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Abstract: Transfer learning (TL) has been proven to be one of the most significant techniques for
cross-subject classification in electroencephalogram (EEG)-based brain-computer interfaces (BCI).
Hence, it is widely used to address the challenges of cross-session and cross-subject variability with
more accurate intention prediction. In this case, TL utilizes knowledge (signal features) in the source
domain(s) to improve the classification in the target domain. However, current existing transfer
learning approaches on EEG-based BCI are mostly limited to two-class cross-subject classification
problems, while multi-class problems are only implemented with a focus on within-subject classifica-
tion due to the complexity of multi-class cross-subject classification problems. In this paper, we first
extended the transfer learning approaches to a multi-class cross-subject scenario, then investigated
the reason for transfer learning performance being poor in multi-class cross-subject classification. Sec-
ondly, we address the challenge of significant sessional and subject-to-subject variations originating
from both known and unknown factors. It is discovered that such variations have a massive influence
on the classification because of the negative transfer (NT) across domains. Based on this discovery,
we propose a multi-class transfer learning approach based on multi-source manifold feature transfer
learning (MMFT) framework and an enhanced version to minimize the effects of NT. The proposed
multi-class transfer learning approach extends the existing MMFT to multi-class cases. Then en-
hanced multi-class MMFT firstly searches for domains with high transferability and selects only the
best combination among source domains (SD), then utilize the best-selected combination of domains
for transfer learning. Experimental results illustrate that the proposed multi-class MMFT can be
employed in the cross-subject classification of both three-class and four-class problems. Experimental
results also demonstrated that the enhanced multi-class MMFT could effectively minimize the effect
of negative transfer and significantly increase the prediction rates across individual target domains
(TD). The highest classification accuracy (CA) of 98% is obtained by the enhanced multi-class MMFT.

Keywords: brain-computer interface (BCI); electroencephalogram (EEG); transfer learning (TL);
multi-source manifold feature transfer learning (MMFT); multi-class transfer learning; cross-session
classification; cross-subject classification

1. Introduction

Brain-computer interface (BCI) aims to introduce a direct communication pathway
between the human brain and external devices without any muscular stimulation. Hence,
neural information can be interpreted as continuous EEG signals extracted from the brain
and translated into control commands used to enable users with neurological disorders to
interact with machines [1]. Consequently, EEG-based BCI has been widely utilized to trans-
late EEG signals into control commands using signal pre-processing, feature extraction, and
classification algorithms [2]. In recent years, enhancing classification performance has been
one of the primary focuses of BCI. Therefore, numerous techniques, including experimental
paradigms, have been developed to increase the signal-to-noise ratio of EEG signals, mainly
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to improve classification performance. However, sessional and inter-subject variations in
EEG dynamics, as a result of both known and unknown factors were demonstrated to pose
a significant challenge to classification performance [3,4]. Such variations in EEG dynamics
contribute to varying neural responses from the same stimulus across different subjects.
Moreover, the same stimulus can result in varying neural responses from the same subject
across different time frames, in turn resulting in poor classification performance [5,6]. In
recent studies on BCI, it has been proven that Transfer learning and domain selection can
effectively address the challenge of sessional and inter-subject variations [7]. Therefore, uti-
lizing features from source domains to predict features in the target domain can effectively
improve classification performance [8,9].

Zhang et al. [10] proposed a transfer learning framework based on a two-class problem
to address the challenge of inter-subject and sessional variations in EEG dynamics. Manifold
embedded knowledge transfer (MEKT) framework was proposed and achieved a highest
mean classification accuracy of 79.86%. However, individual TDs demonstrated to be
significantly affected by NT, which in turn affected the prediction rate across target domains.
To address the challenge of NT across individual TDs, the domain transferability estimation
(DTE) approach was further proposed for domain selection, with a highest accuracy of
82.14% observed after source selection. Li et al. [11] employed a forward floating-point
search algorithm to address the challenge of negative transfer by selecting sources with
high transferability for transfer mapping. The algorithm sequentially removed a single
domain (subject) from the current subset of source domains (subjects) at each loop as long
as the resulting subset is better than the previously evaluated one at that level.

Transfer learning has proven to yield a superior classification performance before
source selection across individual TDs for a two-class cross-subject EEG classification. In a
similar manner, a combination of both non-related and related sources can significantly
deteriorate CA across different individual TDs. Hence, employing domain selection to
address the challenge of NT by iterating through source domains to identify the most
beneficial source domains and removing a single less-related domain at a time can still pose
a negative impact on CA throughout each iteration, mainly because individual sources re-
spond differently to different combinations of source domains. Moreover, the performance
of TL on EEG-based BCI has not yet been evaluated and validated based on multi-class
cross-subject EEG classification.

Kim et al. [12] further demonstrated the significance of TL on prediction rate for multi-
class EEG classification through the implementation of a compact convolutional neural
network (CNN) architecture for EEG-based BCI. However, the proposed deep learning
model (EEGNet) was implemented based on a four-class problem but with a focus on
within-subject classification, mainly to address the challenge of sessional variations [13].
Subsequently, a highest prediction rate of 91.34% was achieved for multi-class within-
subject classification. Shahabi et al. [14] further illustrated the impact of TL on the prediction
rate for a two-class cross-subject classification problem by evaluating the performance of
five pre-trained CNN architectures (VGG16, Xception, DenseNet121, MobileNetV2, and
InceptionResNetV2). The CNN models were employed to predict two classes for responder
and non-responder, to Selective Serotonin Reuptake Inhibitors (SSRI) antidepressants in
patients with Major Depressive Disorder (MDD). A highest CA of 95.74% was achieved
when DenseNet121 was employed for a two-class cross-subject classification problem.
Zhang et al. [15] proposed a deep CNN model based on a two-class problem, mainly
to address the challenge of sessional and inter-subject variations. The network was first
trained and evaluated on the same subject’s data, then after the model was trained on a
set of subjects and evaluated on a new target subject [13,16]. Subsequently, samples from
the same session were used for training and validation for subject-specific classification,
while for subject-independent classification, data from all subjects except the target subject
were used to train, and the target subject was used to test the classifier. Subsequently,
deep CNN obtained a highest classification accuracy of 84.19% for a two-class cross-subject
classification or subject-independent.
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Transfer learning is by far the best solution for cross-subject classification problems
emerging as a result of significant variations in EEG dynamics. However, current exist-
ing studies have demonstrated that TL has been limited to or implemented based on a
two-class problem. Furthermore, multi-class problems are only implemented with a focus
on within-subject classification due to the complexity of multi-class cross-subject classi-
fication problems. Moreover, transfer learning suffers from the effect of NT. Therefore,
domain selection has been introduced to address the challenge of NT originating from
non-related domains. However, for more complex multi-class classification problems,
removing a single non-related domain at a time when domain selection is employed by
iterating through source domains to identify the most beneficial source domains can create
a severe implication on classification performance, mainly because a single source domain
can respond differently to different combinations of sources.

In this study, we first propose a multi-class MMFT framework to investigate the
impact of three-class and four-class cross-subject classification problems on transfer learning
performance. Secondly, we propose an enhanced multi-class MMFT framework to address
the challenge of negative transfer originating from non-related sources, whereby enhanced
multi-class MMFT firstly searches and selects only the optimal combination of source
domains, then utilizes the best selected closely related sources to perform transfer learning.
The main contributions of this study are as follows:

1. A multi-class MMFT approach is developed to investigate the impact of multi-class
cross-session and cross-subject classification problems on transfer learning perfor-
mance. The proposed multi-class MMFT enhanced performance of individual target
domains for both three-class and four-class cross-session and cross-subject classifica-
tion problems.

2. A comparative performance analysis between multi-class MMFT, manifold embedded
knowledge transfer (MEKT), and a traditional BCI pipeline based on two classical
machine learning algorithms (Linear discrimination analysis (LDA) and Regression
tree (RegTree)) is carried out. The proposed approach outperforms all classification
algorithms for three-class and four-class cross-session and cross-subject classification
problems.

3. An enhanced multi-class MMFT framework is proposed for domain selection, mainly
to minimize the impact of negative transfer in multi-source transfer mapping. The
proposed enhanced multi-class MMFT improves classification performance by select-
ing only the optimal combination of closely related sources among source domains,
then performing transfer learning on the optimal source domain combination, where
the challenge of negative transfer is solved.

4. A comparative performance analysis shows that the source selection significantly
improves the performance of the proposed enhanced multi-class MMFT for both
three-class and four-class, cross-session, and cross-subject classification problems.

The rest of the paper is organized as follows. Section 2 describes details of the proposed
multi-class transfer learning and its enhanced version. Section 3 illustrates the results of
three-class and four-class experiments when cross-session and cross-subject classification
problems are considered. Section 4 provides some insight and discussion on relevant issues.
Finally, some conclusions are provided in Section 5.

2. Materials and Methods
2.1. Datasets

In this study, two EEG datasets consisting of MI and steady-state motion visual
evoked potential (SSMVEP) samples are utilized. The MI dataset was acquired from a
public database, while the SSMVEP dataset is our own recorded dataset. In this case, both
datasets are utilized to validate the proposed method. These datasets are described in the
following sections.
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2.1.1. Dataset I (Our SSMVEP Dataset)

Our own SSMVEP dataset was recorded in a lab from five healthy experimental par-
ticipants, whereby a g.tec EEG recording system consisting of sixteen EEG channels was
utilized to acquire raw EEG signals from the brain [17]. Moreover, a 10–20 electrodes posi-
tioning system was utilized to arrange all EEG channels on the surface of the scalp, whereby
raw EEG signals were recorded at a sampling rate of 250 Hz. When the experiment begins,
a computer monitor is utilized to project a visual cue, with each participant seated facing
the projecting screen. As such, four flickering objects were projected on a computer monitor,
with each object flickering at a different frequency equivalent to four EEG classes [18]. In
this case, all four objects were flickering in four different directions (left, right, up, and
down). Each of the four objects took a turn to be projected on a monitor, while a beeping
sound served as a notification to inform each subject to focus their attention on a projected
object flickering at either of the four frequencies (29 Hz, 13.3 Hz, 17 Hz, and 21 Hz) [19,20].
Furthermore, each SSMVEP task was executed for 300 s equivalent to 75,000 samples, as
depicted in Figure 1.
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Figure 1. Our dataset experimental paradigm timing scheme.

2.1.2. Dataset II (BCI Competition IV-a Dataset)

This study also makes use of a publicly available database known as BCI competition
IV-a to facilitate the investigation. The dataset consists of four MI classes (left, right, both
feet and tongue) acquired from nine experiment participants or subjects [21]. In this case,
twenty-two Ag/AgCl EEG channels were utilized to acquire raw EEG signals from the
brain [22]. Moreover, a 10–20 electrodes positioning system was utilized to arrange EEG
channels on the surface of the scalp [23]. Subsequently, when the experiment began, a
fixation cross “+” was projected on a computer monitor to indicate the beginning of a trial
denoted by t = 0 s, while participants were seated facing a computer monitor. An arrow
pointing to four different directions was utilized as visual cues and projected on a computer
monitor for t = 1.25 s, while subjects were requested to execute motor imagery tasks from
t = 3.25 s to 6 = 6 s, as depicted in Figure 2.

2.2. Data Pre-Processing

BCI competition IV dataset was firstly filtered using a 0.5 Hz to 100 Hz band-pass filter
to eradicate the effect of non-physiological artifacts in the form of noise, and then a 50 Hz
notch filter was applied to reduce the effect of line noise [23]. Moreover, MI signals were
sampled at a frequency of 250 Hz. Our own SSMVEP dataset was recorded at a sampling
frequency of 250 Hz. A 0.5 HZ to 60 Hz band-pass filter was then applied to reduce the
effect noise. A notch filter at a cut-off frequency of 50 Hz was applied to reduce the effect
of line noise. Moreover, a common average reference (CAR) was applied to eliminate the
effect of noise originating from electrodes [17].
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2.3. Methods

In this section, we present a novel framework of multi-class MMFT, which adapt
the idea of a two-class cross-subject classification for MMFT in multi-class classification
problems, using the three-class and four-class classification as examples. We first review
the related MMFT framework for two-class cross-subject classification, then introduce
the proposed multi-class MMFT for three-class and four-class cross-subject classification,
which can be extended to even more classes. The proposed multi-class MMFT framework
is further enhanced by applying source selection to identify the optimal combinations of
domains, then utilizing the selected sources to perform transfer mapping.

2.3.1. Related Work

In transfer learning, features acquired in the source domain can be utilized to enhance
the intention detection rate (IDR) in the target domain. Hence, it is highly significant to
minimize variations between data distributions of the source and target domain [10]. The
manifold feature transfer learning (MMFT) framework [24] is an effective method based on
transfer learning. MMFT first performs distribution mean alignment (DMA), whereby all
domains are similarly disseminated across the symmetric positive defined (SPD) manifold,
using the objective function shown in (1).

J(A, B) = min
A,B

(
σ2

s +
(

AT Ms A− BT MtB
)2

2σ2
t

+
σ2

s +
(

BT MtB− AT Ms A
)2

2σ2
s

)
(1)

where A and B are linear transformations; Ms and Mt are the distribution means of source
and target domains, respectively; σ2

s and σ2
t are the deviations of covariance matrices of

source and target domains, respectively. The optimal solution of AT Ms A = BT MtB and
two feasible solutions, as shown in (2) and (3), are obtained by minimizing the objective
function in (1). In this way, the marginal probability distribution shift is minimized across
source and target domains, i.e., aligning the distribution means.

A = M−1/2
s , B = M−1/2

t (2)

A and B in (2) can be further used to align the distribution means to every domain’s
Riemannian center.

A = M1/2
t M−1/2

s , B = I (3)

where I is the identity matrix with proper dimension. Using (3), the distribution mean of
the target domain, Mt, is aligned with the distribution mean of the source domain Ms.
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After domain distribution means are aligned, covariance matrices in both source and
target domains are computed using (4) and (5).

P̃s,i = M−1/2
s Ps,i M−1/2

s (4)

P̃t,j = M−1/2
s Pt,j M−1/2

s (5)

where Ps,i is the covariance matrix of the i-th trial EEG data in a source domain; Pt,j is for
the j-th trial EEG data in the target domain; P̃s,i and P̃t,j are the aligned covariance matrices
of source and target domains, respectively.

The next phase of the MMFT framework is SPD manifold tangent space feature
extraction using (6) and (7)

xs,i = upper
(

log
(

P̃s,i

))
i = 1, . . . , ns (6)

xt,j = upper
(

log
(

P̃t,j

))
j = 1, . . . , nt (7)

where ns and nt are the number of trials in a source domain and target domain, respectively;
xs,i and xt,j represent tangent space features extracted from a source domain and target
domain, respectively.

Equations (8) and (9) represent extracted feature matrices, whereby both source and
target domain tangent space features are denoted by Xs and Xt, respectively [10,24].

Xs = [xs,1 . . . xs,ns ] (8)

Xt = [xt,1 . . . xt,nt ] (9)

Furthermore, Grassmann manifold feature learning (GFK) is implemented in the third
phase of multi-class MMFT. Subsequently, throughout the conversion process on geodesics
from the source to the target domain, GFK searches for average stable features [25]. The
marginal probability distribution is reduced through GFK, which brings deviations of all
covariance matrices closer [26].

Equation (10) represents either learned source or target domain Grassmann manifold
features denoted by z, while tangent space features are denoted by x and geodesic flow is
represented by Φ.

Z = g(X) = Φ(t)TX (10)

The inner product of transformed features is obtained via (11).

〈zi, zj〉 =
∫ 1

0
(Φ(t)Txi)

T
(Φ(t)Txj)dt = xT

i Gxj (11)

where Φ represents the geodesic flow; x and z are tangent space features and newly learned
Grassmann manifold, respectively; G = Φ(t)Φ(t)T is the transformation from x to z. Using
the transformation, one receives the Grassmann manifold features in (12).

z = g(x) =
√

Gx (12)

The MMFT classifier is implemented in the fourth phase of the MMFT framework.
The structural risk (13) is minimized across source domains, and conditional alignment is
summarized, mainly to train the prediction model [27].

n

∑
i=1

l( f (zi), yi) + σ‖ f ‖2
K =

ns+nt

∑
i=1

Eii(yi − f (zi))
2 + σ‖ f ‖2

K (13)

where E is the diagonal label indicator matrix.
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D f (Ds, Dt) =
C

∑
c=1

D f ,(c)(Qs, Qt) (14)

Equation (14) signifies a conditional distribution discrepancy of a prediction model
denoted by f . As such, the conditional distribution alignment is defined by D f ,(c)(Qs, Qt).

f = arg min
f∈HK

l( f (zi), yi) + σ‖ f ‖2
K + λD f (Ds, Dt) (15)

Equation (15) represents a classifier denoted by f obtained by combining (13) and (14)
with both Ds and Dt representing source and target domain samples, respectively [24].

f (z) =
n

∑
i=1

αiK(zi, z) (16)

Equation (16) accepts an expansion when the representer theorem is implemented
with coefficients vector denoted by α, while estimation of an original feature vector to
Hilbert space through feature mapping generates a kernel denoted by K [24].

n

∑
i=1

l( f (zi), yi) + σ‖ f ‖2
K =

nsnt

∑
i=1

Eii(yi − f (zi))
2 + σ‖ f ‖2

K = ‖
(

Y− αTK
)

E‖2
F + σtr

(
αTKα

)
(17)

Equation (17) defines a structural risk minimization on the source domain. In this
case, α represents the coefficient vector, while the frobenious norm is denoted by ‖ ‖2

K, and
the kernel matrix is denoted by K ∈ nxn. Both source and target domain label matrices are
denoted by Y = [y1 . . . yn], while the trace operation is represented by tr() [24].

D f (Ds, Dt) = tr
(

αTKMcKα
)

(18)

To further transform the conditional distribution alignment, the representer theorem
is combined with the kernel to produce (18), with the maximum mean discrepancy matrix
denoted by Mc [24].

(Mc)i,j =



1
n2

s
zi, zj ∈ Ds,(c)

1
n2

t
zi, zj ∈ Dt,(c)

− 1
nsnt

{
zi ∈ Ds,(c), zj ∈ Dt,(c)
zi ∈ Dt,(c), zj ∈ Ds,(c)

0 otherwise

(19)

Equation (19) is used to compute elements of a maximum mean discrepancy, with
both source and target domain samples contained in class c denoted by Ds,(c) and Dt,(c).

f = arg min
f∈HK
‖
(

Y− αTK
)

E‖2
F + σtr

(
αTKα

)
+ λtr

(
αTKMcKα

)
(20)

Equation (20) representing the objective function denoted by f is obtained by com-
bining (17) and (18) and used to reduce the loss function and conditional probability
distribution shift.

α = ((E + λMc)K + σI)−1EYT (21)

A solution to the objective function was obtained using (21) through the setting of the
derivative ∂ f /∂α = 0. In this case, (18) is used to calculate the classifier once α is obtained.

f =
z

∑
i=1

fi (22)
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Quantified voting to transfer multi-source knowledge is implemented as the last
phase of the proposed MMFT. In this case, to obtain labels for the target domain, a voting
mechanism is utilized to integrate prediction information of various source domains.
Subsequently, (22) is used to vote for the prediction results of individual classifiers. In this
case, transfer of neural information across domains is dependent on the assessed classifier
using a voting mechanism [24]. As such, each classifier is built using (18) whenever each of
the source domains is transferred.

f = argmin
f εHK
‖
(

Y− αTK
)

W‖2
F + σtr

(
αTKα

)
+ λtr

(
αTKMcKα

)
(23)

Furthermore, the weighted MMFT (w-MMFT) algorithm is also explored to address
the challenge of class imbalance, which occur as a result of source domain label information,
that tends to affect the structural risk function used to train the MMFT classifier [24,28].
In this instance, w-MMFT’s objective function is defined by (23), with W representing the
weight matrix.

α = ((W + λMc)K + σI)−1EYT (24)

Equation (24) defines the solution to the objective function denoted by (23), with
Mc representing a maximum mean discrepancy matrix, while W represents the weight
matrix [24]. The overall procedure of MMFT is summarized in Algorithm 1.

Algorithm 1 Multi-source Manifold Feature Transfer (MMFT)

Input:z source domains samples
{{

X(j)
s,i , y(j)s,i

}ns

i=1

}z

j−1
; target domain samples

{
Xt,i
}nt

i=1;

regularization parameters λ, η; number of iterations N.
Output: Predict labels ỹt for target domain
1: Calculate the covariance matrices for both z source domains and target domain, apply DMA,

get aligned covariance matrices
{

P̂(j)
s

}z

j=1
and P̃t.

2: Get tangent space features X̃ form SPD manifold.
3: Learn Grassmann manifold features Z =

[
Zt, Z1

S, . . . , Zz
S
]

for z source domains and target
domain.
4: Pseudo labels for target domain ŷt = [].
5: for n = 1, . . . , N do
6: Multi-source classifier f = [].
7: for j = 1, . . . , z do

8: Construct kernel K using features
[

Zt, Z(j)
S

]
.

9: Calculate Mc using ŷ(j)
S and ŷt

10: Compute α to obtain f j trained by j-th source domain via the representer theorem.
11: Quantified voting for target domain, f = f + f j.
12: end for
13: Pseudo labels ŷt = f (Zt), update ŷt.
14: end for
15: return ŷt.

2.3.2. Multi-Class MMFT Framework

A novel multi-class MMFT is presented in this section to evaluate the effect of multi-
class cross-subject classification on transfer learning performance. The proposed framework
adapts the idea of a two-class cross-subject classification for MMFT in multi-class classifica-
tion problems, using the three-class and four-class classification as examples.

Figure 3 gives a detailed overview of the proposed multi-class MMFT framework that
performs transfer mapping, utilizing features acquired from multiple source domains to
improve the prediction rate of individual target domains based on a three-class and a four-
class problem. The proposed multi-class MMFT framework is composed of four modules
that form part of transfer learning:



Appl. Sci. 2023, 13, 5205 9 of 27

• Distribution means alignment (DMA). Multi-class MMFT firstly performs DMA for
multi-class domains through rank of domain (ROD) utilizing KL divergence to eval-
uate similarities between source and target domain, mainly to align the distribution
mean of each domain on (SPD) manifold.

• SPD manifold feature extraction. After domains are aligned, tangent space features
are extracted from multi-class SDs and TD, respectively.

• Grassmann manifold feature learning. Once tangent space features have been ex-
tracted, the geodesic flow kernel is utilized to learn feature mapping.

• Classification utilizing MMFT classifier. After Grassmann manifold feature learning,
the MMFT classifier is used to predict TD labels using knowledge from SDs. The
overall procedure of the multi-class MMFT is summarized in Algorithm 2.

Algorithm 2 Multi-class MMFT

Input:z Multi-class source domains samples
{{

X(j)
s,i , y(j)s,i

}ns

i=1

}z

j−1
; Multi-class target domain

samples
{

Xt,i
}nt

i=1; regularization parameters λ, η; number of iterations N.
Output: Predict multi-class labels ỹt for target domain
1: Calculate the covariance matrices for both z source domains and target domain, apply DMA,

get aligned covariance matrices
{

P̂(j)
s

}z

j=1
and P̃t.

2: Get tangent space features X̃ form SPD manifold.
3: Learn Grassmann manifold features Z =

[
Zt, Z1

S, . . . , Zz
S
]

for z source domains and target
domain.
4: Four-class pseudo labels for target domain ŷt = [].
5: for n = 1, . . . , N do
6: Multi-source classifier f = [].
7: for j = 1, . . . , z do

8: Construct kernel K using features
[

Zt, Z(j)
S

]
.

9: Calculate Mc using multi-class labels ŷ(j)
S and ŷt

10: Compute α to obtain f j trained by j-th source domain via the representer theorem.
11: Quantified voting for target domain, f = f + f j.
12: end for
13: multi-class pseudo labels ŷt = f (Zt), update ŷt.
14: end for
15: return multi-class labels ŷt for target domain.Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 29 
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2.3.3. Enhanced Multi-Class MMFT

The proposed enhanced multi-class MMFT approach consists of two phases, namely
source selection and transfer mapping.

Figure 4 depicts the general framework of the proposed enhanced multi-class MMFT
that firstly performs source selection aimed at identifying appropriate sources, then utilizes
an optimal combination of sources to perform transfer mapping, mainly to minimize EEG
variations across source domains and target domains. The proposed enhanced multi-class
MMFT includes five phases:

• Domain selection through selection of optimal combination of closely related domains.
• Distribution means alignment through rank of domain.
• Tangent space feature extraction.
• Grassmann manifold feature learning.
• Classification utilizing MMFT classifier.
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Domain Selection

In this case, source selection phase is firstly carried out to identify and select only
closely related combinations of domains from multiple sources, then utilize the best-
selected combination during transfer mapping to enhance the prediction rate of individual
target domains. To achieve this goal, a MATLAB function known as nchoosek [29], de-
noted by B = nchoosek(v, k), which is a representation of binomial coefficient, was imple-
mented through our proposed multi-class MMFT, with the number of possible combinations
shown in (25)

C(n, k) =
n(n− 1) . . . (n− k + 1)

k!
=

n
k

n− 1
k− 1

n− 2
k− 2

. . .
n− k + 1

1
(25)

Subsequently, when the function is executed, it generates all possible combinations
of closely related domains among multiple sources. In this instance, (4) is used to com-
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pute binomial coefficients denoted by C(n, k), with k representing the number of possible
combinations from n. In this case, both k and n have to be a nonnegative integer [29].

Transfer Mapping

The main objective of the source selection phase is to discard non-related domains with
low transferability but consider only closely related sources, mainly to reduce the effect of
NT emerging from sessional and subject-to-subject variations [30]. After source selection,
the optimal combination of domains is then utilized when transfer mapping is applied,
whereby the selected sources are firstly aligned through DMA using ROD. Subsequently,
covariance matrices are then generated once distribution means have been aligned, from
which tangent space features for both source and target domain are extracted. Moreover,
feature learning is carried out through GFK, making use of features acquired from the SPD
manifold, whereby the MMFT classifier is applied after feature learning. In this case, to
acquire the target domain’s pseudo labels, prediction rates from multiple classifiers are
then integrated through a voting mechanism.

The overall procedure of the proposed multi-class MMFT is summarized in Algorithm 3.

Algorithm 3 Enhanced Multi-class MMFT

Input:z source domains samples
{{

X(j)
s,i , y(j)s,i

}ns

i=1

}z

j−1
; target domain samples

{
Xt,i
}nt

i=1;

regularization parameters λ, η; number of iterations N.
Output: Predict labels ỹt for target domain
1: for n= 1, . . . ,N do
2: Compute binomial coefficients C(n, k); get combination of sources closely related to the
target domain.
3: for j = 1, . . . ,z do
4: Get only the best combination from closely related sources.
5: end for
6: end for
7: Calculate the covariance matrices for both z source domains and target domain, apply DMA,

get aligned covariance matrices
{

P̂(j)
s

}z

j=1
and P̃t.

8: Get tangent space features X̃ form SPD manifold.
9: Learn Grassmann manifold features Z = [Zt, Z1

S, . . . , Zz
S] for z source domains and target

domain.
10: Pseudo labels for target domain ŷt = [].
11: for n = 1, . . . , N do
12: Multi-source classifier f = [].
13: for j = 1, . . . , z do

14: Construct kernel K using features [Zt, Z(j)
S ].

15: Calculate Mc using ŷ(j)
S and ŷt

16: Compute α to obtain f j trained by j-th source domain via the representer theorem.
17: Quantified voting for target domain, f = f + f j.
18: end for
19: Pseudo labels ŷt = f (Zt), update ŷt.
20: end for
21: return ŷt.

3. Results
3.1. Experiment Setup

In this study, the impact of multi-class cross-session and cross-subject classification
on TL performance is investigated using our proposed multi-class MMFT approach. To
facilitate the investigation, multi-class MMFT is firstly evaluated based on a three-class
problem, then a four-class problem using both nine EEG sessions and subjects, respectively.
The proposed multi-class MMFT receives multi-class (z) samples from different sources
or domains (subjects/sessions), and class labels (y) for each domain as input parameters.
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Multi-class MMFT iterate (N) through domains, and in each iteration, samples from each
domain take a turn as a target domain (Xt), while the rest of the samples are source
domains (Xs). In each iteration, the classifier utilizes source domain labels (Ys) to predict
labels (Yt) for the corresponding target domain. The number of iterations in this instance is
dependent on the number of sources (subjects/sessions), meaning less number of sources
reduces while multiple sources increase computation time for multi-class MMFT. For our
experiments, when multi-class MMFT is employed, eight sessions or subjects are assigned
as source domains, while a single session or subject is assigned as a target domain [24].

For both three-class and four-class problems, multi-class MMFT is compared with both
MEKT and two ML algorithms implemented through a traditional BCI pipeline. The same
experiment setup utilized when multi-class MMFT is employed was utilized when MEKT
is employed, and eight sessions or subjects are considered as source domains, while a single
session or subject is considered as a target domain. To emulate the same TL experiment
using LDA and RegTree classifiers [5,31], eight sessions or subjects are utilized for training,
while a single session or subject is utilized to test both classifiers, respectively [17,32].

Multi-class MMFT is further enhanced to first perform domain selection and then TL,
mainly to address the challenge of NT emanating from significant sessional and subject-to-
subject variations [33]. When the enhanced multi-class MMFT is employed, the optimal
combination among source domains is firstly selected from eight sessions or subjects, and
then the best combination is selected as source domains to enhance the prediction rate in
the target domain.

3.2. Three-Class Problems
3.2.1. Multi-Class MMFT for Three-Class Cross-Session Classification

In this section, we investigate the impact of a three-class cross-session classification
problem on transfer learning performance. Multi-class MMFT framework is employed and
compared with MEKT, and two ML algorithms are implemented through a traditional BCI
pipeline. A three-class (Left, Right, and Up) EEG dataset consisting of nine sessions acquired
from a single subject on different days is used for performance evaluation. Moreover,
for this experiment, multi-class MMFT only performs transfer learning without domain
selection. As such, when multi-class MMFT is employed, eight sessions are considered
source domains, and a single session is a target domain; all nine sessions take a turn as a
target domain.

Figure 5 shows the comparison results between the proposed method, MEKT, and
ML algorithms (LDA and RegTree) [34]. From the comparison, one finds that both transfer
learning algorithms achieved the best performance across individual target domains. Multi-
class MMFT, in this instance, achieved the highest CA of 88.7% when Se6 is a TD and
(Se1~Se5 and Se7~Se9) are SDs, while MEKT recorded a highest CA of 80% when Se3
is a TD and (Se1~Se2 and Se4~Se9) are SDs. Moreover, utilizing samples from sessions
acquired on different days to train and test the classifiers demonstrated to be an obstacle for
ML algorithms, mainly due to the challenge of overfitting, which in turn deteriorated the
classification performance. Hence, an inferior CA of 48%, which is the best performance by
LDA, is observed when Se7 is used to test and (Se1~Se6 and Se8~Se9) are used to train the
classifier, while a highest CA of 42% was recorded when (Se1~Se8) are used to train, and
Se9 is used to test RegTree [17,34,35].

Multi-class MMFT recorded superior classification performance, however, NT proved
to pose a severe implication on classification performance across individual TDs. Hence, a
significant decline in accuracy was observed when Se8 is the TD and (Se1~Se7 and Se9)
are SDs. In this instance, a lowest CA of 22.7% was achieved when multi-class MMFT
is employed. A drastic decrease in CA is also recorded when Se2 is the TD and (Se1
and Se3~Se9) are SDs. Subsequently, a lowest CA of 20% was achieved when MEKT is
employed. The challenge of overfitting demonstrated to be an obstacle when ML algorithms
are employed and contributed to significantly poor classification performance. Hence,
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lowest accuracies of 34% and 26% were recorded for both LDA and RegTree when Se2 is
used to test and (Se1 and Se3~Se9) are used to train both classifiers, respectively [17,36].
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Multi-class MMFT in this experiment illustrated that individual sessions could yield a
significant high prediction rate for a three-class cross-session classification. However, the
existence of variations across sessions leads to the transfer of knowledge from non-related
domains, which in turn affects the prediction rate across individual sessions, as illustrated
in Se 4, 7–9 in Figure 5, where the multi-class MMFT performed poorly.

3.2.2. Enhanced Multi-Class MMFT for Three-Class Cross-Session Classification

To address the challenge of NT that constitutes low IDRs across individual sessions as
a result of variations as observed in the last three sessions in Figure 5. We further enhanced
the proposed multi-Class MMFT to first perform domain selection by identifying the
optimal combination of domains among multiple sources. After use, the selected optimal
combination during TL to improve the prediction rate in the target domain [37,38]. As such,
the effectiveness of our proposed approach is evaluated based on classification performance
after domain selection and compared with performance before domain selection.

Figure 6 depicts the performance evaluation results before source selection and after
source selection when enhanced multi-class MMFT is employed. From the evaluation, one
finds that non-related sources affect the prediction rate as a result of NT while selecting
only closely related sources minimizes the impact of NT in turn, improves the prediction
rate across individual TDs. Therefore, a highest CA of 88.7% was observed before source
selection when Se6 is TD and (Se1~Se5 and Se7~Se9) are SDs. However, a CA of 94.7% was
recorded after source selection when (Se1~Se2, Se5, Se7, and Se9) were optimally selected
as the best combination for TL, as depicted in Table 1. Consequently, a 6% increase in CA
was recorded across Se6 after source selection.

Furthermore, a 14% increase in CA is observed across Se1 when (Se4~Se7 and Se8)
are optimally selected as the best combination of closely related source domains. Hence, a
superior CA of 98%, which is the best performance across all individual TDs, was recorded
after source selection, while a prediction rate of 84% was observed before source selection
across Se1 when S2~Se9 are SDs.

Notably, a 56% increase in CA was observed across Se7 when (Se2, Se4, Se6, and Se8)
were selected as the best combination of closely related sources. A combination of closely
related sources proved to significantly enhance performance, with a CA of 92% recorded
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after source selection. However, non-related sources were demonstrated to significantly
contribute to poor classification performance, with a CA of 36% observed before source
selection across Se7.
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Table 1. Selected source domain for a three-class cross-session classification.

Target Domain Selected Source Domain(s)

1 4, 5, 6, 7, 8

2 3, 4, 6, 7, 8

3 5

4 5, 7, 8, 9

5 3, 6

6 1, 2, 5, 7, 9

7 2, 4, 6, 8

8 1, 2, 5

9 1, 4

From these results, one finds that different combinations of source domains can
yield different prediction rates across individual domains, hence selecting only the optimal
combination of source domains can minimize the impact of NT resulting from the transfer of
knowledge from non-related domains, which will in turn, significantly enhance prediction
rate across individual target domains.

3.2.3. Multi-Class MMFT for Three-Class Cross-Subject Classification

The impact of a three-class cross-subject classification problem on TL performance
is further investigated using nine EEG subjects, mainly to further validate the classi-
fication performance of multi-class MMFT on a three-class cross-subject classification
problem [39,40]. In a similar manner as the previous experiment, when multi-class MMFT
is employed, eight subjects are considered as source domains, while a single subject is a
target domain, and all nine subjects take a turn as a target domain.
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From Figure 7, one finds that TL algorithms can significantly enhance the classification
performance of individual TDs for a three-class cross-subject classification as compared
to ML algorithms. Hence, emulating the same TL conditions for ML algorithms by uti-
lizing samples from eight different subjects to train and samples from a single different
subject to test the classifiers proved to have a negative effect on classification performance.
Consequently, LDA achieved a highest CA of 48% when S5 is used to test and (S1~S4 and
S6~S9) are used to train the classifier, while RegTree achieved a highest accuracy of 42%
when S6 was used to test and (S1~S5 and S7~S9) were used to train the classifier [17,34,41].
However, multi-class MMFT demonstrated to effectively improve performance, with a
highest CA of 75.3% recorded across S3 as a target domain and (S1~S2 and S4~S9) are source
domains. An inferior CA was also recorded when MEKT was employed and compared
with multi-class MMFT, with a highest CA of 70% observed across S4 as a TD and (S1~S3
and S5~S9) are SDs.
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Related source domains proved to be beneficial for multi-class MMFT. However, non-
related sources constituted NT, which resulted in poor classification performance across
individual TDs. The effect of NT can be attributed to a significant decline in accuracy which
is observed across S8 as a TD and (S1~S7 and S9) are SDs, whereby S8 achieved an accuracy
of 34% when multi-class MMFT is employed. Samples from non-related subjects were also
demonstrated to be an obstacle for both ML classifiers. Hence, a significant decrease in
accuracy is noted for ML classifiers, with LDA achieving a lowest accuracy of 30% when
S8 was used to test and (S1~S7 and S9) were used to train the classifier, while RegTree
achieved a lowest accuracy of 32% when S1 is used to test and (S2~S9) are used to train
the classifier.

From these results, one finds that subject-to-subject variations can significantly af-
fect the performance of TL for a three-class cross-subject classification. However, related
domains illustrated that multi-class MMFT could significantly enhance classification perfor-
mance, while non-related domains deteriorate the classification performance of individual
target domains, as depicted in Figure 7.

3.2.4. Enhanced Multi-Class MMFT for Three-Class Cross-Subject Classification

In this section, multi-class MMFT is implemented based on a three-class cross-subject
classification problem, mainly to address the challenge of inter-subject variations which sig-
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nificantly constitute NT [42]. The proposed multi-class MMFT firstly discards non-related
subjects by identifying the optimal combination of subjects among multiple source domains.
After source selection, then utilize the best combination of closely related SDs to perform
transfer learning. In a similar manner as the previous experiment based on EEG sessions,
the effectiveness of our proposed approach is evaluated based on classification performance
before domain selection and after domain selection using nine three-class subjects [32].

From the resulting Figure 8, a highest classification accuracy of 75.3% was observed
before the selection of the optimal combination of source domains, when S3 is the target
domain and (S1~S2 and S4~S9) are source domains. However, a 9.4% increase in CA
was observed when only (S2 and S7~S8) were optimally selected, then utilized as source
domains for TL, as depicted in Table 2. In this case, S3 achieved an accuracy of 84.7% after
source selection, as illustrated in Figure 8.
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Table 2. Selected source domains for a three-class cross-subject classification.

Target Domain Selected Source Domain(s)

1 3, 8, 9

2 3, 7, 8

3 2, 7, 8

4 5, 8

5 1, 7, 8

6 8, 9

7 2, 5, 9

8 1, 4, 5, 9

9 4, 8

Moreover, a highest classification accuracy of 67.3% was observed before source
selection across S2 as a TD when (S1 and S3~S9) are SDs. Notably, an 18% increase in CA
was recorded when (S3, S7~S8) were selected as the optimal combination of closely related
source domains, with a highest CA of 85.3% observed across S2 after source selection.
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Based on these results, it is worth noting that utilizing all subjects as source domains
can increase the prediction rate across individual target domains. However, the same
sources can deteriorate IDRs across different individual target domains due to the existence
of non-related domains characterized by significant variations in EEG dynamics, which
lead to NT. Hence, selecting only the best source domains with high transferability can
significantly increase the prediction rate in the target domain when enhanced multi-class
MMFT is employed.

3.3. Four-Class Problems
3.3.1. Multi-Class MMFT Four-Class Cross-Session Classification

The impact of multi-class cross-subject classification on transfer learning performance
is further investigated based on a four-class cross-session classification problem [43]. To
validate the classification performance, multi-class MMFT is compared with MEKT and
ML algorithms. To facilitate the investigation, nine four-class EEG sessions are used.
Subsequently, when multi-class MMFT is employed, eight sessions are assigned as source
domains, while a single session is assigned as a TD, and all nine sessions take a turn
as a target domain. Moreover, when a traditional BCI is implemented, both LDA and
RegTree are trained using eight sessions, while a single session is used to predict the
classifiers, respectively.

Consequently, a highest classification accuracy of 99% was recorded across Se7 as
a TD and (Se1~Se6 and Se8~Se9) as SDs when MEKT is employed, while a CA of 70.5%
was noted across Se4 as a target domain and (Se1~Se3 and Se5~Se9) as source domains
when multi-class MMFT is employed. Compared with ML algorithms, an inferior CA of
43%, which is the best performance achieved by LDA, is noted when Se9 is used to test
and (Se1~Se8) is used to train. In a similar manner, RegTree did not show traits of any
improvement, with a highest accuracy of 40% achieved when Se5 was used to test and
(Se1~Se4 and Se6~Se9) was used to train the classifiers.

Notably, a combination of (Se1~Se8) as source domains proved to contain non-related
sources. Hence, an inferior classification performance of 24.5% is observed across Se9
when multi-class MMFT is employed. The complexity of a four-class problem and a
combination of non-related sources proved to pose a significant challenge for MEKT, with
poor performances recorded across Se2~Se6 as TDs. Furthermore, LDA achieved a lowest
accuracy of 31% when Se4 was used to test and (Se1~Se3 and Se5~Se9) was used to train
the classifier, while RegTree achieved a lowest accuracy of 27% when Se8 was used to test
and (Se1~Se7 and Se9) is used to train the classifier.

From these results, one finds that sessional variations can significantly affect the
performance of TL for a four-class cross-subject classification problem due to the complexity
of a four-class problem. However, as sessions took turns as target domain, some sessions
demonstrated to yield superior CA with different combinations of eight source domains.
Hence, related domains with high transferability have proven to be more effective in
enhancing the prediction rate of individual sessions, while non-related domains deteriorate
the prediction rate, as illustrated in Figure 9.

3.3.2. Enhanced Multi-Class MMFT Four-Class Cross-Session Classification

Results from Figure 9 illustrated that the complexity of a four-class problem and
non-related sources constituted NT. As a result, the classification performance in the target
domain significantly deteriorated. However, closely related sources (sessions) have been
demonstrated to enhance classification performance, while a combination of both non-
related and related sources has been demonstrated to yield a significant variation in classifi-
cation performance across individual target domains, as depicted in Figure 9. In this section,
enhanced multi-class MMFT is employed to search and select only the optimal combination
of closely related sources, then utilize the best-selected sources to enhance the performance
of individual target domains for a four-class cross-session classification problem.
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Table 3 depicts the best-selected combinations among all source domains as each
session took a turn as the target domain. The selected sources vary across individual target
domains since the proposed enhanced multi-class MMFT only searches for closely related
sources for a specific target domain. As such, a superior classification performance of
70.5% was noted before domain selection across Se4 as a target domain, and the remaining
eight sessions are SDs. However, a highest accuracy of 87% was recorded across Se4
after (Se7~Se8) were optimally selected as the best combination of closely related source
domains. Hence, a 16.5% increase in accuracy after source selection can be observed across
Se4 when enhanced multi-class MMFT is employed, as illustrated in Figure 10. Based
on these results, it is worth noting that a combination of both non-related and related
sources, including the complexity of a four-class problem, will yield significant variations
in classification performances across individual TDs. Hence, classification performance
before source selection is characterized by poor prediction rates. However, employing
enhanced multi-class MMFT to select only the best sessions proved to effectively improve
classification performance across target domains.

Table 3. Selected source domain for a four-class cross-session classification.

Target Domain Selected Source Domain(s)

1 2, 3, 5, 6

2 1, 3, 5, 7

3 1, 2, 5, 9

4 7, 8

5 2, 3

6 3, 4, 8

7 3, 4, 6, 9

8 4, 6

9 3, 7
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3.3.3. Multi-Class MMFT for Four-Class Cross-Subject Classification

The impact of multi-class cross-subject classification on transfer learning performance
is further investigated based on a four-class problem. A comparative performance analysis
is carried out between the proposed multi-class MMFT, MEKT, and two traditional ML
algorithms. However, to emulate the same transfer learning condition for a four-class
cross-subject classification using ML, eight subjects are used to train, while a single subject
is used to test the classifier. Despite the complexity of a four-class cross-subject classification
problem, closely related subjects with similar EEG characteristics were demonstrated to
effectively enhance the prediction rate in the target domain.

Figure 11 depicts a comparison of classification performance between our proposed
multi-class MMFT with MEKT and two ML algorithms for a four-class cross-subject classi-
fication problem. The effect of closely related sources on a four-class cross-subject classi-
fication problem can be attributed to a high classification performance across individual
TDs. Hence, the best performance of 59% is noted across S3 as a TD and (S1~S2 and S4~S9)
as SDs when multi-class MMFT is employed. However, the complexity of a four-class
cross-subject classification problem proved to be a challenge for TL algorithms. MEKT,
on the other hand, did not show any traits of improvement, with the highest CA of 50%
recorded across S1, while inferior CA accuracies of 38% and 31% were noted when both
LDA and RegTree classifiers were employed, respectively.

Non-related subjects were further demonstrated to be an obstacle for TL algorithms
for a four-class cross-subject classification problem. Hence, the effect of NT on classification
performance in this instance was denoted by a significant deterioration in prediction rate
across individual TDs. It can be observed that a combination of SDs (S1 ~ S8) proved to be
dominated by non-related sources, which constituted a poor classification performance of
29.5% depicted across S9 when multi-class MMFT is employed, while MEKT achieved a CA
of 38%. Moreover, utilizing samples from different subjects to train and test ML algorithms
proved to significantly affect the performance of both LDA and RegTree, with highest
accuracies of 41% and 38% recorded when both algorithms were employed, respectively.

Based on these results, it is worth noting that the complex nature of a four-class
cross-subject classification problem, including significant subject-to-subject variations, can
drastically deteriorate the performance of TL algorithms. Moreover, the presence of non-
related sources proved to affect closely related domains with high transferability. Hence,
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related sources in this instance demonstrated to have minimal impact on classification
performance due to the complexity of a four-class cross-subject classification problem, as
illustrated in Figure 11.
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3.3.4. Enhanced Multi-Class MMFT for Four-Class Cross-Subject Classification

Diverse mental states and complex neural connectivity across subjects can result in
significant variations in EEG neural dynamics. Additionally, diversity in cognitive states
over time constitutes variations in EEG neural dynamics from subject to subject. Moreover,
subjects consisting of non-related EEG characteristics demonstrated to deteriorate the
prediction rate of individual target domains as a result of NT. Subjects consisting of closely
related EEG characteristics were demonstrated to enhance the classification performance of
individual target domains. In this case, the enhanced multi-class MMFT was employed
to select only the optimal combination of closely related subjects, then utilized the best-
selected combinations of sources to enhance the classification performance of individual
target domains for a four-class cross-subject classification problem.

Table 4 shows the optimal selected closely related subjects (source domains) as each
subject took a turn as the target domain. Notably, optimally selecting (S3 and S7) as SDs
proved to yield a superior classification performance, with a CA of 71.5% recorded across
S6 as a TD after source selection, while an inferior performance of 54.5% was observed
before domain selection across S6 when all eight subjects are SDs as illustrated in Figure 12.
Consequently, a 17% increase in accuracy was observed after optimally selecting only
closely related source domains.

Based on these results, it is worth noting that the complexity of a four-class problem,
together with inter-subject variations in EEG dynamics, can significantly affect the perfor-
mance of individual subjects for cross-subject EEG classification. However, selecting only
the best combination of closely related subjects proved to effectively minimize the impact
of NT, at the same time, enhance the performance of TL algorithms which is attributed to
high prediction rate across individual target domains after source selection.

Table 5 depicts the mean classification performances of three-class and four-class
problems for both sessions and subjects. From the comparison, one finds that multi-class
MMFT achieved a superior mean classification performance of 64.9%, as compared to
both MEKT and ML algorithms for a three-class problem. However, the impact of NT
on classification performance was observed across both three and four-class problems
when multi-class MMFT is employed. Hence, enhanced multi-class MMFT was proposed



Appl. Sci. 2023, 13, 5205 21 of 27

to address the challenge of NT by selecting only the best combination of closely related
source domains. Consequently, superior mean classification performance of 79.6% was
recorded when enhanced multi-class MMFT was applied to three-class sessions. These
results further support and validate the significance of selecting only the best combination
of closely related sources as SDs for transfer mapping to minimize the impact of NT.

Table 4. Selected source domain for a four-class cross-subject classification.

Target Domain Selected Source Domain(s)

1 2, 7, 9

2 5, 8

3 6, 7, 8

4 1, 2

5 4

6 3, 7

7 3, 8

8 6, 7, 9

9 1, 3
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Table 5. Mean (%) and standard deviation (in parenthesis) of both transfer learning and machine
learning algorithms.

Methods
Three-Class Three-Class Four-Class Four-Class
(Sessions) (Subjects) (Sessions) (Subjects)

LDA 42.1 (4.65) 40.9 (5.6) 36.1 (4.23) 35.1 (4.23)

RegTree 32.77 (6.036) 36 (3.28) 32.3 (4.77) 32.9 (4.14)

MEKT 51.6 (22.02) 61.4 (5.79) 44.1 (31.4) 40.4 (7.73)

Multi-class MMFT 54 (24.6) 64.9 (12.23) 52 (14.84) 51.3 (8.81)

Enhanced Multi-class MMFT 79.6 (18.1) 74.3 (14.16) 71.1 (13.83) 63.6 (10.83)

Figure 13 depicts a comparison in classification performance between MI and SSMVEP
datasets for both three-class and four-class problems. In this section, we evaluate the per-
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formance of each dataset using the proposed multi-class MMFT, MEKT, and ML algorithms
(LDA and RegTree) before source selection. A superior classification performance of 64.9%
was recorded across a 3-class MI dataset when multi-class MMFT is employed, while a
CA of 61.4% was noted when MEKT is applied on the same MI dataset. Moreover, the
challenge of overfitting proved to be an obstacle for ML algorithms, with poor classification
performance recorded when both LDA and RegTree are applied on the same 3-class MI
dataset. The complexity of a four-class problem, including NT, demonstrated to have
a significant impact on the classification performance of both 4-class datasets. Hence, a
highest CA of 52% was recorded when multi-class MMFT is applied on a 4-Class SSMVEP
dataset. MEKT, on the other hand, did not demonstrate any signs of improvements when
applied on the same datasets. Moreover, using samples from different subjects to train and
test the classifiers proved to give rise to the challenge of overfitting, in turn, results in poor
classification performance when ML algorithms are applied to all datasets, as depicted
in Figure 13.
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3.4. Experiments on Computation Complexity

In this section, we empirically checked the computational complexity of four different
approaches, including our proposed approach, which was implemented in Matlab 2020a
on a laptop with i5-1035G1 CPU@1.00 GHz, 16 GB memory, running 64-bit Windows 11
Pro Edition.

In this section, we measure the computational complexity by analyzing the computa-
tional time across each method for both three-class and four-class problems.

Both sessions and subjects are considered for computation complexity analysis. Table 6
depicts the computational time for each method, and notably, a significantly low compu-
tational time was recorded when TL algorithms were employed as compared to both ML
algorithms. Hence, a highest computational time of 5371.8 s is noted when a regression
tree is employed. However, a lowest computational time of 6.63 s is noted for a three-class
cross-session, while 8.47 s is observed for a three-class cross-subject classification when
multi-class MMFT is employed. Moreover, a 10.17 s and 12.58 s computational time was
observed for a four-class cross-session and cross-subject classification, respectively, when
multi-class MMFT is employed. Domain selection demonstrated to have a significant
impact on computation complexity. Hence, a highest computational time is noted for both
four-class cross-session (6648.37) and cross-subject (6105.18 s) classification.
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Table 6. Computation Complexity.

Computation Time

Methods Three-Class Three-Class Four-Class Four-Class

(Sessions) (Subjects) (Sessions) (Subjects)

LDA 231.71 s 229.7 s 266.96 s 233.19 s

RegTree 4439.61 s 4681.23 s 5371.8 s 5194.59 s

MEKT 7.564 s 8.59 s 10.36 s 13.95 s

Multi-class MMFT 6.63 s 8.47 s 10.17 s 12.58 s

Enhanced Multi-class MMFT 3314.09 s 3972.49 s 6648.37 s 6105.18 s

4. Discussion

Transfer learning is highly effective in terms of increasing classification performance
across individual target domains utilizing features acquired from different source domains,
and it has been demonstrated to yield superior CA for a two-class cross-subject classification
problem [44], while for a multi-class problem, it has been demonstrated to be more effective
for within-subject classification [9,45].

However, sessional diversity and subject-to-subject variations demonstrated that non-
related domains pose a significant challenge across target domains as a result of NT, which
in turn deteriorates the prediction rate across individual target domains [46,47].

In this paper, we proposed a multi-class MMFT approach to investigate the effect of
multi-class cross-session and cross-subject classification on TL performance. The proposed
approach was evaluated based on a three-class and a four-class problem and compared
with MEKT and two classical ML algorithms under similar transfer learning conditions.

A comparative performance analysis demonstrated that the proposed multi-class
MMFT could significantly enhance the classification performance of both three-class and
four-class cross-session and cross-subject classification problems. Consequently, a superior
classification performance of 88.7% was recorded across all individual TDs for three-class
cross-session, while a highest prediction rate of 75.3% was recorded for three-class cross-
subject classification problems when multi-class MMFT is employed. Moreover, compared
to multi-class MMFT, the effect of NT and overfitting proved to pose severe implications
on CA when both MEKT and ML algorithms are employed, respectively, as shown in
Figure 5. Furthermore, a mean CA of 54% was noted when multi-class MMFT is employed,
while a mean CA of 51.6% was observed when MEKT is employed for three-class cross-
session classification. The effect of overfitting as a result of significant EEG variations
was demonstrated to have an impact on low prediction rates when ML algorithms were
employed. Hence, mean CAs of 42.1% and 32.7% were recorded for three-class cross-session
classification when LDA and RegTree were employed, respectively, as shown in Table 5.

Moreover, utilizing samples from different sources to train and test ML algorithms
further demonstrated to constitute overfitting, which resulted in lower accuracies obtained
by the LDA and RegTree, with mean CAs of 40.9% and 36% recorded for three-class cross-
subject classification, respectively. However, the proposed multi-class MMFT showed traits
of improvements with the best mean classification performance of 64.8% achieved, while
MEKT achieved a mean CA of 61.4% for three-class cross-subject classification, the highest
accuracy as depicted in Table 5.

A similar decline in accuracy was observed for both four-class cross-session and
four-class cross-subject classification problem when ML algorithms were employed [48].
The multi-class MMFT was demonstrated to be effective in minimizing the impact of
inter-subject and sessional variations for both four-class cross-session and cross-subject
classification problem, as depicted in Figures 9 and 11.

Although multi-class MMFT obtained satisfactory classification performance for both
three-class and four-class cross-session and cross-subject classification problems, the impact
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of NT and complexity of a four-class problem demonstrated to be an obstacle for the pro-
posed multi-class MMFT across individual target domains, as depicted in Figures 9 and 11.
To address this challenge, we further proposed an enhanced multi-class MMFT to first
select only the optimal combination of closely related sources among all source domains,
then utilize the best combination to perform TL.

The proposed enhanced multi-class MMFT was evaluated based on performance
before and after the optimal source domain selection. It was noted that the enhanced
multi-class MMFT is effective in minimizing the effect of NT, as depicted in Table 1 and
Figure 6. A highest increase of 56% in CA was observed when Se7 is the TD and (Se2, Se4,
Se6, Se8) are optimally selected as the best closely related sources. In this case, a CA of
36% was recorded before source selection, while a CA of 92% was recorded after source
selection when enhanced multi-class MMFT is employed for a three-class problem.

Moreover, a combination of NT and the complexity of a four-class problem proved to neg-
atively affect the performance of multi-class MMFT across individual target domains [49,50],
as depicted in Figures 9 and 11. However, employing enhanced multi-class MMFT was
demonstrated to effectively improve performance across individual target domains for
both four-class cross-session and cross-subject classification. Notably, a CA of 37% was
noted before source selection, while 79% was recorded after source selection when en-
hanced multi-class MMFT is employed for a four-class problem. A 42% increase in CA
was observed after sources selection when Se8 is the TD and (Se4 and Se6) are optimally
selected as the best combination.

Furthermore, the classification performance of individual subjects was demonstrated
to be significantly affected by NT, which was prevented by the proposed methods, though
the complexity of a four-class problem was demonstrated to be expensive in computation
when multi-class MMFT is employed to perform cross-subject classification as depicted in
Figures 10 and 12.

5. Conclusions

In this work, we proposed a multi-class transfer learning approach based on multi-
source manifold feature transfer learning (MMFT) framework, then an enhanced version,
using three-class and four-class classification problems considered as examples to validate
the performance.

A comparative performance analysis was carried out to evaluate the impact of multi-
class cross-session and cross-subject classification on transfer learning performance. The
proposed multi-class MMFT was evaluated based on three-class and four-class problems
and compared with MEKT and ML algorithms implemented based on a classical BCI
pipeline under the same TL conditions.

Multi-class MMFT, in this instance, yielded superior classification performances across
individual TDs for both three-class and four-class cross-session and cross-subject classifica-
tion problems. However, a drastic deterioration in classification performance was recorded
when ML algorithms (LDA and RegTree) were employed, with the poor performances
attributed to the challenge of overfitting resulting from significant variations in EEG neural
dynamics across individual subjects.

Despite the satisfactory performance recorded when multi-class MMFT is employed,
non-related domains proved to pose a severe implication on prediction rate across individ-
ual target domains as a result of NT.

To address the challenge of NT, we further proposed an enhanced multi-class MMFT
framework that first performed source selection, mainly to optimally select the combination
of closely related sources, then utilizes the best-selected combination to perform transfer
learning. The enhanced multi-class MMFT was evaluated based on performance before
source selection, whereby all source domains were considered for TL and performance
after source selection, whereby only the best combination of closely related sources wasw
considered for TL. A decline in CA was observed across individual TDs before source
selection as a result of non-related sources that contributed to the challenge of NT. However,
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a significant increase in CA was recorded after source selection when enhanced multi-class
MMFT was employed.

Although multi-class MMFT achieved satisfactory classification performance, the
complexity of a four-class cross-subject classification problem was demonstrated to be
expensive in computation for multi-class MMFT. Hence, future studies will consider more
four-class cross-subject classification problems with a lighter computation load.
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