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Abstract: Point cloud registration has a wide range of applications in 3D reconstruction, pose
estimation, intelligent driving, heritage conservation, and digital cities. The traditional iterative
closest point (ICP) algorithm has strong dependence on the initial position, poor robustness, and low
timeliness. To address the above issues, a fast point cloud registration method that incorporates RGB
image information is proposed. The SIFT algorithm is used to detect feature points of point clouds
corresponding to the RGB image, followed by feature point matching. The RANSAC algorithm is
applied to remove erroneous point pairs in order to calculate the initial transformation matrix. After
applying a pass-through filter for noise reduction and transiting down with a voxel grid, the point
cloud is subjected to rotation and translation transformation for initial registration. On the basis of
initial alignment, the FR-ICP algorithm is utilized for achieving precise registration. This method not
only avoids the problem of ICP easily getting stuck in local optima, but also has higher registration
accuracy and efficiency. Experimental studies were conducted based on point clouds of automotive
parts collected in real scenes, and the results showed that the proposed method has a registration
error of only 0.487 mm. Among the same group of experimental point clouds with comparable
registration error, the proposed method showed a speed improvement of 69%/48% compared to
ICP/FR-ICP with regard to registration speed.

Keywords: iterative closest point (ICP); point cloud registration; SIFT feature extraction; RANSAC;
precise registration

1. Introduction

Recently, the development of 3D laser scanning technology has been rapid. Laser
scanning devices can obtain point cloud data by scanning objects [1]. Compared with
2D image data, point cloud data contain depth information and have a wider range of
application scenarios. However, due to the limited field of view of laser scanning devices,
point cloud registration technology is usually required to match and fuse fragmented
point cloud data in applications. For example, in 3D reconstruction, point cloud data
captured from different perspectives need to be registered to obtain complete point cloud
data [2]; in robot grasping, point cloud registration is needed to estimate the precise
pose of the workpiece [3]; in autonomous driving, point cloud registration is used to
construct real-time maps and achieve high-precision positioning of the vehicle [4]; in
heritage conservation, point cloud fragments are stitched together to improve the efficiency
of heritage restoration while avoiding secondary damage to heritage through manual
restoration [5]; in the construction of a digital city, point clouds of features obtained from
multiple sites are stitched together to create a highly realistic and accurate 3D model of
the urban landscape [6]. As a fundamental work, the study of point cloud registration
technology has important value and broad application prospects.
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The iterative closest point (ICP) algorithm [7] is the most widely used and classic
algorithm for point cloud registration. It selects the points with the minimum Euclidean
distance as corresponding points and obtains the optimal rigid transformation between two
point cloud datasets by minimizing the distance between corresponding points in the two
sets [8]. However, the ICP algorithm is highly dependent on the initial registration position
and is prone to local optimal solutions [9]. At the same time, ICP has low efficiency.

To improve ICP, Yang et al. proposed the Go-ICP algorithm, which partitions the sub-
spaces in SE(3) and removes unproductive subspaces using a branch-and-bound method to
find global optimal transformation [10]. Although this method solves the problem of local
minima and has certain improvements in registration accuracy and iteration speed, it is
still sensitive to initialization. Pavlov et al. introduced Anderson acceleration into the ICP
algorithm to accelerate the convergence of objective function and improve robustness of reg-
istration [11,12], but it still does not solve the problem of dependence on the initial position.
Zhang et al. proposed a fast and robust iterative closest point (FR-ICP) algorithm [13] based
on the previous work that introduced Anderson acceleration into the ICP algorithm. They
used the Welsch function as the metric error and minimized its quadratic surrogate function
to obtain the optimal solution. This approach not only accelerated the iteration speed but
also further improved the robustness of the algorithm. However, it still cannot solve the
problem of dependence on the initial position. To address the problem of dependence on
initial position, some researchers have proposed methods that combine initial registration
with the ICP algorithm to achieve fast registration. Li et al. proposed a point cloud reg-
istration algorithm based on ISS-SHOT features [14], which uses the ISS algorithm [15]
to extract point cloud feature points and perform SHOT feature description [16]. The
initial registration is completed by matching point pairs. Although this method has strong
descriptiveness, it lacks robustness and easily produces erroneous point matches. Jing et al.
proposed a point cloud registration method based on SIFT feature points combined with
the ICP algorithm [17]. They used the scale invariant feature transform (SIFT) algorithm
to extract feature points from the point cloud and calculated fast point feature histogram
(FPFH) features of feature points [18]. In this method, the initial registration is completed
by matching points. This method is computationally complex during feature extraction
and is prone to erroneous matches. Wang et al. proposed an improved ICP algorithm [19]
by introducing RGB-D point cloud color information to assist in establishing accurate
point correspondence and reducing the influence of noise and outliers on registration
results, thus improving the accuracy of point matching in the improved ICP algorithm.
This method requires point clouds to have color information. Wang et al. also proposed
an improved sample consensus point cloud registration algorithm [20]. By introducing a
quadratic function of distance in FPFH, the weight of points in far-distance neighborhoods
is reduced, while the weight of points in near-distance neighborhoods is increased to match
corresponding points. This method makes the matching of corresponding point pairs more
precise, but the efficiency is compromised.

ICP and variants mentioned above are prone to dependence on the initial position
of point cloud in point cloud registration, which can lead to poor registration results. In
addition, the initial registration stage of these algorithms is computationally complex [21],
and will lead to erroneous matches. In order to solve these problems, a point cloud
registration method that incorporates RGB images is proposed. Firstly, the SIFT algorithm
is used to extract feature points from the RGB image corresponding to the point cloud,
and feature point matching is performed with bidirectional KNN. The random sample
consensus (RANSAC) algorithm [22] is then applied to eliminate incorrectly matched point
pairs. The initial transformation matrix is calculated using four matched pairs of points
based on the transformation of the coordinate system between the laser scanning device
and the coaxial visible camera. The initial alignment is performed on the point cloud that
has been denoised with a pass-through filter [23] and transited down the voxel grid [24].
Finally, on the basis of the initial alignment, the FR-ICP algorithm [13] can be used for
precise registration. Extracting feature points from point clouds can bring about complex
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computation. In this work, the complexity of initial alignment is reduced by extracting
feature points from the RGB image corresponding to point cloud, and using the RANSAC
algorithm to eliminate incorrectly matched points, thereby reducing the computational
complexity and the rate of incorrect matching.

Experimental research was conducted using a point cloud dataset of automotive parts
collected in real scenes, and error measurements were performed on the registered point
cloud data under different initial angles. Experimental comparison and analysis were
conducted with ICP and FR-ICP, and the results showed that the proposed method has a
registration error of only 0.487 mm. In the same group of point cloud experiments with
comparable registration error, the proposed method showed an improvement in registration
speed of up to 69%/48% compared to ICP/FR-ICP.

2. Methods

The flow of the research method proposed in this article is shown Figure 1. Firstly,
SIFT algorithm was applied to detect feature points in the RGB image corresponding to
the point cloud, and the feature descriptors were calculated. Then, a bidirectional KNN
algorithm was used to match the feature point pairs based on their feature descriptors. The
RANSAC algorithm was utilized to eliminate erroneous feature point pairs and obtain
optimized feature point pairs. From the selected feature point pairs, four non-collinear
pairs were chosen to solve for the homography matrix H. Based on the coordinate system
transformation relationship between the laser scanning device and the coaxial visible
light camera, the camera motion parameters decomposed from H were converted to the
motion parameters of the point cloud laser scanning device in order to form the initial
transformation matrix for point cloud registration. The initial alignment was completed by
applying the initial transformation matrix to the point cloud data that had undergone noise
removal through a pass-through filter and transited down the voxel grid. This resulted in a
rotation and translation transformation of the point cloud data. Finally, based on the initial
alignment, the improved FR-ICP algorithm using Anderson acceleration was employed for
further optimization, resulting in accurate point cloud registration.

2.1. Initial Alignment Based on RGB Images

In order to address the strong dependence of ICP on the initial alignment position,
in this section, our work introduces the initial alignment based on the RGB images. We
detected feature points in RGB scene images with SIFT and used bidirectional KNN for
feature point matching. In the subsequent sections of this section, RANSAC has been used
to reduce the number of erroneous feature point pairs, and how to solve the transformation
matrix for the initial alignment of the point cloud will be illustrated.

2.1.1. Extraction of Feature Points with SIFT

SIFT, SURF, and ORB are commonly used algorithms for feature point detection.
However, the ORB algorithm detects feature points unevenly, lacks rotation invariance,
and is sensitive to noise [25]. The SURF algorithm performs poorly in detecting feature
points under lighting changes and deformation [26]. Considering the positive stability of
the SIFT algorithm and its ability to adapt to rotation [27], scale changes, and brightness
changes [28], our work uses SIFT to extract features from RGB images and perform initial
alignment.

The SIFT algorithm detects the extremum in the scale space by constructing a Gaus-
sian pyramid, determines feature points from the extremum, and forms a 128-dimensional
feature descriptor. To compare the performance of different feature point detection algo-
rithms, feature points were extracted from the RGB scene images corresponding to the
experimental point cloud, and the final detection results are shown in Figure 2. The left
image in Figure 2 shows the feature point extraction result of ORB on the RGB scene image,
with unevenly distributed extracted features. The right image in Figure 2 shows the feature
point extraction results of SIFT on the RGB scene image. The SIFT algorithm is sensitive to
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feature points in the image, and even if the scene object is single, it can obtain a sufficient
number of feature points, which is beneficial for subsequent feature matching.
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2.1.2. Feature Point Matching

Upon extraction of feature points from two RGB images, the commonly used method
for matching is brute force matching. However, when the number of feature points is
large, this approach can lead to a lengthy matching time and a significant number of false
matches. To tackle the aforementioned issues, this paper proposes a bidirectional K-nearest
neighbor (KNN) algorithm for feature point matching. Specifically, a k-d tree is constructed
for both the source and target images, and KNN matching is performed independently
on each of them. The common matching point pairs resulting from both matches are then
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obtained as the initial matching result, effectively reducing the number of false matches in
the initial set.

A k-d tree is constructed from the feature descriptors and the variance of X and Y
dimensions is used to dimensionally segment the feature points. Afterwards, the dimension
with the largest variance is sorted, and the median is taken as the pivot node. Nodes with
values less than this median are assigned to the left sub-tree, while nodes with values
greater than this median are assigned to the right sub-tree. This process is repeated until all
nodes have been assigned. Figure 3 depicts the process of constructing a k-d tree.

Bidirectional KNN feature matching refers to the process of building k-d trees (k-d
tree 1 and k-d tree 2) for both source and target images, and then searching for the k nearest
neighbor feature points of the target image, starting from the root node of k-d tree 1. At the
same time, this process is also performed on k-d tree 2. The similarity between each feature
point and other nodes is measured by the Euclidean distance between two feature points.
The smaller the ratio of the Euclidean distance between two feature points, the higher the
match between the two feature points, and vice versa, the lower the match. The matching
points for the current feature point are selected as the top k (k = 2) highest similarity points,
and the common matching point pairs resulting from both matches are chosen as final
matching result.
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2.1.3. Elimination of Mismatched Pairs with RANSAC

In order to further improve the matching accuracy of the feature points, the mis-
matched point pairs in the matching need to be removed. In our work, the RANSAC
algorithm was used to reject incorrect matching point pairs [22] and improved the match-
ing accuracy. RANSAC uses a random sample of data as a basis for calculating the rest
of the data, and by iterating over the data and reaching a threshold number of samples, a
parametric model that satisfies the largest number of data points is obtained. The iteratively
calculated dataset contains both correct data and abnormal data, with the correct data
usually viewed as inliers and the abnormal data denoted as outliers. Noise in the data
and exceptional values in the fitted model are usually regarded as outliers, and in this
research outliers are represented as pairs of incorrectly matched points. The RANSAC in
our research method was performed using the following steps:

(1) Obtain sample set Q through feature point matching experiments in Section 2.1.2, and
randomly select 4 pairs of corresponding points from set Q to form set S.

(2) Use set S to calculate the homography matrix HR, denoted as model M. The method
for solving the homography matrix is presented in Section 2.1.4.
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(3) Calculate the projection error between all data points in set Q and model M. If the
error is less than the preset threshold Th, add the corresponding data point pair to the
inner point set I. Here, X1 and X2 denote the matching points, the projection error can
be expressed as

Th < ||X2 − HRX1|| (1)

(4) Re-randomly sample to obtain a new set S. Then, repeat steps (2) and (3). If the
number of elements in the current set of interior point I is greater than the optimal set
of interior points Ibest (where Ibest represents the set with the most elements), update
Ibest = I and the number of random samples simultaneously until the number of
samples reaches k (default 200).

(5) After completing k samples, Ibest is selected as the dataset of the optimized feature
point pairs.

2.1.4. Solution of Initial Transformation Matrix

The optimized matched pairs of feature points can be solved for the homography
matrix H of the projection transformation. The initial transformation matrix of the point
cloud is obtained by converting the camera motion parameters decomposed in H into
the relative motion parameters of the laser scanner according to the fixed coordinate
transformation relationship between the camera and the laser scanner.

Assuming that the positions of the laser scanning device and the visible camera are
fixed, the coordinate systems of the laser scanning device and the camera are defined as
Os − xsyszs and Oc − xcyczc, respectively. The rotation parameter Rh and translation pa-
rameter th are regarded as the rigid transformation relationship between the two coordinate
systems. Xs and Xc are considered as the coordinates under the two coordinate systems,
then the transformation relationship between Xs and Xc is expressed as

Xs = RhXc + th (2)

In the position shown in Figure 4 below, a conventional laser scanner is placed coaxially
with the visible camera. xs and zc axes, ys and xc axes, and zs and yc axes of the coordinate
system of the laser scanner and the camera coordinate system are parallel to each other, the
rotation parameters between these two coordinate systems are calculated as follows:

Rh = Rx

(π
2

)
Ry

(
−π

2

)
=

1 0 0
0 cos
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π
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The point p(x, y) in the RGB image captured by the camera can be transformed by
projection to obtain the corresponding point p′(x′, y′) in the other image, then the mapping
relationship between the corresponding points of the two images can be written as

p′ = H× p (4)
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H is denoted as a 3 × 3 homography matrix. In H, h33 ∈ H is a scaled free degree and
constant 1, so there are 8 effective degrees of freedom. Extending the above homography
matrix transformation relationship, a mapping relationship for feature point matching can
be established. The matrix H with 8 degrees of freedom can be found by establishing 8
equations through 4 sets of matching points. The relative rotation parameter Rc and the
translation parameter tc for the camera at two positions are obtained from the SVD [29]
decomposition of the matrix H.

The corresponding points in the two point clouds obtained by the laser scanning
equipment are marked as Xs1 and Xs2, and the coordinates of the two corresponding points
under the camera are Xc1 and Xc2, then the transformation of these two points under the
two coordinate systems is expressed as

Xs1 = RhXc1 + th
Xs2 = RhXc2 + th

}
(5)

From the relative rotation parameter Rc and translation parameter tc of the camera at
the two positions, we have

Xc2 = RcXc1 + λtc (6)

Substituting into the above two equations, we can get

Xs2 = RhRcRh
−1Xs1 − RhRcRh

−1th + λRhtc + th (7)

The relative rotation parameter R and translation parameter t of the laser scanning
device at two positions can be obtained as follows:

R = RhRcRh
−1

t = λRhtc + th − RhRcRh
−1th

}
(8)

Given that the scale factor λ cannot be determined, the translation parameter t can only
be obtained by estimating the above equation. Using rotation parameter R and translation
parameter t to form the initial transformation matrix, point cloud is rotated and translated
to complete initial alignment.

2.2. Point Cloud Data Preprocessing

In the process of point cloud acquisition, point cloud data will be subject to some
noise points caused by the light environment and equipment errors. In order to improve
the efficiency of point cloud follow-up, preprocessing experiments of point cloud data in
Section 3.1 are carried out to remove noise and transit down.

2.2.1. Pass-through Filter

The point cloud filter can eliminate some noisy points in the scene to improve the
efficiency of subsequent point cloud registration. The pass-through filter, as one of the most
common point cloud filters, reduces noise by eliminating values in a dimension that are
not within a set threshold.

In this paper, the pass-through filter was used to eliminate the noise points on the
Z-axis, and the point cloud data in this paper cover a range of [−851, −715] on the Z-axis.
After several tests, the point cloud filter threshold was set to [−790, −736]. The data points
outside the range were treated as noise and removed from it, and the obtained results are
shown in Figure 5.
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The number of points in the point cloud before noise removal was 157,551, and the
number of points in the point cloud after noise removal was 153,265. After evaluation
through the pass-through filter to reduce noise, the shape and position of the point cloud
data do not change.

2.2.2. Transition down with Voxel Grid

After the pass-through filter reduces the noise, the point cloud data were still relatively
dense. To improve the speed of subsequent point cloud processing, the point cloud was
transited down with a voxel grid. This approach can retain the basic contours and features
of the point cloud, while effectively reducing the amount of point cloud data.

This process involves establishing a 3D voxel grid of the point cloud, which consists of
several small grids. The data point closest to the center of gravity of the grid will be used
to replace all data points, and other data points are eliminated. This approach allows for
sparse data, while being simple and efficient, without the need to build complex topologies.
The center of each small grid is calculated as

xc =
n
∑

i=1
xi/n

yc =
n
∑

i=1
yi/n

zc =
n
∑

i=1
zi/n


(9)

In the above equation, n denotes the number of points in the small grid, and (xi, yi, zi)
denotes the points in the small grid. The point cloud dataset in this paper is large, and a
cube with a voxel volume of 1 m is created when the size of the raster is set, which here
indicates the size of the voxel in the X-Y-Z direction. The results of the transition down of
the point cloud with the voxel grid is reported in Figure 6.
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The number of point clouds before transiting down was 153,265, and afterwards the
number was 33,094. As reported in the above figure, after transiting down the point cloud,
the basic contours and features are preserved. In addition, the size of the small raster can
be controlled to adjust the balance between the number of point clouds and the point cloud
contour information.

2.3. Accurate Registration of Point Cloud with FR-ICP

Given two sets of point cloud data P = {p1, . . . , pM} and Q = {q1, . . . , qN}, ICP aligns
P with Q by optimizing the rigid transformations (rotation matrix R and translation matrix
t) on P:

min
R, t ∑M

i=1(Di(R, t))2 (10)

where Di(R, t) = minqQ ‖ Rpi + t− q ‖ is expressed as the distance from the transformed
point Rpi + t to the point cloud Q. ICP solves the point cloud registration issue by alternat-
ing iterations in two steps as follows:
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(1) Correspondence step: seek the nearest corresponding point q̂i
(k) of pi ∈ P in Q based

on the transformation
(

R(k), t(k)
)

:

q̂i
(k) =

min
q ∈ Q

‖ R(k)pi + t(k) − q ‖ (11)

(2) Alignment step: update the transformation by minimizing the Euclidean distance
between the corresponding points:

(
R(k+1), t(k+1)

)
=

min
R, t

M

∑
i=1
‖ Rpi + t− q̂i

(k) ‖2 (12)

The FR-ICP algorithm uses a Welsch-based function to measure the error based on
ICP, and Anderson’s accelerated majorization-minimization (MM) [30] algorithm is applied
to accelerate the iteration speed of the objective function to make the error minimized.
Specifically, the registration is denoted as

min
R, t ∑M

i=1 ϕu(Di(R, t)) (13)

where ϕu is the Welsch function:

ϕu(x) = 1− exp(− x2

2u2 ) (14)

u > 0 is a user-specified parameter. The Welsch function is used as the metric error,
and its quadratic proxy function is minimized to obtain the optimal solution, and the final
registration is reported as(

R(k+1), t(k+1)
)
=

min
R, t ∑M

i=1 wi ‖ Rpi + t− q̂i
(k) ‖2 (15)

where ωi = exp(− ‖ R(k)pi + t(k) − q̂(k)i ‖
2 /
(
2u2)). This paper limits the parameter range

of u with umin = EQ/3
√

3 and umax = 3D(0), where EQ is computed as the median

distances from each point qi ∈ Q to its six nearest points on Q and D(0) is the median of all
initial point-wise distances {(R(0), t(0))}.

The FR-ICP algorithm is based on minimizing the Euclidean distance between cor-
responding points in two sets of point sets to achieve the optimal rigid transformation
between two point clouds, so there is also the problem of sensitivity to the initial position.
In this paper, initial alignment and FR-ICP were used to complete the whole registration
process to avoid registration failure caused by falling into the local optimum, and also to
improve the efficiency of the accurate registration stage. In the accurate registration stage,
the results of the initial alignment of the point cloud were treated as the input of FR-ICP.
The default parameter settings of FR-ICP were used to register the two sets of points to
ensure the ultimate accuracy.

3. Experiment
3.1. Experimental Dataset

The experimental dataset contained 200 point clouds of automotive parts collected
in real scenes and the corresponding RGB scene images. The data acquisition scene and
equipment are shown in Figure 7, where the top is the point cloud laser scanning equip-
ment with coaxial visible light camera, specifically the ALSONTECH AT-S1000-06C-S 3D
(Zhengzhou, China) visual camera. The object at bottom represents automotive parts.
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Figure 7. Data collection scenarios and equipment.

The number of points in each point cloud in the experimental dataset was in the
interval of [1.5 × 105, 1.6 × 106] and the resolution of the image data was 1920× 1080. The
point cloud shooting scene was fixed, target point cloud was unique, and the rotation angle
of the source point cloud relative to the target point cloud on the Z-axis was

[
−90

◦
, 90

◦]
.

Figure 8 shows the RGB scene images corresponding to the experimental point clouds. To
better display point cloud data, Figure 9 shows the streamlined five groups of point clouds
in the experimental point clouds, where the source and target point clouds are represented
as blue and red, respectively.
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3.2. Experimental Environment

We report the hardware and software configurations for this work in Table 1. The
results of each subsequent experiment were derived from the above configuration to
provide unbiased research conclusions.

Table 1. Experimental environment.

Hardware and Software Configuration

OS Windows 10
CPU Intel(R) Core(TM) i5-7300HQ CPU @ 2.50 GHz
GPU NVIDIA GeForce GTX1050

Compiling environment Visual Studio2017, C++, PCL1. 8. 1

3.3. Experimental Results
3.3.1. Results of Feature Point Matching

The results of feature point matching are shown in Figure 10. The correct matching
point pairs and the incorrect matching point pairs are represented as red and green, respec-
tively. The number of total matching point pairs in the set of feature point pairs was 88
and the number of incorrect matching point pairs was 14. The final feature point matching
effect of RANSAC to eliminate the mismatched point pairs is shown in Figure 11, in which
the number of total matched point pairs was 76 and the number of mismatched point pairs
was reduced from 14 to 2. The number of mismatched point pairs contained in the set
of feature point pairs was significantly reduced, and the feasibility of the feature point
matching method in this paper was verified.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 
Figure 9. Five sets of streamlined example point clouds in the experimental point cloud (a–e), where 
the source and target point clouds are represented in blue and red, respectively. 

3.2. Experimental Environment 
We report the hardware and software configurations for this work in Table 1. The 

results of each subsequent experiment were derived from the above configuration to pro-
vide unbiased research conclusions. 

Table 1. Experimental environment. 

Hardware and Software Configuration 
OS Windows 10 

CPU Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz 
GPU NVIDIA GeForce GTX1050 

Compiling environment Visual Studio2017, C++, PCL1. 8. 1 

3.3. Experimental Results 
3.3.1. Results of Feature Point Matching 

The results of feature point matching are shown in Figure 10. The correct matching 
point pairs and the incorrect matching point pairs are represented as red and green, re-
spectively. The number of total matching point pairs in the set of feature point pairs was 
88 and the number of incorrect matching point pairs was 14. The final feature point match-
ing effect of RANSAC to eliminate the mismatched point pairs is shown in Figure 11, in 
which the number of total matched point pairs was 76 and the number of mismatched 
point pairs was reduced from 14 to 2. The number of mismatched point pairs contained 
in the set of feature point pairs was significantly reduced, and the feasibility of the feature 
point matching method in this paper was verified. 

 
Figure 10. The set of matched feature points. Figure 10. The set of matched feature points.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 
Figure 11. Optimized set of feature point pairs. 

3.3.2. Result of Point Cloud Preprocessing 
The original point cloud contained a large amount of noise and the number of points 

was dense, which is not conducive to register. Table 2 shows the number of points of the 
five groups of point clouds to be registered in experimental data. After evaluation by the 
pass-through filter to reduce noise and transiting down with voxel grid, the noise points 
were removed from point cloud data, reducing the number of points while preserving the 
basic contours and features of point cloud. 

Table 2. Number of points in the point cloud of the 5 sets of instances after preprocessing. 

Point Cloud 
 Number of Points  

Original Point Cloud Pass-through Filter Transition Down of Voxel Grid 

Source Point Cloud 

157,551 153,265 33,094 
157,026 155,082 32,537 
156,963 153,185 32,137 
157,595 151,695 31,328 
158,657 157,285 33,130 

Target Point Cloud * 158,032 154,905 32,735 
* Target point cloud unique in the experiment. 

3.3.3. Point Cloud Registration 
To verify the effectiveness of this method, the point clouds in Section 3.1 were regis-

tered under the same experimental environment, and this method was compared with 
ICP and FR-ICP for analysis. In the experiments, two sets of alignment experiments of ICP 
were set up to measure the improvement in accuracy and speed of this method by iterat-
ing 50 times and 100 times, respectively, while keeping other parameters constant. In ad-
dition, only the initial alignment was used to measure the experimental metrics while 
maintaining the default parameters of FR-ICP. 

The experimental evaluation metric was RMSE, which indicates the sum of squared 
distances from the source point cloud to the corresponding point pairs of the target point 
cloud, and the smaller the sum of squared distances indicates the lower registration error 
of the point cloud. Registration time was also compared to measure the efficiency of the 
registration method, where RMSE is defined as 

RMSE = ඨ∑ ∥ ௜݌ܴ + ݐ − ௜ݍ ∥ଶெ௜ୀଵ ܯ  (16) 

The registration results of the five sets of streamlined point clouds shown in the anal-
ysis of the experimental data are shown in Table 3, where the first column shows the five 
sets of streamlined point clouds to be registered, and each subsequent column shows the 
registration results of the ICP, FR-ICP, and our method, respectively. As can be seen from 
the table, the registration results of the ICP algorithm with 50 iterations on all five groups 
of point clouds showed significant deviations and fell into local optimum when register-
ing the point cloud in Table 3e with the largest rotation angle, resulting in registration 

Figure 11. Optimized set of feature point pairs.

3.3.2. Result of Point Cloud Preprocessing

The original point cloud contained a large amount of noise and the number of points
was dense, which is not conducive to register. Table 2 shows the number of points of the
five groups of point clouds to be registered in experimental data. After evaluation by the
pass-through filter to reduce noise and transiting down with voxel grid, the noise points
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were removed from point cloud data, reducing the number of points while preserving the
basic contours and features of point cloud.

Table 2. Number of points in the point cloud of the 5 sets of instances after preprocessing.

Point Cloud
Number of Points

Original Point Cloud Pass-through Filter Transition Down of Voxel Grid

Source Point Cloud

157,551 153,265 33,094
157,026 155,082 32,537
156,963 153,185 32,137
157,595 151,695 31,328
158,657 157,285 33,130

Target Point Cloud * 158,032 154,905 32,735

* Target point cloud unique in the experiment.

3.3.3. Point Cloud Registration

To verify the effectiveness of this method, the point clouds in Section 3.1 were reg-
istered under the same experimental environment, and this method was compared with
ICP and FR-ICP for analysis. In the experiments, two sets of alignment experiments of ICP
were set up to measure the improvement in accuracy and speed of this method by iterating
50 times and 100 times, respectively, while keeping other parameters constant. In addition,
only the initial alignment was used to measure the experimental metrics while maintaining
the default parameters of FR-ICP.

The experimental evaluation metric was RMSE, which indicates the sum of squared
distances from the source point cloud to the corresponding point pairs of the target point
cloud, and the smaller the sum of squared distances indicates the lower registration error
of the point cloud. Registration time was also compared to measure the efficiency of the
registration method, where RMSE is defined as

RMSE =

√
∑M

i=1 ‖ Rpi + t− qi ‖2

M
(16)

The registration results of the five sets of streamlined point clouds shown in the
analysis of the experimental data are shown in Table 3, where the first column shows the
five sets of streamlined point clouds to be registered, and each subsequent column shows
the registration results of the ICP, FR-ICP, and our method, respectively. As can be seen from
the table, the registration results of the ICP algorithm with 50 iterations on all five groups
of point clouds showed significant deviations and fell into local optimum when registering
the point cloud in Table 3e with the largest rotation angle, resulting in registration failure.
When the number of iterations of ICP reached 100, registration improved, but registration
failure still occurred in the results. In the registration results of five sets of point clouds, our
method and FR-ICP had good registration performance, which was due to the fact that the
initial alignment in this paper kept good initial positions between the point clouds to be
registered and prevented the point clouds from falling into local optimum in the alignment.

The registration results of the above five groups of point clouds were evaluated
metrically, and the RMSE and speed of the registration experiments were compared, as
shown in Table 4. The table shows the higher registration error of ICP in the above point
clouds. Without considering the alignment failure, the RMSE of the point cloud in d
reached 1.721/0.834, and ICP compromised the speed while improving the accuracy. In
d, the accuracy of our method improved from 0.834 mm of ICP (iter 100) to 0.580, and
the speed increased by 42%. Compared with FR-ICP, our method had equal accuracy and
outperformed FR-ICP in terms of speed, due to the fact that our method had a better initial
position at registration, which reduced the computational overhead in the fine registration
stage. With comparable accuracy in a, the 18.87 s of our method compared to 61.84 s/36.75 s
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of ICP (iter 100)/FR-ICP, the improvement in speed reached 69%/48%. Based on the above
observations, we can conclude that our method can solve the problem of point cloud
registration easily falling into local optimum, and has advantages in speed and accuracy
compared with traditional methods.

Table 3. The registration results using various methods on 5 sets of example point clouds, with RMSE
(×10−3) and computation time (in seconds) shown below.

Original Data ICP (Iter 50) ICP (Iter 100) FR-ICP Ours
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(e) 27.067, 41.19 s 26.972, 79.26 s 0.575, 46.70 s 0.575, 32.07 s

Table 4. RMSE (×10−3) and computation time (in seconds) for different registration methods on 5
sets of example point clouds.

Original
Data

ICP (Iter 50) ICP (Iter 100) FR-ICP Ours

RMSE Time RMSE Time RMSE Time RMSE Time

(a) 0.808 31.82 0.518 61.84 0.488 36.75 0.487 18.87
(b) 1.092 32.16 0.627 62.29 0.556 33.71 0.532 21.04
(c) 1.523 32.74 0.807 62.36 0.591 41.49 0.591 28.39
(d) 1.721 32.68 0.834 63.08 0.580 56.17 0.580 36.51
(e) 27.067 41.19 26.972 79.26 0.575 46.70 0.575 32.07

The best performance figures are highlighted in bold fonts.



Appl. Sci. 2023, 13, 5161 14 of 15

4. Conclusions

In this work, we report a fast point cloud registration method incorporating RGB
image information to solve the problems of strong dependence on the initial position of
the point cloud, poor robustness, and low timeliness of ICP. In the proposed method, the
SIFT algorithm is used to extract the feature points of point cloud corresponding to the
RGB image and to perform feature point matching with bidirectional KNN. The RANSAC
algorithm is used to reject mismatched points and calculate the initial transformation
matrix. After applying the pass-through filter for noise reduction and transiting down the
voxel grid, the point cloud is subjected to rotation and translation transformation for initial
registration. On the basis of the initial registration, the FR-ICP algorithm is utilized for
achieving accurate registration. The results, analyzed by registration experiments, showed
that our method can solve the problem that point cloud registration easily falls into local
optimum, and has advantages in speed and accuracy compared with traditional methods.
This work relied on the visible camera of laser equipment to provide some reference for the
point cloud acquired by such equipment in the registration work. Nevertheless, it is worth
noting that the SIFT algorithm takes some time in extracting feature points. Meanwhile
the RANSAC algorithm still suffers from some instability in rejecting incorrect feature
point pairs, and only most of the incorrect point pairs could be rejected in our work. Some
improved versions of RANSAC, such as some probabilistic versions of RANSACs [31], are
available for use in subsequent research work. All these potential problems above will be
the direction of further research in the future.
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