was not easy. Smaller core
permeability corresponded with a greater resistance to overcome the fluid flow and a
greater starting pressure gradient. As shown in Figure 11, the initial injection pressure of
the core was 0.141 MPa. After the injection of 0.5 PV nano-SiO2 dispersion solution with a
concentration of 300 mg/L, the pressure of the subsequent water flooding was stable at
0.071 MPa, and the pressure reduction rate reached 49.6%. After flushing 20 PV water at
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a flow rate of 0.1 mL/min, the displacement pressure was 0.076 MPa, and the pressure
reduction rate remained as high as 46%. This result indicated that the modified nano-SiO2
adsorbed onto the surface of the rock passage and can maintain a low injection pressure for
a long time even after long-term water erosion, indicating long-term effective performance.
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4. Analysis of Mechanism of Reduced Blood Pressure and Increased Injection
4.1. Reduced Solid–Liquid Adhesion

The adhesion of solid to liquid reflects the retention ability of the solid surface to
liquid. The work of adhesion is the maximum work performed outwards by the system
during solid–liquid adhesion. Greater adhesion performance corresponded with greater
system stability and a stronger solid–liquid interface. Therefore, reducing the adhesion
work of the solid–liquid interface can reduce the resistance of liquid flowing through solid
surface. In 1952, Harkins [31] discussed the interface problem from the view of adhesion
work. From the perspective of thermodynamics, he introduced the following solid–liquid
adhesion work equation:

Wa = γgl + γgs − γsl (4)

Combined with the Young equation, it is as follows:

γgs = γglcos θ + γsl (5)

It follows from Equations (4) and (5) that

Wa = γgl(1 + cos θ) (6)

where Wa is the solid–liquid work of adhesion, mJ/m2; cosθ is the contact angle of a liquid
on a solid surface, ◦; γgl is the gas–liquid interfacial tension, mN/m; γgs is the gas–solid
interfacial tension, mN/m, and γsl is the solid–liquid interfacial tension, mN/m.

According to Equation (6), the adhesion work between a liquid and solid can be
obtained only by measuring the surface tension of liquid and the contact angle of liquid on
the solid surface, as shown in Table 3. According to the results of wettability evaluation in
Section 3.2.1, the solid–liquid adhesion work can be calculated.

Table 3. Effect of modified nano-SiO2 on solid–liquid adhesion.

Surface Tension
(mN·m2) Contact Angle (◦) Work of Adhesion

(mJ·m2)

before the adsorption
72.14

37.34 129.49
after the adsorption 134.63 21.46
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The modified nano-SiO2 induced a change in the rock surface from hydrophilic to
hydrophobic. The contact angle increased, and the adhesion work of the rock to the water
phase decreased from 129.49 mJ/m2 to 21.46 mJ/m2. These phenomena reduced the ability
of the rock surface to bind to the water film and increased its fluidity and effective flow
space. Thus, the injection capacity of the water phase improved and the injection pressure
was reduced.

4.2. Prevention of Clay Swelling

The modified nano-SiO2 also exerted an antiswelling effect. As shown in Figure 12,
when water flowed through the clay minerals on the surface of the rock pores, the clay
particles absorbed water and expanded, thereby reducing the effective diameter of the rock
pores and greatly increasing the injection pressure. As shown in Figure 12, after injecting
the modified nano-SiO2, the modified nano-SiO2 adsorbed onto the surface of the clay
mineral to form a hydrophobic layer and isolate the contact between the water and the clay
particles, greatly reducing the probability of hydration expansion of the clay particles and
increasing the effective diameter of the rock pores. Accordingly, reduced injection pressure
and increased injection volume were also achieved.
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5. Conclusions

For solving the problem of excessive high pressure in ultra-low permeability reservoirs,
a new pressure-decreasing and augmented injection agent (modified nano-SiO2) was
prepared. The structure and particle size of the prepared nano-SiO2 were characterized via
infrared spectrometry and dynamic light scattering. Additionally, the test results showed
that the particle size of modified nano-SiO2 was less than 60 nm, which contributed to
making it pass through smaller cracks. Based on the water contact angle test results, the
surface of the rock transformed from having hydrophilicity to hydrophobicity due to the
modified nano-SiO2, which led to the weakened binding effect of the rocks with water to
prevent the clay expansion of the formation. Under the ultra-low permeability condition,
the depressurization efficiency of the modified nano-SiO2 could reach 49%. Additionally, it
could be maintained at 46% at 20 PV water flow.
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