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Abstract: The observation and analysis of RNA molecules have proved crucial for the understanding
of various processes in nature. Scientists have mined knowledge and drawn conclusions using
experimental methods for decades. Leveraging advanced computational methods in recent years
has led to fast and more accurate results in all areas of interest. One highly challenging task, in
terms of RNA analysis, is the prediction of its structure, which provides valuable information about
how it transforms and operates numerous significant tasks in organisms. In this paper, we focus
on the prediction of the 2-D or secondary structure of RNA, specifically, on a rare but yet complex
type of pseudoknot, the L-type pseudoknot, extending our previous framework specialized for
H-type pseudoknots. We propose a grammar-based framework that predicts all possible L-type
pseudoknots of a sequence in a reasonable response time, leveraging also the advantages of core
biological principles, such as maximum base pairs and minimum free energy. In order to evaluate the
effectiveness of our methodology, we assessed four performance metrics: precision; recall; Matthews
correlation coefficient (MCC); and F1-score, which is the harmonic mean of precision and recall. Our
methodology outperformed the other three well known methods in terms of Precision, with a score of
0.844, while other methodologies scored 0.500, 0.333, and 0.308. Regarding the F1-score, our platform
scored 0.671, while other methodologies scored 0.661, 0.449, and 0.449. The proposed methodology
surpassed all methods in terms of the MCC metric, achieving a score of 0.521. The proposed method
was added to our RNA toolset, which aims to enhance the capabilities of biologists in the prediction of
RNA motifs, including pseudoknots, and holds the potential to be applied in a multitude of biological
domains, including gene therapy, drug design, and comprehending RNA functionality. Furthermore,
the suggested approach can be employed in conjunction with other methodologies to enhance the
precision of RNA structure prediction.

Keywords: syntactic pattern recognition; context-free grammar; RNA; L-type pseudoknot

1. Introduction

Many studies have been conducted through the past decades focusing on structural
bioinformatics. The RNA molecule is crucial in protein expression, regulating gene ex-
pression, and other vital functions. Hence, predicting RNA’s 3-D or tertiary structure is
a pivotal task in the domain. Tasks such as the relationship between this 3-D folding and
its biological functions, the detection of similar characteristics, and the understanding of
dynamics, are of significant importance. All the above-mentioned challenging tasks are
closely related to the 3-D structure, which is rather difficult to predict accurately. Con-
sidering this impediment, with the aim of providing an efficient and performant toolset
to experts, our research focuses on the prediction of the 2-D or secondary structure of
RNA as an intermediate step. Complex motifs, such as pseudoknots, can be predicted in
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2-D, making them available to scientists for initial conclusions and rapid decision making.
Thereafter, it is easier to map this secondary structure to the 3-D space for further analysis
and experimentation.

Various motifs, such as stems, hairpins, bulges, interior loops, and multi-branch loops,
can be found in the RNA secondary structure, and there are several methodologies that
can accurately predict these motifs using dynamic programming, thermodynamic models,
stochastic methods, artificial intelligence, syntactic pattern recognition techniques, or a com-
bination of these. Section 3 provides a detailed overview of the relevant research, including
the state-of-the-art works. However, predicting a pseudoknot is a more complex task, and
only a few existing algorithms are designed to handle the interconnection of pseudoknots.
In that context, we introduced, in our previous research, two robust frameworks that are
capable of predicting H-type pseudoknots, the most common type of this motif. Firstly, we
presented Knotify [1] and an optimized version of this framework in terms of execution
time, which predict H-type pseudoknots using syntactic pattern recognition, minimum
free energy, and a parallel architecture to achieve high performance. These approaches
show a high accuracy level in terms of core stems prediction and total base pair prediction,
better than or comparable with state-of-the-art frameworks, depending on the metrics
evaluated. Secondly, we enhanced the previous implementation by creating Knotify+ [2],
which is capable of predicting more complex motifs of H-type pseudoknots that include
bulges. Knotify+ maintains execution speed at a low level, contrary to the most well-known
platforms, and has, on average, a level of accuracy equal to that of Knotify. In our endeavor
to help biologists, in this work, we provide a framework that predicts a very rare and rather
complex type of pseudoknot, the L-type. The methodology retains all the valuable and
optimized parts of our previous work, and encapsulates a context-free grammar that is able
to reveal these complex L-type motifs.

The paper is organized with the following structure. Section 2 offers the required
theoretical background, while Section 3 covers the relevant research. Section 4 introduces
the proposed L-type grammar, accompanied by an illustrative example. The methodology’s
implementation details are explored in Section 5, and performance evaluation is analyzed
in Section 6. Section 7 provides a discussion of the proposed platform’s performance
evaluation. Finally, Section 8 presents the study’s conclusions, as well as potential areas for
improvement and expansion.

2. Conceptual Framework

In this section, we examine the basic theoretical concepts of the pseudoknot structure
and parser implementations to provide the reader with a fundamental understanding.
The nitrogenous bases A, C, G, and U (adenine, cytosine, guanine, and uracil), sugars,
and a phosphate backbone are combined to form RNA. RNA plays a crucial role in many
biological functions, such as carrying genetic information, regulating gene expression,
and transcribing the genomes of mammals. To carry out these tasks, RNA forms various
bonds and creates a set of nitrogenous base pairs, including the Watson–Crick [3] pairs
(A–U and G–C) and the less common wobble base pair G–U. The arrangement of these
base pairs, along with the unpaired regions, is known as the secondary structure, and is
important for several processes.

2.1. The Pseudoknot Motif

Pseudoknots are of significance in this research, and can be found in different or-
ganisms. They consist of two helices that are connected by one or more single-stranded
sections, known as loops. Although pseudoknots are a rare pattern in RNA sequences, they
are challenging to predict due to the structure of the two intersecting base pairs. The initial
identification of this pattern occurred in the Turnip Yellow Mosaic virus [4]. Pseudoknots
come in various forms [5], such as H, K, L, and M. The H-type pseudoknot [6] comprises
two stems and two loops with flexible lengths. Its creation results from the intersection of
a pair of base pairs, or core stems, as per our notation. The current research is centered
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specifically on L-type pseudoknots [5], which can form when a stem has its two bases
situated in each of the two loops of an H-type pseudoknot.

2.2. Syntactic Pattern Recognition—The Core Concept

The suggested framework for pseudoknot prediction in RNA is based on recognizing
syntactic patterns. This approach involves defining a language using a set of syntax rules
that can generate strings belonging to that language [7]. These syntax rules are part of a
grammar that dictates how precise sequences of symbols, constituting the defined language,
can be generated [7]. According to Noam Chomsky’s hierarchy [8], all grammars can be
classified into one of four categories. Context-free grammar (CFG) is one such category,
which is commonly utilized for implementing programming languages and recognizing
human languages [9].

Context-Free Grammars

CFGs are mathematical models used in formal language theory and computer science
for defining and generating formal languages. A CFG consists of a set of production rules
that specify how strings of symbols can be generated from a given starting symbol, known
as the axiom or start symbol. The production rules define how symbols can be transformed
into other symbols, including themselves, until a string that belongs to the language defined
by the grammar is obtained.

In a CFG, symbols can be either terminals or non-terminals. Terminals are the actual
symbols that appear in the strings of the language, while non-terminals are symbols used
to generate the terminals through the application of the production rules. The production
rules in a CFG must satisfy certain restrictions, such as being context-free, meaning that the
rule can be applied regardless of the context in which the non-terminal appears. This is in
contrast to context-sensitive grammars, where the rule for a non-terminal may depend on
the context in which it appears.

Consequently, the definition of a CFG is a set of four components: 〈NT, T, R, S〉.
The start symbol S (which is also known as the root of the grammar) is part of the set of
non-terminal symbols NT. The set T contains all terminal symbols, while NT includes all
non-terminal symbols. The set R holds all the production rules. The production rules are
written in the form D → γ, where D is a non-terminal symbol from NT, and γ is a string
made up of symbols from T and/or NT.

The proposed methodology for predicting pseudoknots in RNA structures is founded
on recognizing syntactic patterns. This methodology requires the formulation of a language
using a set of syntax regulations that can generate strings that are part of that language [7].
These syntax rules form a grammar that specifies how specific sequences of symbols that
make up the defined language can be generated [7]. Noam Chomsky’s hierarchy [8] divides
all grammars into four categories, with context-free grammars (CFGs) being one of them.
CFG is often used for programming language implementation and recognition of human
languages [9].

CFGs are widely used in computer science for tasks such as parsing and compiling
computer programs, recognizing and generating human language, and for modeling RNA
structures, among others. The concept of a CFG and its production rules can be extended
to more powerful models, such as context-sensitive grammars and unrestricted grammars,
allowing for the definition and generation of more complex languages.

Many parsing algorithms have been suggested for CFG grammars because of their
significant expressive capabilities. Two widely used parsing algorithms are the CYK
parser [10] and the Earley parser [11]. There are also several extensions [12–14] and parallel
versions [15,16] of these two algorithms in the literature. The proposed implementation
chose Earley’s parser owing to its competence in handling ambiguous grammars and
effectiveness. The implementation relies on the Yet Another Earley Parser (YAEP) [17],
a proficient Earley parser able to parse ambiguous grammars with efficiency.
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3. Related Work

To the best of the authors’ knowledge, this is the first attempt at a platform that
incorporates a dedicated module to handle the prediction of RNA L-type pseudoknots.
The proposed methodology aims to address this identified research gap. While there are sev-
eral computational platforms available that can efficiently predict RNA pseudoknots, they
mainly focus on H-type pseudoknots. Therefore, this section aims to present the proposed
platforms in the literature, even if they are only capable of predicting H-type pseudoknots.

Most RNA secondary structure prediction algorithms utilize dynamic programming as
a core concept of their methodologies, attempting to calculate the structure with the lowest
free energy. In the special case of pseudoknot prediction, in addition to the minimum free
energy, the proposed frameworks also consider factors such as stability and entropy in their
calculation pipeline, as in [18]. Despite the fact that this problem has been proven to be NP
(nondeterministic polynomial time)-complete [19], researchers have developed stochastic
and heuristic approaches [20–22]. Knotty [23], for example, is a highly efficient framework
for pseudoknot prediction, which uses a CCJ (Chen–Condon–Jabbari) algorithm [24] with
sparsification. ProbKnot [25] predicts the secondary structure of an RNA molecule by
combining base pair probabilities of non-pseudoknotted structures and maximum expected
accuracy. IPknot [26] and its extension [27] also take advantage of base pair probabilities,
but they leverage integer programming and the LinearPartition model, combined with
pseudo-expected accuracy, for further optimization in terms of accuracy.

Various machine learning algorithms have also been proposed in the literature. These
algorithms aim to identify underlined patterns in training datasets through supervised
and unsupervised methods. Most of them rely on deep learning techniques, as in [28],
where a deep learning method is employed with tertiary constraints, while in [29], a
bidirectional LSTM network combined with IBPMP to select the correct base pairs and
predict the optimal structure, was proposed. In 2dRNA [30], a bidirectional LSTM encodes
the data, which is then decoded by a fully connected network to produce the dot–bracket
structure. The ATTfold method, capable of predicting pseudoknots [31], incorporates
deep learning models with an attention mechanism as an encoder. The base pairing score
matrix is encoded and then decoded by a convolutional neural network (CNN) into an
appropriate format. UFold [32] is also a deep learning framework, and is trained directly on
annotated data and base pairing rules. It utilizes an image-like representation of sequences,
appropriate for processing by fully convolutional networks (FCNs).

In addition to the thermodynamic models, there are also implementations using
stochastic context-free grammar (SCFG). Their accuracy varies depending on the SCFG
chosen. Pfold [33,34], for example, receives RNA alignments as inputs and predicts a
secondary structure. A multi-threaded version of Pfold, called PPfold [35], has also been
developed for execution time optimization. RNA-Decoder [36] also predicts secondary
structure using an SCFG, considering the known protein coding context of RNAs. Similar
SCFG-based approaches include Contrafold [37], Evfold [38], Infernal [39], Oxfold [40],
and Stemloc [41]. Previous studies have demonstrated the possibility of translating Zuker’s
thermodynamic model into an SCFG by calculating production probabilities from ther-
modynamic constants [22]. These techniques all strive to optimize an objective function,
with thermodynamic methods endeavoring to minimize the free energy of a structure, deep
learning approaches optimizing their loss function by adjusting their weights and trainable
parameters, while SCFG-based methods aim to maximize the corresponding probability of a
structure. The abundance of research on SCFG-based methods emphasizes the necessity for
the effective amalgamation of all the above-mentioned methods. Therefore, it is crucial to
discover the most suitable combination of these concepts to address the prediction of RNA
secondary structures. To this end, we propose a grammar-centered framework for L-type
pseudoknots, enhancing our existing set of tools for RNA secondary structure prediction.
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4. The Proposed Methodology—A Demonstration

This section outlines the proposed methodology, which builds upon the Knotify and
Knotify+ platforms introduced in [1,2], respectively, and includes the pruning technique
from [42]. The proposed platform is an extension of Knotify, and is designed to predict
L-type pseudoknots in RNA sequences. The Knotify platform consists of three main
tasks, wherein the RNA sequence is first analyzed by a CFG parser that generates trees
containing a pseudoknot pattern. The generated trees are then parsed to identify the
core stems forming the pseudoknot and the potential base pairs around them. Finally,
the optimal tree is selected using two established criteria: the maximum number of base
pairs and the minimum free energy of the sequence. In this paper, we introduce a CFG
that is integrated into the first task of the Knotify platform, enabling it to predict L-type
pseudoknots. The proposed implementation takes the primary structure of a sequence—a
string—as the input, and outputs the secondary structure in extended dot–bracket notation.
The platform comprises several software modules, with each task being implemented
through a separate module. In Section 5, we provide explicit implementation details and a
thorough analysis of each task.

4.1. Proposed CFG to Detect L-Type Pseudoknots

The proposed approach for detecting L-type pseudoknots in RNA sequences relies on
syntactic pattern recognition techniques and a CFG parser. The selection of appropriate
primitive patterns is emphasized, as it plays a significant role in accurate recognition.
In RNA recognition, the nitrogenous bases adenine (“A”), cytosine (“C”), guanine (“G”),
and uracil (“U”) typically form the RNA representation. Hence, the suggested gram-
mar’s vocabulary includes these four terminal symbols, and any RNA sequence can be
linguistically represented as a string of these symbols, such as “UCACAACGAACCU”.

In order to recognize a given pattern syntactically, an appropriate pattern grammar is
used to parse the linguistic representation of the original pattern. The pattern grammar’s
design is critical in achieving accurate recognition, as it can significantly impact the results.
Therefore, forming an efficient CFG to describe the pseudoknot syntactically is crucial.
CFGs are widely known to be suitable for representing structural features, and in this study,
the GLpseudo presented in Table 1 is used for the task of L-type pseudoknot prediction.

Table 1. Syntactic rules GLpseudo.

Enumeration Syntactic Rules

0 S→ “A” L “A” L “A” D “U” L “U” L “U”
1 S→ “A” L “A” L “U” D “U” L “U” L “A”
2 S→ “A” L “A” L “G” D “U” L “U” L “C”
3 S→ “A” L “A” L “C” D “U” L “U” L “G”
4 S→ “A” L “U” L “A” D “U” L “A” L “U”
5 S→ “A” L “U” L “U” D “U” L “A” L “A”
6 S→ “A” L “U” L “G” D “U” L “A” L “C”
7 S→ “A” L “U” L “C” D “U” L “A” L “G”
8 S→ “A” L “G” L “A” D “U” L “C” L “U”
9 S→ “A” L “G” L “U” D “U” L “C” L “A”
10 S→ “A” L “G” L “G” D “U” L “C” L “C”
11 S→ “A” L “G” L “C” D “U” L “C” L “G”

.

.

.
60 S→ “C” L “A” L “C” D “G” L “G” L “U”
61 S→ “C” L “U” L “C” D “G” L “G” L “A”
62 S→ “C” L “G” L “C” D “G” L “G” L “C”
63 S→ “C” L “C” L “C” D “G” L “G” L “G”
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Table 1. Cont.

Enumeration Syntactic Rules

64 L→ “A” L
65 L→ “U” L
66 L→ “C” L
67 L→ “G” L
68 L→ “A”
69 L→ “U”
70 L→ “C”
71 L→ “G”

72 D→ K K

73 K→ “A”
74 K→ “U”
75 K→ “C”
76 K→ “G”
77 K→ ε

In the GLpseudo grammar presented in Table 1, the second column displays the syntactic
rules. The grammar comprises four non-terminal symbols, namely, NT = S, L, D, K, with S
as the start symbol. All the syntactic rules with S on the left-hand side (i.e., rules 0 to 63)
aim to identify a potential L-type pseudoknot in the input sequence. An L-type pseudoknot
is defined as having at least three core stems, as depicted in Figure 1c. To recognize an
L-type pseudoknot syntactically, an appropriate pattern grammar must be employed to
parse the linguistic representation of the RNA sequence. The GLpseudo CFG is designed to
efficiently describe the syntax of an L-type pseudoknot within an RNA sequence, with the
core stems forming the intercalated base pairs. For instance, the rule S→ “U” L “G” L
“G” D “A” L “C” L “C” denotes the presence of a pseudoknot of the form U..G..G..A..C..C,
where the base pairs U–A, G–C, and G–C are intercalated, and the colors indicate the base
pairs. These intercalating base pairs are referred to as core stems throughout the article,
and are represented by punctuation marks “(”, “)”, “[”, “]”, “{” and “}” at the dot–bracket
notation (see Tables 2 and 3). Since there are four possible base pairs (A–U, U–A, C–G,
G–C) and three possible intercalations, there are sixty-four (43) syntax rules with S on the
left-hand side, with rules 12 to 59 omitted as they are easily understood. Figure 2 provides
an example of how the core stems intercalate each other to form an L-type pseudoknot.

Table 2. Locating base pairs around the core stems of a pseudoknot.

String Enumeration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

String U U U A C G G C C G A A U U C G C G G A

Parser output: . . ( . . [ . . . { ) . . . ] . } . . .

Step 1 . ( ( . . [ . . . { ) ) . . ] . } . . .
Step 2 . ( ( . . [ . { { { ) ) . . ] . } } } .
Step 3 . ( ( . [ [ . { { { ) ) . . ] ] } } } .

Table 3. L-type pseudoknot prediction.

Platform RNA/Dot Bracket

UGUGCGUUUCCAUUUGAGUAUCCUGAAAACGGGCUUUUCAGCAUGGAACGUACAUAUUAAAUAGUAGGAGUGCAUAGUGGCCCGUAUAGCAGGCAUUAACAUUCCUGA
Ground truth (((((((.(((((........[[[[....[[[[....{{{{.))))))))))))..........................]]]].....]]]]...........}}}}

Knotify .......((((((...............[[[[[[...{{{{.))))))...............................]]]]]]...................}}}}
IPknot .((((((.(((((.[[[[...((.......))((..]]]])))))))))))))...........((((((((...(((.(((.........))))))..)))))))).
Knotty (((((((.((((((((((...[[[[...[[[[[[[.))))).))))))))))))..........((((((((..((((]]]]]]]....]]]].)))).)))))))).

ProbKnot (((((((.((((((((((...((((....))))...))))).))))))))))))(((...))).((((((((..((((.(((.........))))))).)))))))).
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Figure 1. H-, K-, L-, and M-type pseudoknots.

Figure 2. The rule S → “U” L “G” L “G” D “A” L “C” L “C” that detects the presence of an
L-type pseudoknot.

The proposed approach for detecting L-type pseudoknots in RNA sequences involves
utilizing syntactic pattern recognition techniques and a CFG parser. To represent RNA,
the four standard nucleotide bases, i.e., adenine, cytosine, guanine, and uracil, are rep-
resented as single characters “A”, “C”, “G”, and “U”, respectively, and any RNA can be
linguistically represented as a string of these symbols. The proposed grammar, GLpseudo,
consists only of these four terminal symbols, and it includes four non-terminal symbols in
the set NT = {S, L, D, K}.

The syntactic rules for the GLpseudo grammar are presented in the second column
of Table 1, and all syntactic rules that have the start symbol S on the left-hand side aspire to
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identify a potential pseudoknot in the input string. The L-type pseudoknot is defined as
having at least three base pairs, forming intercalated core stems. The non-terminal symbol L
generates sequences of bases that make up the four interior loops of the pseudoknot, while
the non-terminal symbol D generates sequences of bases between the two main crossing
base pairs.

The CFG parser can identify pseudoknots in strings that have their initial and final
symbols belonging to the core stems group, but it can also operate effectively on substrings
using the sliding windows technique. The approach involves parsing all substrings of
the sequence, starting from the shortest one that commences with the first symbol of
the sequence and increasing the length by one symbol until the entire RNA sequence is
included. The parsing operation stops when the substring length falls below a specified
threshold, corresponding to the minimum length of the pseudoknot.

To handle the grammatical ambiguity, YAEP, a highly efficient parser that utilizes Earley’s
algorithm, is selected for the CFG parser. A context-free grammar is used to enable the
expansion with attributes, which can store probabilities and facilitate the pruning of parse
trees while constructing them, as a forthcoming extension. An alternate method for the initial
task using a brute force approach was also proposed to improve the system’s performance.

The proposed system allows the user to adjust the grammar to choose whether or
not to include U–G base pairs in the loops of the pseudoknot. Furthermore, the proposed
approach can be extended to incorporate longer substrings between the crossing base pairs
with appropriate modifications to the grammar. Section 4.1.1 explains how this substring is
incorporated into the original RNA sequence, and how extra base pairs are added to the
pseudoknot. The optimal tree selection process for the generated parse trees is discussed
in Section 4.2.

4.1.1. Decorate Core Stems

After creating the parse trees as described in the previous subsection, the pseudoknot
is decorated with additional base pairs by exploring all generated trees. To improve the
efficiency of the CFG parser, only the essential stems of the pseudoknot are recognized
by the parser. Although this approach reduces the number of syntactic rules in the CFG
and enhances its performance, it mandates traversing all parse trees to detect the base
pairs flanking the essential stems. The parser sequentially examines each base within the
pseudoknot loops to determine whether it can form a base pair with another base situated
in the correct position. The algorithm’s decoration is shown in Table 2. After identifying
the core stems at positions 2–10, 9–16, and 5–14 for U–A, G–C, and G–C, respectively, bases
in the loop at positions 11–13 and the loop at positions 6–8 are examined for potential base
pairing with bases outside the loops (positions 0–1 and 17–19, respectively). Then, the bases
in the internal loop at positions 3–4 and the internal loop at position 15 are examined for
potential base pairing.

Sequentially, base pairs at positions 1–11 (step 1), 8–17 and 7–18 (step 2), and 4–15
(step 3) are identified. The complete process is described in detail in Table 2.

4.2. Choosing the Optimal Pseudoknot

Various techniques have been proposed in the scientific literature to predict RNA base
pairing, including (i) the minimum free energy (MFE) method [43], based on the second
law of thermodynamics, which identifies the RNA sequence with the lowest free energy,
though it may not be often found in nature; (ii) the maximum pairing principle [44], which
relies on the count of base pairs around the essential stems of the pseudoknot, and the dot–
bracket representation with the highest count of base pairs surrounding the pseudoknot
usually corresponds to the minimum free energy; (iii) the partition function method [45],
which assumes that the true base pairs should have a high probability of forming in the
estimated minimum free energy distribution, thus improving accuracy by considering the
free energy of their nearest neighbors at a given temperature; (iv) comparative sequence
analysis [46], which involves analyzing the substitution pattern in a pairwise alignment
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of two homologous sequences; (v) physical experiments [47], which entail conducting
wet experiments.

In this research, we propose a hybrid optimal tree selection model that combines
principles from the two most common methods, maximum pairing and MFE methods,
to accurately and efficiently predict the RNA secondary structure, including the complex
motif of the L-type pseudoknot. The MFE approach is computationally efficient. All trees
are initially ranked by the count of base pairs surrounding the recognized pseudoknot,
and MFE is applied only to the trees with the highest base pair count. This heuristic
surpasses the original MFE approach.

To identify the optimal secondary structure, our approach utilizes the minimum free
energy as a criterion. We integrated a module from HotKnots [48] that calculates the energy
of each structure and provides it to our framework for the ultimate choice. It uses the
energy calculation algorithm proposed by Mathews [49] and modified for pseudoknots
by Dirks [50].

5. Implementation Details

The current study proposes a new method for identifying L-type pseudoknots, a rare
type of pseudoknot. The proposed method involves creating a set of all potential pseu-
doknots according to a proposed grammar, and selecting the best option based on the
principles of maximum base pairs around the pseudoknot and minimum free energy.
The prediction of pseudoknots for an arbitrary RNA sequence is an NP-complete problem,
and current algorithms, such as free energy minimization algorithms, become less precise
as the sequence length increases. In addition, heuristic approaches lack generalization
capabilities when tested under different datasets. To address these challenges, we propose
a hybrid strategy that selects the RNA sub-sequence with the most probable pseudoknot
expression. This involves creating a set of all L-type pseudoknot structures and then solving
an optimization problem to select the pseudoknot expression with the maximum number
of base pairs around the pseudoknot and the minimum free energy. The code routines
were implemented in C, in Python, for further execution time optimization during the
parsing task. The input sequence is sliced into multiple sub-sequences to parallelize the
workload, and a parallel CFG parser is employed to evaluate all sub-sequences in parallel
by spawning a pool of tasks. Each parser instance produces a pseudoknot structure that
describes potential pseudoknots within the CFG domain. All pseudoknot structures are
stored in a data structure, and the most likely solution is selected based on the least free
energy. To overcome the computational and memory-intensive task of computing the free
energy for each potential RNA folding, a maximum stem count lookup is performed, with a
time and space complexity of O(n) proportional to the input sequence’s length. The source
code for the implementation is publicly available under the L-type-knotify GitHub repo [51].

6. Predicting a Well-Known L-Type Pseudoknot

In order to validate the efficiency of such platforms, it is common practice to construct
a suitable dataset and compare the predicted secondary structures using specific metrics
against the ground truth structure observed by biologists as well as other well-known
platform predictions. Unfortunately, in the case of L-type pseudoknots, the dataset available
is extremely limited. To date, only one L-type pseudoknot has been observed, which was
initially presented in [52]. This RNA sequence was used as the input to the proposed
platform as well as three other state-of-the-art methods: IPknot [26], ProbKnot [25], and
Knotty [23]. The resulting dot–bracket notations are presented in Table 3, demonstrating
that our platform, referred to as “Knotify”, accurately predicted the core stems of the L-type
pseudoknot. In contrast, Knotty and IPknot predicted H-type pseudoknots, which possess
hairpins in the pseudoknot loops, while ProbKnot predicted a structure containing only
hairpins, thus failing to predict the core stems of the L-type pseudoknot.

It can be readily comprehended from Figure 3, which presents the ground truth in
Subfigure a, our platform’s prediction in Subfigure b, and Knotty, IPknot, and ProbKnot
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predictions in Figure 3c,d,e, respectively, that the proposed system’s prediction of an
L-type pseudoknot closely approximates the actual pseudoknot structure. The process of
visualizing the RNA pseudoknot structures shown in Figure 3 was executed through the
utilization of the pseudoviewer tool [53].

In addition, we compared our platform’s performance to other state-of-the-art meth-
ods, i.e., IPknot, ProbKnot, and Knotty, using the following four fundamental metrics.
Table 4 displays the results for each method.

Figure 3. Ground truth (a), our platform’s prediction (b), Knotty’s prediction (c), IPknot’s predic-
tion (d), and ProbKnot’s prediction (e) of L-type pseudoknot presented in [52].

• Positive predictive value (PPV): PPV is a metric that measures the proportion of
true positives among the positive predictions made by a classification model. It is
calculated as the ratio of true positives (TPs) to the sum of true positives and false
positives (FPs):
PPV = TP/(TP + FP)

• Recall: Recall is a metric that measures the proportion of true positives that were
correctly identified by a classification model. It is calculated as the ratio of TPs to the
sum of true positives and false negatives (FNs):
Recall = TP/(TP + FN)

• F1-score: The F1-score is a metric that balances precision (PPV) and recall. It is
calculated as the harmonic mean of precision and recall:
F1-score = 2 ∗ (PPV ∗ Recall)/(PPV + Recall)

• Matthews correlation coefficient (MCC): MCC is a metric that takes into account all
four outcomes of a binary classification model (true positives, false positives, true
negatives, and false negatives). It is calculated as follows:

MCC = (TP ∗ TN − FP ∗ FN)/
√
((TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN))
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In order to assess the overall performance of our methodology, we focused on precision;
recall; Matthews correlation coefficient (MCC); and F1-score, which is the harmonic mean
of precision and recall. Our methodology surpassed the other two methods in terms of
precision, with a score of 0.844, while Knotty had a score of 0.500, IPknot a score of 0.333,
and ProbKnot a score of 0.308. In terms of the F1-score, our platform achieved a score of
0.675, while Knotty achieved a score of 0.661, which is very close to our platform, and
both other platforms scored 0.449. The proposed methodology outperformed all methods
in terms of the MCC metric, with a score of 0.521. Finally, Knotty achieved a very high
recall score (0.976) by having only one false negative, which may have been due to the
fact that large RNA sequences often contain multiple structures (such as bulges) that do
not necessarily relate to the pseudoknot directly. This may have increased the overall
true positive score and reduced the false negative score. In our future work, we plan to
further improve our methodology to handle even more complex patterns, such as L-type
pseudoknots containing bulges or hairpins.

Table 4. Four fundamental metrics per platform.

Platform tp tn fp fn Precision Recall F1-Score MCC

Knotify 27 55 5 21 0.844 0.563 0.675 0.521
IPknot 22 32 44 10 0.333 0.688 0.449 0.102
ProbKnot 24 25 54 5 0.308 0.828 0.449 0.143
Knotty 40 27 40 1 0.500 0.976 0.661 0.419

Unfortunately, to the best of authors’ knowledge, no other L-type pseudoknot structure
has been reported to date, thus preventing the further evaluation of the proposed platform.
The above-mentioned results are also shown in Figure 4.

Figure 4. Precision, recall, F1-score, and MCC per platform.

7. Discussion

The structure of RNA molecules plays a vital role in understanding their functions and
operations in organisms. For many years, scientists have used experimental methods to
analyze RNA structures, but these methods are time-consuming, and may not be accurate.
With the recent advancements in computational methods, predicting RNA structures has
become faster and more precise. One of the challenging tasks in RNA structure prediction is
the identification of pseudoknots, which are complex RNA structures that play critical roles
in many biological processes. In this paper, we present a grammar-based framework for
predicting a rare but complex type of pseudoknot, the L-type pseudoknot, extending our
previous work on H-type pseudoknots. We evaluate the effectiveness of our methodology
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by comparing it with three other well-known methods, using four performance metrics:
precision, recall, Matthews correlation coefficient (MCC), and F1-score. The proposed
methodology uses a grammar-based approach to predict all possible L-type pseudoknots
of a given RNA sequence. We leverage core biological principles, such as maximum base
pairs and minimum free energy, to ensure the accuracy of our predictions. We compare
the performance of our methodology with three other methods using four performance
metrics: precision, recall, MCC, and F1-score. Our methodology outperformed the other
three methods in terms of precision, with a score of 0.844, while the other methods scored
0.500, 0.333, and 0.308. Regarding the F1-score, our methodology scored 0.671, while the
other methods scored 0.661, 0.449, and 0.449. The proposed methodology surpassed all
methods in terms of the MCC metric, achieving a score of 0.521. The Knotty platform
achieved a very high recall score.

Our methodology provides an accurate and fast way to predict L-type pseudoknots in
RNA sequences. The use of a grammar-based approach, combined with biological princi-
ples, ensures the accuracy of our predictions. The proposed method is added to our RNA
toolset, which aims to enhance the capabilities of biologists in the prediction of RNA motifs,
including pseudoknots. The use of computational methods in RNA structure prediction
is an active area of research, and our methodology contributes to the development of
accurate and fast methods for predicting RNA structures. Our methodology can be used in
many biological applications, such as drug design, gene therapy, and understanding RNA
function. Moreover, the proposed method can be used in combination with other methods
to increase the accuracy of RNA structure prediction.

8. Conclusions and Future Work

The observation and analysis of RNA molecules have proved crucial for the under-
standing of various processes in nature. The prediction of the secondary structure in RNA,
and especially for pseudoknots, is of utmost importance. In response to this need, a new
methodology has been introduced to accurately and effectively detect the rare variation
of L-type pseudoknot. The innovative method is based on Earley’s parser, which gen-
erates a set of all possible parse trees for an RNA sequence, where each tree represents
a potential pseudoknot structure. A well-known RNA sequence containing an L-type
pseudoknot was applied as the input for the proposed platform, as well as for three other
state-of-the-art methods, namely, IPknot, ProbKnot, and Knotty. It was observed that
our platform succeeded in accurately predicting the core stems of the L-type pseudoknot.
Conversely, Knotty and IPknot predicted H-type pseudoknots, which possess hairpins
in the pseudoknot loops, while ProbKnot predicted a structure containing only hairpins.
To identify the optimal structure, the method combines pairing maximization and free
energy minimization for each structure, using a hybrid model. We intend to extend the
methodology by designing cutting edge algorithms and incorporating machine learning
techniques for more intricate patterns in RNA structures. In future work, different varia-
tions of the methodology with various execution parameters will be available on a web
platform with a modern graphical user interface.
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Abbreviations
The following abbreviations are used in this manuscript:

CFG Context-free grammar
CNN Convolutional neural network
CPU Central processing unit
CYK Cocke–Younger–Kasami
DAG Direct acyclic graph
FCN Fully convolutional network
IBPMP Improved base pair maximization principle
LSTM Long short-term memory
MCC Matthews correlation coefficient
MFE Minimum free energy
NMR Nuclear magnetic resonance
RNA Ribonucleic acid
SCFG Stochastic context-free grammar
YAEP Yet Another Earley Parser
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