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Abstract: Electromagnetic fields in bulk bianisotropic media contain plane waves whose k-vectors
can be found using the method of the index of refraction’s operator and belong to the Fresnel wave
surfaces that fall into one of the five hyperbolic classes of the Durach et al. taxonomy of bianisotropic
media. Linear combinations of vector spherical harmonics can be used as a set of solutions of vector
Helmholtz equations in gyrotropic media to develop Mie’s theory of scattering by anisotropic spheres
as accomplished by Lin et al. and Li et al. In this study, we introduced electromagnetic orbitals for
bianisotropic media as linear combinations of vector spherical harmonics, which represent solutions
of Maxwell’s equations in bianisotropic media. Using these bianisotropic orbitals, we developed a
theory of the scattering of electromagnetic radiation by bianisotropic spheres with arbitrary effective
material parameters and sizes. As a by-product, we obtained a simple expression for the expansion
of a vector plane wave over vector spherical harmonics in a more compact form than the frequently
used by Sarkar et al. We obtained the polarizability expressions in the Rayleigh limit in agreement
with the results of the electrostatic approximation of Lakhtahia and Sihvola.

Keywords: Mie scattering; Rayleigh scattering; bianisotropic and anisotropic media

1. Introduction

Electromagnetism occupies the crowning role in physics, science, and modern tech-
nology. As in the cases of the Second and the Third Industrial Revolutions, research into
electromagnetism is driving the ongoing Fourth Industrial Revolution [1] related to the
transition to renewable energy, telecommunications in the 5G and 6G standards [2], ad-
vanced micro-/nanofabrication for novel electronic devices [3], bioelectromagnetics [4],
information and electronic warfare [5], machine learning, material training [6,7], and in
other realms. The slide towards scientific and technological unification of the physical,
chemical, biological, and digital worlds brought by the Fourth Industrial Revolution is
due to the inalienable electromagnetic nature of these phenomena, based on the rule of
the underlying laws of Coulomb, Gauss, Biot-Savart, Ampere, Kirchhoff, Faraday, and
Maxwell [8-10]. We, the researchers of modern electromagnetism, are devoted to the
development of the new electromagnetic materials collectively called composite artificial
materials or metamaterials [11-17]. Metamaterials are made of arrays of subwavelength
scatterers designed to exhibit the desired electromagnetic properties. In many important
cases, metamaterials can be described as bianisotropic media [13-17]. In bianisotropic
media, both the electric and magnetic responses depend on both the electric and magnetic
fields of the external radiation [18,19].

The studies of bianisotropic materials are almost as old as electromagnetism itself,
persisting through the 19th and 20th centuries in the work of scientists such as Roentgen,
Wilson, Landau, Lifshitz, Dzyaloshinskii, Cheng, and Kong [18-24]. In the 21st century
the field of bianisotropic optical materials has received the name of bianisotropics [25-27]
and is closely related to the research on electromagnetic metamaterials, since, typically, the
desired properties of metamaterials depend on them being anisotropic and bianisotropic
media [13-19]. Despite all these efforts and the rich history of research into bianisotropics
until recently, very few general properties of bianisotropic media were established due to
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the complexity of these media [14,18,28-35]. The bianisotropic media are the most general
case of local linear media [18,19,25,36,37], with the effective material parameters combined
into a 6 x 6 matrix of material parameters M, which characterizes the electric displacement
field D and magnetic field B in terms of the fields E and H:

D - (E ¢ X\(E
() =) = (¢ ) &) ®
The 3 x 3 matrices &, fI, X, Y are dielectric permittivity, magnetic permeability, and
two magnetoelectric coupling matrices respectively. The inverse relationship can also be

formulated: )
E\ [é X| (D\ [arp &rg| (D )
H) |Y § B)  |&mp &up|\B

The relationships in Equations (1) and (2) mean that, unlike in many naturally occur-
ring isotropic media, the electrical polarization and magnetization vectors in bianisotropic
media are not directed in the same direction as the electric and magnetic fields. Such differ-
ences in the isotropic media can be achieved in engineered metamaterial structures [13-17].

One of the jewels in the crown of electromagnetism is Mie’s theory of scattering
by spheres. Originally, Mie’s theory was introduced to describe scattering by isotropic
spheres [38,39], but later, it was extended to describe scattering by bi-isotropic [40], rotation-
ally symmetric and anisotropic [41], orthorhombic and dielectric-magnetic [42], magneto-
and electro-gyrotropic [43-45], and spherically-symmetric bianisotropic [46] spheres. De-
spite this activity, the theory of scattering by a generic bianisotropic sphere has not yet been
constituted [47].

The plane waves which can propagate in bianisotropic media belong to Fresnel wave
surfaces, which can be characterized using the method of the index of refraction’s opera-
tor [31-33]. The Fresnel wave surfaces in bianisotropic media follow quartic dispersion
equations, and, therefore, can be classified using the taxonomy of Durach et al. [31-33],
which includes the five hyperbolic classes: non-, mono-, bi-, tri-, and tetra-hyperbolic mate-
rials [31-33,48-59]. The prefix in the name of each topological class indicates the number of
double cones that the iso-frequency’s k-surface has in its high-k limit. Note that hyperbolic
metamaterials, which are already known for their applications in optical imaging, hyper-
lensing, and emission rate and directivity control, utilize the diverging optical density of
high-k states [51-59]. In Figure 1a, we show an example of an iso-frequency Fresnel wave
surface for a tetra-hyperbolic bianisotropic medium with the effective material parameter
matrix M color-coded in Figure 1b.
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Figure 1. (a) Iso-frequency Fresnel wave surface for a tetra-hyperbolic bianisotropic medium with the

effective material parameters matrix M color-coded in (b); (c) eigenvalues of the index of refraction’s
operator [31-33] in a complex plane for the same material.
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The Fresnel wave surfaces only include the plane waves with real wave vectors k.
Nevertheless, the inhomogeneous plane waves with an imaginary k are also important. In
Figure 1c, we plot the eigenvalues of the index of refraction’s operator [31-33] in a complex
plane for the material color-coded in Figure 1b for plane waves propagating in directions
spanning the entire solid angle with steps in the angles A0 = 7t/40 and A¢ = 27t/40. Note
that in Figure 1c, only the eigenvalues on the horizontal axis Re{k/ko} correspond to the
real wave vectors belonging to the Fresnel wave surfaces depicted in Figure 1a.

In unbounded homogeneous bianisotropic media, plane waves represent the set of
solutions of Maxwell’s equations which is typically used, but to consider the scattering
of electromagnetic waves by bianisotropic spheres, it is more convenient to express the
electromagnetic fields inside such spheres in terms of vector spherical harmonics. In this
study, we proposed a theory of scattering by bianisotropic spheres with arbitrary effective
media parameters M. To accomplish this, we introduced bianisotropic orbitals composed
of vector spherical harmonics.

2. Results
2.1. Bianisotropic Orbitals

The plane waves whose k-vectors belong to Fresnel’s wave surfaces represent a com-
plete set of solutions of Maxwell’s equations in the bulk bianisotropic media. A different set
of solutions can be found as expansion of vector spherical harmonics. Recently, the close
connection between the multipole composition of electromagnetic fields and bianisotropy
has been revealed [60].

Due to the solenoidal nature of D- and B-fields, namely V-D = 0 and V-B =0, we can
express them as an expansion over the vector spherical harmonics Mlm, Nllm found from
solutions of the scalar Helmholtz equations [61-63]

gy = —mzz(]) (kr)Yim, w3y = iz (kr) Yoo ©)
according to
L) = LV, M) =V x (rgf))), Nl = LV x M) )

Detailed definitions of the vector spherical harmonics used in this study are in Appendix A.
We represent the D- and B-fields of a bianisotropic orbital with a wave number k; as

D, = lz{fﬁwm (ko) + FENNL (kp) } 5)
By = IZ{quzﬁfM}m (ky) + FENNL, (kp) b (6)

The corresponding E- and H-fields can be expressed using Equation (2) as

1 1 1 ~ ~
Ej = L (WMl + Vil Nl + AL ) = &epDy + &esB,
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where the coefficients g is found using {U|&|V} = [;° 027'( JoUu-&-Vrlsinbdr do de,

I Yoo (8)Yi (B)AQ = 8y6um, and [ ju(K'r)jy (kr)r2dr = 556(k — k') as:

{MZU|&|Mlm} {N;v’&‘Mlm} {LZU|&|M11’H}
{Mﬁv|&|Nlm} {NZU|5‘|Nlm} {LZU|’3‘|Nlm}
{Mio|&|Lim}  {Nup|&|Lp}  {Lip|&[Lyy }

9
Sum  SMN  SML M, Mo} =1 0 0 ©)
= | 8wm 8&nN 8NL 0 {Nio|Nuw} =1 0
g%M g%N g%,L Im,uv 0 0 {L;U|Luv}

Please note that, while the D- and B-fields are divergence-free, as indicated by Equa-
tions (5) and (6), the E- and H-fields include the longitudinal vector spherical harmonic L,
as was previously shown for anisotropic media as well [43-45].

The bianisotropic orbitals with the radial quantum numbers k, represent the solutions
of Maxwell’s equations in homogeneous bianisotropic media if the expansion coefficients
fqim satisfy the following eigenproblem:

DM
_o%HD  _,*HD  __ ,%HB  _ ,“HB DM
SMN “8NN  T8MN 8NN g, quo
_o%HD  _ ,%HD _ ,XHB _ o“HB k fDN

Y MM TENM T 8MM T 8NM Im [ _ ;%0 uo (10)
XED XED XEB XEB f M k f M
m | SMN ENN 8MN 8NN qlm q quov
ED XED XER XER BN BN
Svm  Enm MM ENM / imuo \ foim quo

Note that the eigenproblem of Equation (10) differs from the eigenproblems formulated
for the anisotropic media, which stem from the vector Helmholtz equations [43-45]. Such
eigenproblems could not be used in the case of the bianisotropic media considered here and
we used the pair of Maxwell’s equations composed of Faraday’s and Maxwell-Ampere’s
equations instead to obtain Equation (10).

The bianisotropic orbitals provided by the solutions of Equation (10) can be repre-
sented as expansions over plane wave solutions of the method of the index of refraction’s
operator [31-33] with the indexes of refraction n = k;/ko (Appendix B). In Figure 2a, we
show the inverse eigenvalues k;/ko of Equation (10) for the eigenproblems which are
truncated and have I = 4 (black dots), 10 (red), and 40 (green). Note the direct correspon-
dence of the eigenvalues of Equation (10) in Figure 2a with the eigenvalues of the index of
refraction’s operator plotted in Figure 1b.

In other words, the inclusion of higher multipoles in the bianisotropic orbitals corre-
sponds to higher angular resolution in the Fourier expansion of the fields in bianisotropic
materials with a smaller A8 and A¢ with the inclusion of both the real wave vectors belong-
ing to the Fresnel wave surface, as well as the complex eigenvalues k/k( of the index of
refractiona operator.
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Figure 2. (a) Inverse eigenvalues k;/kg of the eigenproblem in Equation (10) truncated at I = 4 (black
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dots), 10 (red dots), and 40 (green dots). Note the correspondence with the eigenvalues of the index of

2
refraction’s operator plotted in Figure 1b; (b—e) eigenvector components ’ fqlm‘ of the eigenproblem
in Equation (10) for a bianisotropic orbital with k;/kg = 2.2 in the angular momentum space /-m.

This correspondence between the plane waves and the bianisotropic orbitals intro-
duced in this study shows the relationship between the solution of the scattering problem
presented in this study with the method of plane wave expansion proposed for the scat-
tering by the uniaxial anisotropic spheres [64,65]. In Figure 2b—e, we plot the components

2
1m| of the eigenproblem of Equation (10) for a bianisotropic orbital with k, /kg = 2.2 in
‘fq \ genp q P q
the angular momentum space [-m.

2.2. Scattering Cross-Section of Bianisotropic Spheres in a Vacuum

The bianisotropic orbitals can be used to solve a large range of problems with spher-
ically shaped bianisotropic media from spheres and spherical shells, to spherical voids,
combinations of such geometries, and so forth. Here, we considered a bianisotropic sphere
with the arbitrary effective material parameters M with a radius R. We studied the scat-
tering of an electromagnetic plane wave by such a sphere. The field of the plane wave is

given by
Eiy = e(k)e™ = Y (quuM},, + pinN},,) (11)
Im
. 1 N
Hiy = h(K)e™ = =Y (prM, +a1uN, ), =T e (12)
Im

We defined the orientation of the incident electric and magnetic fields with the po-
larization angle « in the spherical coordinates with respect to the direction of incidence
k = (sinfcos¢,sinfsing,cosf), e(k) = (sinad —cosad), h(k) = (cosad+sinad),
where § = (cos 0 cos ¢, cos 0 sin ¢, —sinf), ¢ = (— sinp, cos ).

Expansions of the vector plane wave over vector spherical harmonics exist in the
literature [43,66]. Nevertheless, we derived a compact expansion of a vector plane wave
for our work (Appendix C):

ac = 470 Y1 (\/M{u , Yl(;l)*(fc)}Ll(;) + {a~ L (k) }Ml(;) _ {a . Yz(ntl)*(’A‘)}Nz(,?)

Im
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Correspondingly, the coefficients in the expansions Equations (11) and (12) are

Qi = 47 { e (k) - Vi, (B) ), o = 4 (k) - ¥E, (R) } (13)

The scattered fields outside of the sphere are given by

Esc = Y (b, + a1, (14)
Im
1
Ho=- lz<alli3m + biNG,, ) (15)
m

The scattered fields consist only of the outgoing vector spherical harmonics containing
the spherical Hankel functions hl(l).
We represent the field inside the bianisotropic sphere as a linear combination of the

bianisotropic orbitals described by Equation (10).

Egpp =) AgE;, Hgy =Y AjHy, (16)
q q

Please note that for reciprocal media, the eigenvalues of Equation (10) come in pairs
with the radial wavenumber +k;, and the corresponding modes in Equation (16) are
equivalent. Therefore, among the orbitals with a real k;, we only included the modes with a
positive k;. For the orbitals with a complex k;, we only included the modes with Im k; > 0.
Note, however, that in non-reciprocal media, the symmetry of the reciprocity between the
modes is broken, and all the bianisotropic orbitals of Equation (10) should be included
into Equation (16). Correspondingly, additional boundary conditions (ABC) are needed, as
described in [34].

The continuity of the tangential components of the E- and H-fields at the surface of the
sphere lead to the following boundary conditions, expressed in terms of the Riccati-Bessel
functions ¢;(x) = xj;(x) and &;(x) = xhl(l) (x), where j;(x) and hl(l)(x) are spherical Bessel
functions of the first and third kinds, and the parameters x = koR and x; = k;R:

Eino + Esco = Eopio, i + i (f;ll E’Q)) =LA (;‘q) Kim (l’l’;’,’(gf ) a7
X\ g [ P1(xg)
q(x)”lm( e ) .
g\ _ XN e ¥ (xq) eq [ J1(%q)
o) ‘?A"(x){ lm( W) ) “lm(wﬂx))} 19)

| B HCIA X\ g [ ¥1(xq) ng [ J1(xq)
Hzmp + Hsep = HSPM” Qim + bim <1/)l/(x)> - I;Aq <xq) {Vlr?z ( ¢;(x) + AlrIZt IIJ;(X) (20)

The boundary Equations (17)-(20) can be represented in the matrix form as

S

X .
Hing + Hscg = Hsph()/ Pim + Aim (ill((x>)> = 1;

Eing + Esco = Espngs Pim + im <

Ny A —¥(ab) = (pg) @1

KyA — d(ab) = (pg) 22)
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5
where A is the column of the amplitudes of the bianisotropic orbitals A, inside the sphere,
and (ab) and (pq) include the amplitudes of the scattered vector spherical harmonics and
the known incident amplitudes of Equation (13).

The matrices ¥, @, are diagonal and contain the functions (5’11 ((z))) and (5’;'((?()) ), while
1

the matrices My, Ny represent the coupling between different multipoles due to the bian-
isotropy in the bianisotropic orbitals, and correspond to the sums on the right-hand sides
of Equations (17)—(20).

5
Excluding the coefficients (pg), we obtained the relationship between (ab) and A

(ab) = QA, A= {¥ — &) (N1, — K (23)

The amplitudes of the bianisotropic orbitals A; were found from Equations (21) and (23)
as follows

- . N
A =E(pq) = {My —¥OQ} (pq) (24)
Substituting the amplitudes A; from Equation (24) into Equation (23), we obtained

the T-matrix for a bianisotropic sphere with arbitrary effective medium parameters and the
scattering amplitudes (ab) in terms of the parameters of the incident wave (pq) as

(ab) = T(pq), T=0= (25)

The scattering cross-section Qs can be found from the scattering amplitudes as

1
Qs = o5 X (lawml* + o1 ) (26)

0 Im

To validate our formulas and codes and check the accuracy of the numerical results
obtained, in Figure 3, we compare our results with the published results of Lin et al.
and Li et al. [43,45]. In Figure 3a, we show the scattering cross-section Qs/ (7TR2) as a
function of the angles 6 for the anisotropic sphere with &€ = 1 and i = 1+ (s — 1)22 for
various values of y; in linear polarization for « = 0. In Figure 3b, we show the scattering
cross-section Q;/ (7R?) as a function of the angles  for the gyromagnetic sphere with
é=landpi=1-i pe (& — §&) for various values of ¢ in left- and right-handed circular
polarizations. Figure 3 is an exact match with the results obtained in Figure 2 of Ref. [43]
and Figures 2 and 3 of Ref. [45].

Ok’ (a) Ok’ (b)
3 ... 3.‘.0
2 2k 5 @ 5 waie
*teds.,
e e e Ifssee “ege .
T - .
. -.cl)”i.o ............... te
0 n/4 n/2 0 n/4 n/2
o 0

Figure 3. (a) Reduced scattering cross-section Qs/ (7tR?) for all angles 6 in response to the linear
polarization & = 0 for an anisotropic sphere with the values y; = 1.2 (black), 1.4 (red), 1.6 (green),
1.8 (blue), and x = kgR = 4. (b) Reduced scattering cross-section Q;/ (7TR2) for all angles 6 for
an anisotropic sphere with pe = 0.4 (black—LCP, red—RCP), 0.8 (green—LCP, blue—RCP), and
X = koR =4.

In Figure 4a,b, we plot the dependence of the reduced scattering cross-section Qs / (77R?)
for all incidence angles 6 and ¢ for a bianisotropic sphere with the effective material param-
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eters color-coded in Figure 1b and with x = koR = 1. Please note that to emphasize that our
method is applicable to arbitrary bianisotropic materials, the effective parameters matrix
M color-coded in the bottom of panel Figure 1b corresponds to a reciprocal material with
effective parameters randomly generated in the range between —5 and 5. This material
features anisotropic dielectric permittivity, magnetic permeability, and chirality tensors,
which can be engineered by combining split-ring, helix, omega, fishnet, parallel-plate, and
wire metaatoms [16,17].

@

a=0

Figure 4. Reduced scattering cross-section Qs/ (71R?) for all incidence angles 6 and ¢ for a bian-
isotropic sphere with the effective material parameters color-coded in Figure 1b and with x = koR = 1;
In panel (a), the incidence polarization angle is « = 0; in (b) & = 7r/2. The color of the surface corre-
sponds to the magnitude of Q,/ (7R?).

Figure 4a corresponds to the incidence polarization angle « = 0, while in Figure 4b,
the polarization angle is « = 77/2.

In Figure 4, one can see the strong dependence of scattering by the bianisotropic
spheres in the incidence direction and polarization.

2.3. Expressions of Polarizability in the Rayleigh Limit

In the Rayleigh limit of electromagnetically small spheres x < 1, only the dipole terms
of Mie’s theory are retained. For [, u = 1, ¢4y = §y. = 8\m = 0 and the E- and H-fields,
Equations (7) and (8) can be written as

DM DN DN
E = oMb (83083080 (1) + SNL (5380, 8380)0 (0 ) + DLk 0530 () @2
mo 1m mo 1m mo 1m
1 o o DM 1 D( « DN 1 N N DN
= LM (35 8580 o (0 ) + Vb 80880 (0 )+ b3 53000, (i) 9
mov 1m mo 1m mo 1m
Applying Maxwell’s equation to the E- and H-fields of Equations (20) and (21), we
can obtain
: 1 XHD ,XHB fgﬁ/l 1 XHD ,XHB f?ry
—i(ko/k)D =) Ni,- (gMM/gMM)m,v' ) + ) My, (gNN'gNN)m,v' N
1m,1v 1m 1m,1v 1m

(ha/K)B = X N+ (500 () + X Ml @80,80),00 (0
i(ko 10 " \8MM’ EMM ) o M 1o (SNN/ENN) mo 1N
m

1m,1v 1m 1m,1v



Appl. Sci. 2023, 13, 5169 90of15
This translates into a system of equations

GmPFmg = i(ko/kg)UFNg (29)

GnFng = i(ko/kq)VFug (30)

1-1q7 /109 + /10 7 /114 1-1¢q7J1-1¢J10q 7 /109 /114
131];] )T, and the matrices Gy and Gy are composed of the coefficients gpa and gy

T
— DM BM DM (BM (DM (BM _ DN BN DN BN (DN
Where FMq - <f171q/ 7 11q ) 7 FM{] - (

XHD

SMM—— EMM—— 8mMMo— SMMO— SMM+— SMMi-—
XED XEB XED XEB XED XEB
SMM—— SMM—— 8mMmo— EMMo— EMM+— EMMi-—
XHD XHB XHD XHB XHD XHB
G = | SMM—0  &vm-o  Emmoo  Eyvmoo  EMM+o  EMM+o
M XED XEB XED XEB XED XEB
SMM—0 EMM-0 &Emmoo EmMmo0 EMM+0  EMM+0
XHD XHB XHD XHB XHD XHB
EMM—+ SMM—+ SMMO+ SMMO+ SMM++ SMM++
XED XEB XED XEB XED XEB

gaN,%77 gaNé\é** g%\[])m g&\g\éof g%\#, g%\y*
SNN-— S8NN-— 8NNo— 8NNo— S8NN+- 8NN+-

XED XEB XED XEB XED XEB
Gy = 8061\11\170 ENN-0 ENNoo 8NNoo ENN+0 SNN-+0

HD XHB XHD XHB XHD XHB
ENN-0 &NN-0 &NNoo &NNoo S8NN+0 ENN+0

XED XEB XED XEB XED XEB
SNN—+ &8NN—+ S8NNo+ SNNo+ SNN++ SNN++

XHD XHB XHD XHB XHD XHB
ENN-+ S8NN-+ 8NNo+ S8NNo+ SNN++ SNN++

-1 0 0 O 0 O O 1 0 0 0 o0

o 1 0 0 0 0 -1 0 0 0 0 O

o~ 0O 0 -1 0 0 O A 0O 0 0 1 0 O
whilet! =154 o 1 0 oY= |0 0 10 0 o0
o 0 0O 0 -1 0 0O 0 0 0 o0 1

o 0 0 0 o0 1 O 0 0 0 -1 0

Excluding Fyyy = i(ky/ kO)VCNFNq from the system Equations (29) and (30), we
obtained an eigenproblem for Fy,, which corresponded to six bianisotropic orbitals in
the Rayleigh limit

A A 2
(UGMVGN)FNq = (ko /kq) Fng (31)
The boundary conditions of Equations (17)—-(20) turn into

j1(koR) (pq) + h1(koR)(ab) =Y Agjr (kgR)diag{i, 1,i,1,i,1}GpFpg (32)
q

el j1(kor)],—g (pq) + 3 [r h (kor)],_g (ab)
= );Aq(%)dmg{u,u, 1i}x (&1 j1 (kr)],_gOnFivg + n (6R) Ging ) %)

where G is composed of the coefficients gy, similar to the matrix Gy provided above,
(pg) = (p1-1,91-1, P10, G0, P11,911) ", and (ab) = (a1_1,b1_1, @10, bro, @11, bir) "

Taking the limit of k4R, koR — 0 in the spherical Bessel functions, and excluding the
scattered amplitudes (ab), and substituting Equation (29) for G MmFng, we obtained

—

3(pq) = diag{1,i,1,i,1,i} (1 +2Gn + GL) En A (34)
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B 37
—i +1 0 0 0 0
0 0 0 1 +i O
P 5 0 0 —iv2 0 0 0
the matrix T given by ' = 0 0 0 0 0 \@
i 41 0 0 0 0
0 0 0 -1 +i O

In accordance with Equation (34), (1+26y+G1) = T(1+2M1)T71, or 37!
(1+2Gy + GL)flT =3M(M + 21)71. This resulted in

(’;) =3N(M +21) " (;) (35)

L D\ (E P\ .~ (D P D\ _
Considering that (B) = (H) +47I<M> =M (B) +47I<M>,we found (B) =

(- (1),

(;) = 3 - 1) (Wt 420) (Z) 36)

From this, we obtained the polarizability & of the sphere of volume V in the Rayleigh

approximation
P ~[ € 3V . A ~ ~—1[€
(Z)_V<M>—1x(h>—n(M—l)(M—{—Zl) (h)

This agrees with the polarizability of the bianisotropic spheres obtained previously in
electrostatic approximations [67-69].

3. Discussion and Conclusions

Mie’s theory of electromagnetic scattering by spheres is a very important part of
electromagnetism. In the existing literature, it has been extended from the original results
of Mie to bi-isotropic spheres by Bohren [40], and, recently, to anisotropic spheres by
Lin et al. and Li et al. [43-45]. Nevertheless, there is no existing theory of scattering
by bianisotropic spheres, and the methods used to find the scattering for isotropic or
anisotropic spheres are not applicable to bianisotropic spheres.

The extension of our approach to other geometries could be very promising. For
example, recently much attention has been paid to the Mie resonances in nanocylinder
systems [70-72], and we believe that this opens a broad avenue for application.

To conclude, in this study, we introduced the bianisotropic orbitals and presented a
theory of the scattering by bianisotropic spheres with arbitrary effective media parameters
and sizes. In the Rayleigh limit, we obtained the results known from the electrostatic
approximation approach.
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Appendix A

We used a definition of vector spherical harmonics (VSH) that built upon the defini-
tions of Stratton [61], Jackson [62], and Varshalovich et al. [63]. The starting point was the
solution of the scalar Helmholtz equation V2 + k*p = 0

. 1 . . . .
vin = ENIGES) 1)21(]) (k) Y, 5 = iz (kr) Yoo,
where the scalar spherical harmonic is Yj,, () = 25;7;1 E; +Z; P"(cos 0)e'™?.

The VSH are derived from l/)l(,jrz, analogous to the definitions of Stratton [61], as

1 .
L) — Vl/]lm, =V (rgl)), NIl = £V x M)

lm

L) = Vvl M) =0, N =0

In spherical coordinates, these VSH can be expressed as

) _ g, _1 i 1 oy im ().
Lo = gV =5 1 F kr 0 't smelplm“’
MY — v« (ﬁl,m) L) ) A
fm Imj = sm() l’" 26
() _ () _ (l+1) 1 9 L 1im 2 )
Nin = kV Mi = = Vit + kr arae[ ¥ } kr sin 6 or [“/sz} ¢

These harmonics are directly related to the harmonics of Jackson [62]

, 1 v
X (7) = i+ 1)LY1m, #Yim, # X X,
where L = —i(r x V) is the angular momentum operator
()
G) _ 2 (k) _ 0 ;
Mlin = ; l(l i 1)1" X VYlm = Zl] (k?’)le(T)
’ . I+1 10 )
N = 19 (2 (0% )) = D0 g, 4 L2 (20 1)) 30

The vector spherical harmonics L

Y;m( #) of Varshalovich et al. [63].

l(nz, NI(Z, MZ(Q can be expressed using the harmonics

iz, (kr) iz,

(7) ) S5 NP _
Ll(fn) (I41)(21+1) 4 1(2141) Yfml
er],n - 0 zl(]) 0 ng (A1)

(j) ) yi+1
N 1+1 () . [HG))
I iviarzls 0 —iy gz fm
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According to the quantum theory of angular momentum, the vector spherical har-
monics of Varshalovich et al. [63] can be expressed on a spherical basis by using Clebsch—
Gordan coefficients.

Yj =) Im'lo|jmY,, (e, = Y Clm/ 10 Yimes

m' o m' o
where the spherical basis vectors are the eigenstates of the spin operators S? and S..

1,0, .. .
e 1 = :F\—@(xizy), ep=2

Appendix B

The bianisotropic orbitals provided by the solutions of Equation (10) can be represented
as an expansion over the plane wave solutions of method of the index of refraction’s
operator [31-33], with the indexes of refraction related to the radial quantum number k,
given by n = k;/kg. This can be understood by inspecting the expansion of the scalar

(1)

spherical harmonics Y

3
(1) k.or) = 7# k7)Y / k lk"id k
4)1111( ’i’r) i l(l >]l( qr) lm lplm q/ (27_()3
According to [63],
1 1 ik (-1)! LOlkg—K) s
lpl(m) (k‘l’k) = /I/Jl(m) (kq;r) e 4 dv = _i l(l+1>27—[211 qk% Ylm(k)

which means that all scalar spherical harmonics contain only the plane waves with the
wavenumbers k; as follows

1 2
(1) k. — _ (_1) 7Til /el'kqicr Y, I’% d Qk
Correspondingly, the vector spherical harmonics are
1 . 2
m_loo_ (1) / ikkr 2 (5 4 Q%
L’ =—-V = — it [ e™1* kY, (k
Im kl] wlm i l(l I 1) . lm( ) (27_[)2

. n i1 (kor) ¢
M) = x (rgly)) = i (k)Xo ) = 250,

_ (=) ik § £y 420

N — L A Ml — ,3 Y x (jy (ko?) Xpm (#))
1) a2
- —%ﬂz’ U [l L] v () 0%

Appendix C
According to [63],

ekt = 471 i . k 7
ac = 47 ¥ ; 7{a W(k)}w(k)ﬂ()

Img

=47f2(11{a-¥§ e (k) b (kr) Y1 ()
+i{a YJ*()}]z(krW <?>+z’l“{ YJ“ (R) }ia (k)Y )
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From Equation (A1),
() yi-1 _ i+l VeS| ‘
Zl]le;m l\/ﬁ 0 l 2041 Lz(,’ﬁ
e I A 1
iVI(I+1) 1 (U
Zl+lYl+l IRV, IES] 0 iy o NIZ
ikr ;! Y e AN WA tV/ES A CVRRV/ES N 1CY)
ae’ =4 ,%1({“ Y, (R F (= 5 L) — YN )
*x (1 1
+{a' lm(k)}Ml(m)
* (T VII+1) 7 (1
Hlavp @} (He) - o))

V2I+1 V2141
+{a- Y, (k) }M(l) —a

Im

(AR (8 + ALY () N

=4 Sl (I Da- (A" (k) — YL v (k) ) L))
Im

v, (k) = vt (k) - VL Yl“() v,V (k)
= (\/zlljllyl l( ) 21+ YIH( ))

We arrive at

ke D.z(_ e (1)*(1})}Ll(71n)+{u.Yf;1(lAc)}Ml(rln)_{u.ygrjl‘l)*(k)}Nl(},l))

Im
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