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Featured Application: The method proposed can be used for the identification and control of
multivariable nonlinear systems.

Abstract: A novel dynamic inverse control method based on a dynamical neural network (DNN) is
proposed for the trajectory tracking control of a flexible air-breathing hypersonic vehicle (FAHV).
Firstly, considering that the accurate model of FAHV is difficult to obtain, the FAHV is regarded as a
completely unknown system, and a DNN is designed to identify its nonlinear model. On the basis of
Lyapunov’s second law, the weight vectors of the DNN are adaptively updated. Then, a dynamic
inverse controller is designed based on the identification model, which avoids the transformation
of the nonlinear model of FAHV, thereby simplifying the controller design process. The simulation
results verify that the DNN can identify FAHV accurately, and velocity and altitude can track the
given reference signal accurately with the proposed dynamic inverse control method. Compared
with the back-stepping control method, the proposed method has better tracking accuracy, and the
amplitude of the initial control law is smaller.

Keywords: flexible air-breathing hypersonic vehicle; dynamical neural network; dynamic inverse
control; adaptive identification model

1. Introduction

Hypersonic Vehicles (HVs) refer to a new type of aircraft flying at a speed of more than
Mach 5, which has received widespread attention in the civilian and military fields because
of its advantages of global fast arrival and efficient cost [1,2]. The unknown aerodynamic
parameters, actuator saturation limitations, and integrated airframe/engine design make
the dynamics of the HV uncertain, nonlinear, and strongly coupled, which brings great
difficulties to the controller design [3–5]. In addition, these unfavourable factors seriously
affect the flight performance of HVs and even can lead to system instability.

With the above-mentioned challenges, the design of the guidance and control system
for HV has attracted a great deal of attention in the past few years. In terms of trajectory
planning, researchers have conducted extensive research on guidance laws under special
constraints and made important achievements. In the design of guidance law, the most
wide studies are the optimal guidance method. The idea is to transform the design of the
guidance law into an optimal control problem and obtain an explicit guidance equation
by reasonable assumption and simplification [6,7]. The optimal guidance law method can
establish the mathematical model according to different constraint conditions. However,
due to the influence of external disturbance, measurement error, and high manoeuvrability
of the target in the flight process of HV, there will be a large error in the mathematical
model, which can greatly reduce the guidance accuracy [8]. To deal with the disadvantages
of optimal guidance, Ref. [9] proposed a search-resampling-optimization (SRO) framework.
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Numerical simulations demonstrate that the SRO framework is efficient and robust even
with narrow accessible tunnels for autonomous dispatch trajectory planning on the flight
deck. The SRO is inherently flexible and can be easily extended to the trajectory planning
problem for HVs. In addition, Wang et al. [10] proposed a comprehensive investigation of
techniques and research progress for the carrier aircraft’s dispatch path planning on the
deck, and they provided an exploratory prospect of the knowledge or method learned from
other fields. These solutions also can provide some reference for the trajectory planning
of HVs.

In terms of trajectory tracking and attitude control, scholars have proposed many
control methods for the characteristics of HVs. Considering the constraints of HVs and
their complex external disturbances, a predictive control method based on various types
of disturbance observers was proposed [11–13]. Additionally, considering that sliding
mode control is insensitive to parameter variations and external disturbance, sliding mode
control for HVs has been extensively studied [14–16]. In addition, to improve the anti-
interference performance of HVs, reinforcement learning methods [17–19] are proposed
to estimate various uncertain disturbances of HVs. These methods are conceptually in-
tuitive and improve the robust tracking performance from different aspects, but they are
based on the approximate linearization around specified trim conditions or input–output
linearization techniques.

However, due to the complex flight environment and unique dynamic characteristics of
HVs, accurate models of HVs are difficult or even impossible to obtain. Therefore, in order
to expand the practicality of the control methods, the fuzzy logic system [20] and neural
network [21–26] are proposed to approximate unknown dynamics of HVs. By taking the
nonlinear model and external disturbance as an unknown system, a radial basis function
neural network (RBFNN) is employed to approximate them [21–23]. Moreover, based on
RBFNN, Ref [24] takes the FAHV model as an unknown nonaffine system and designs an
adaptive neural controller. Additionally, fuzzy wavelet neural network (FWNN) is proposed
to estimate the unknown model of HVs to improve the transient performance [25,26]. These
methods have been proven to have good control performance, but the adaptive law is related
to the control law needed to be designed together with the control law, which will lead to
inconvenience in some cases.

The dynamical neural network identifier, proposed by George A. Rovithakis, can not only
approximate unknown nonlinear dynamic systems well, but also dynamically adjust weighted
parameters independent of control law [27,28]. And it has been applied in DC motors [27,28],
unmanned quadrotor formation flight [29], wastewater treatment bioprocess [30], etc. Inspired
by this, a dynamic inverse tracking control design method for a FAHV based on DDN is
proposed. The main contributions of this paper include the following:

(1) A DNN is used to identify the FAHV model. The weighted parameters of the neural
network are updated by the adaptive law and compared with conventional system
identification techniques, such as maximum likelihood estimation method [31,32] and
Kalman filtering method [33], this approach does not require the exact mathematical
model of the object.

(2) Compared with the widely used adaptive neural network control [21–24], the DNN
system identification method adopted in this paper is independent of the control law
design, which is convenient for system identification and control law design.

(3) A dynamic inverse controller is designed based on the identification model, which
avoids complex model transformations; thus, the controller design process is simplified.

The remainder of this paper is organized as follows. Section 2 presents the FAHV
model and preliminaries. The neural network identification model and the dynamic inverse
controller are developed in Sections 3 and 4, respectively. Simulation studies are made in
Section 5 and the conclusions are presented in Section 6.
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2. Problem Description
2.1. FAHV Model Description

The model adopted in this study is developed by Bolender and Doman for the lon-
gitudinal dynamics of a FAHV [34]. The nonlinear equations of the longitudinal motion,
derived from Lagrange’s equations, including flexible effects by modeling the fuselage
as a free beam and the vehicle as a single flexible structure with mass-normalized mode
shapes [35], are formulated as

.
V = T cos α−D

m − g sin γ
.
γ = L+T sin α

mV − g cos γ
.
h = V sin γ
.
α = Q− .

γ
.

Q = M
Iyy..

ηi = −2ζiωi
.
ηi −ω2

i ηi + Ni, i = 1, 2, 3

. (1)

This FAHV model is composed of eleven flight states, i.e., x = [V, γ, h, α, Q, η1,
.
η1, η2,

.
η2,

η3,
.
η3]

T for the five rigid-body states with velocity V, flight-path angle (FPA) γ, altitude h, the
angle of attack (AOA) α, pitch rate Q, and the flexible modes η = [η1,

.
η1, η2,

.
η2, η3,

.
η3]

T. Here, g
and Iyy denote the gravitational acceleration and the moment of inertia, respectively. As shown
in Table 1, the vehicle mass m and the modal frequencies (ωi, i = 1, 2, 3) of the flexible structure
are different at different fuel levels. It is also seen from Table 1 that the modal frequencies
increase as the vehicle mass decreases with the fuel consumption, but, in fact, the vehicle mass
decreases on a slower timescale than the velocity V and altitude h during hypersonic cruise
flight [36]. Therefore, nominal values of mass and modal frequencies at the 50% fuel level are
considered. While for all flexible modes, the damping ratio is constant, and that is ζi = 0.02.

Table 1. Vehicle mass and modal frequencies at different fuel levels.

Fuel Level 0% 30% 50% 70% 100%

m (slug/ft) 93.57 126.1 147.9 169.6 202.2
ω1 (rad/s) 22.78 21.71 21.17 20.73 20.17
ω2 (rad/s) 68.94 57.77 53.92 51.24 48.4
ω3 (rad/s) 140 117.8 109.1 102.7 95.6

Besides, the definitions of T, D, L, M and Ni(i = 1, 2, 3) that are given by [36,37]:

T ≈ qS
[
CT,φ(α)φ + CT(α) + Cη

Tη
]

D ≈ qSCD(α, δ, η)
L ≈ qSCL(α, δ, η)
M ≈ zTT + qScCM(α, δ, η)

Ni ≈
[

Nα2

i α2 + Nα
i α + N0

i + Nη
i η+ Nδe

i δe + Nδc
i δc

]
= Ni(α, η) + Ni(δ)δ, i = 1, 2, 3

, (2)

where δ = [δc, δe]
T .

The correlation coefficients under nominal operating conditions in Equation (2) are

CT,φ(α) = Cφα3

T α3 + Cφα2

T α2 + Cφα
T α + Cφ

T
CT(α) = C3

Tα3 + C2
Tα2 + C1

Tα + C0
T

CL(α, δ, η) = Cα
Lα + C0

L + Cη
Lη+ Cδe

L δe + Cδc
L δc

= CL,α,η(α, η) + CL,δ(δ)δ

CD(α, δ, η) = Cα2

D α2 + Cα
Dα + C0

D + Cη
Dη+ Cδ2

e
D δ2

e + Cδe
D δe + Cδ2

c
D δ2

c + Cδc
D δc

= CD,α,η(α, η) + CD,δ(δ)δ

CM(α, δ, η) = Cα2

Mα2 + Cα
Mα + C0

M + Cη
Mη+ Cδe

Mδe + Cδc
Mδc

= CM,α,η(α, η) + CM,δ(δ)δ

. (3)
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There are three control inputs φ, δc, and δe which are defined as the fuel equivalence
ratio, the canard deflection, and the elevator deflection. The canard deflection δc is ganged
with the elevator deflection δe with a negative gain kec, i.e., δc = kecδe. Therefore, the
actual control input that needs to be designed is u = [φ, δe]

T . Here, S, zT , and c denote
the reference area, thrust moment arm, and mean aerodynamic chord, respectively. The
dynamic pressure is calculated as q = 0.5ρV2, where the air density ρ is modeled as
ρ = ρ0 exp(−h/h0) with ρ0 = 1.2266 kg/m3 and h0 = 7315.2 m. The meaning of the
coefficients and the specific values are referred to [35]. Additionally, from the aerodynamic
parameter Formulas (2) and (3) of FAHVs, it can be seen that the various states of FAHVs
are highly coupled, and the elastic modes have great influences on its thrust, lift, drag, and
pitch moment.

2.2. Model Conversion and Control Objective

The nonlinear dynamic model of FAHV (1) can be written as the following matrix form:

.
x ≈ f (x) + g(x)u
y = x
z = Cx

. (4)

where y is the measurable output and z is the controlled output.

f (x) =



qS(CT(α)+Cη
T(η)) cos α−qSCD,α,η(α,η)

m − g sin γ
qSCL,α,η(α,η)+qS(CT(α)+Cη

T(η)) sin α

mV − g cos γ
V sin γ

Q− qSCL,α,η(α,η)+qS(CT(α)+Cη
T(η)) sin α

mV + g cos γ
zTqS(CT(α)+Cη

T(η))+qScCM,α,η(α,η)
Iyy.
η1

−2ζ1ω1
.
η1 −ω2

1η1 + N1(α, η)
.
η2

−2ζ2ω2
.
η2 −ω2

2η2 + N2(α, η)
.
η3

−2ζ3ω3
.
η3 −ω2

3η3 + N3(α, η)



g(x) =



qSCT,φ(α) cos α

m − qSCD,δ(δ)
m

qSCT,φ(α) sin α

mV
qSCL,δ(δ)

mV
0 0

− qSCT,φ(α) sin α

mV − qSCL,δ(δ)
mV

zT qSCT,φ(α)

Iyy

qScCM,δ(δ)
Iyy

0 0
0 N1(δ)
0 0
0 N2(δ)
0 0
0 N3(δ)


, and C =

[
1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

]
.

Remark 1. In order to accurately identify all states of the nonlinear system (4), it is assumed that
all states of the FAHV system are measurable.

The control objective is to design a control law so that the velocity V and the altitude
h of the FAHV track given reference signals when the motion model of the FAHV is
completely unknown.
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3. Establishment of Adaptive Identification Model for Flexible Air-Breathing
Hypersonic Vehicle
3.1. Dynamical Neural Network

Dynamical neural networks are recurrent, fully interconnected nets containing dynam-
ical elements in their neurons [27,28]. By dynamically adjusting the weighting coefficients
of the neural network, it has been proven that the approximation of a nonlinear function
can be achieved with high precision [27,28].

The nonlinear dynamic system of the form (4) can be described by the following
system of coupled the first-order differential equation [27,28]

.
x̂ = Ax̂ + BŴΦ(x̂) + Bβ̂Ψ(x̂)u
ŷ = x̂
z = Cx̂

, (5)

where x̂ ∈ R11 is an estimation of the state x of the FAHV, the input u ∈ R2, the output
ŷ ∈ R11, W is a 11× 11 matrix of adjustable synaptic weights, β is a 11× 11 diagonal matrix
of adjustable synaptic weights, A is a 11× 11 diagonal matrix with negative eigenvalues ai,
and B is a 11× 11 diagonal matrix with scalar elements bi, i.e.,

A =


a1 0 · · · 0

0 a2
...

...
. . . 0

0 · · · 0 a11


11×11

, ai < 0, i = 1, 2, . . . , 11

B =


b1 0 · · · 0

0 b2
...

...
. . . 0

0 · · · 0 b11


11×11

. (6)

Φ(x̂) is a 11-dimensional vector with elements of φ(x̂i), and Ψ(x̂) is a 11× 2 matrix
with elements of ψ(x̂i). φ(x̂i) and ψ(x̂i) are represented by sigmoids of the form

φ(x̂i) =
m1

1+e−δ1 x̂i

ψ(x̂i) =
m2

1+e−δ2 x̂i
+ k i = 1, 2, · · · , 11

, (7)

where m1, m2, δ1 and δ2 are constants representing the bound and slope of the sigmoid’s cur-
vature and k > 0 is a constant that shifts the sigmoid, such that ψ(x̂i) > 0, i = 1, 2, · · · , 11.

3.2. Online Updating for DNN

Assume there exists weight values W∗ and β∗ such that the system (4) can be approxi-
mated by the model

.
x = Ax + BW∗Φ(x) + Bβ∗Ψ(x)u + ω(x, u)

y = x
. (8)

Define the error between (5) and (8) as e = y− ŷ = x− x̂. Assuming ω(x, u) is zero,
we obtain

.
e = Ae + BW̃Φ(x̂) + Bβ̃Ψ(x̂)u, (9)

where W̃ = W∗ − Ŵ and β̃ = β∗ − β̂ which are undated by the adaptive law (15) and (16)
derived later.
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To obtain the stable updating laws, the Lyapunov second law is used. Considering the
following Lyapunov function

V =
1
2

eT Pe +
11

∑
i=1

1
2ηi

W̃iW̃T
i +

11

∑
i=1

1
2λi

β̃i β̃
T
i , (10)

where ηi and λi are positive constant which is referred to as the learning rate of the DNN, W̃i

and β̃i is the ith row vector of matrix W̃ and β̃, respectively, i.e. W̃ =
[
W̃1 W̃2 · · · W̃11

]T
,

β̃ =
[

β̃1 β̃2 · · · β̃11

]T
. And because β is a 11 × 11 diagonal matrix, then β̃i =[

0 · · · 0 β̃ii 0 · · · 0
]
, i = 1, 2, . . . , 11.

The derivative of the Lyapunov function is

.
V =

1
2

.
eT Pe +

1
2

eT P
.
e +

11

∑
i=1

1
ηi

W̃i

.
W̃

T

i +
11

∑
i=1

1
λi

β̃i

.
β̃

T

i . (11)

When Substituted (9) into (11), we obtain

.
V = 1

2 eT AT Pe + 1
2 eT PAe + 1

2

(
BW̃Φ(x̂) + Bβ̃Ψ(x̂)u

)T
Pe

+ 1
2 eT P

(
BW̃Φ(x̂) + Bβ̃Ψ(x̂)u

)
+

11
∑

i=1

1
ηi

W̃i

.
W̃

T

i +
11
∑

i=1

1
λi

β̃i

.
β̃

T

i

, (12)

where P > 0 satisfies the Lyapunov equation PA + AT P = −Q.
Since ΦT(x̂)W̃T BT Pe and uTΨT(x̂)β̃T BT Pe are scalars, that is

ΦT(x̂)W̃T BT Pe = eT PBW̃Φ(x̂)
uTΨT(x̂)β̃T BT Pe = eT PBβ̃Ψ(x̂)u

. (13)

Hence, Equation (12) will be

.
V = − 1

2 eTQe + eT P
(

BW̃Φ(x̂) + Bβ̃Ψ(x̂)u
)
+

11
∑

i=1

1
ηi

W̃i

.
W̃

T

i +
11
∑

i=1

1
λi

β̃i

.
β̃

T

i

= − 1
2 eTQe + eT PBW̃Φ(x̂) +

11
∑

i=1

1
ηi

W̃i

.
W̃

T
+ eT PBβ̃Ψ(x̂)u +

11
∑

i=1

1
λi

β̃i

.
β̃

T

i

= − 1
2 eTQe + eT PB


W̃1
W̃2

...
W̃11

Φ(x̂) +
11
∑

i=1

1
ηi

W̃i

.
W̃

T
+ eT PB


β̃1
β̃2
...

β̃11

Ψ(x̂)u +
11
∑

i=1

1
λi

β̃i

.
β̃

T

i

= − 1
2 eTQe +

11
∑

i=1
ei pibiW̃iΦ(x̂) +

11
∑

i=1

1
ηi

W̃i

.
W̃i

T +
11
∑

i=1
ei pibi β̃iΨ(x̂)u +

11
∑

i=1

1
λi

β̃i

.
β̃

T

i

, (14)

where e =


e1
e2
...

e11

, P =


p1 0 · · · 0

0 p2
...

...
. . . 0

0 · · · 0 p11

.

If
11
∑

i=1
ei pibiW̃iΦ(x̂) +

11
∑

i=1

1
ηi

W̃i

.
W̃

T
= 0, i.e.,

.
W̃i

T = −ηiei pibiΦ(x̂), i = 1, 2, · · · , 11 (15)



Appl. Sci. 2023, 13, 5154 7 of 17

and
11
∑

i=1
ei pibi β̃iΨ(x̂)u +

11
∑

i=1

1
λi

β̃i

.
β̃

T

i = 0, i.e.,

.
β̃

T

i = −λiei pibiΨ(x̂)u, i = 1, 2, · · · , 11. (16)

β is a 11× 11 diagonal matrix,

.
β̃ii = −λiei pibiΨi(x̂)u, i = 1, 2, · · · , 11, (17)

where Ψi(x̂) is the ith row vector of matrix Ψ(x̂).
Then,

.
V = −1

2
eTQe ≤ 0. (18)

The above equation illustrates that
.

V is negative semidefinite and the identification
error is convergent. Using Barbalat’s lemma [38,39], it can be seen that as t→ ∞ and
e→ 0 .

4. Dynamic Inverse Controller Design Based on the DNN Model

In order to realize the tracking control of FAHV velocity and altitude, a controller is
designed based on the DNN model (5).

Assume that the reference signal is zr, the output tracking error is

em = zr − z. (19)

Taking time derivative of em and using (5), we have

.
em =

.
zr − C

.
x̂

=
.
zr − CAx̂− CBŴΦ(x̂)− CBβ̂Ψ(x̂)u

. (20)

Design the linearizing feedback control law as

u =
(
CBβ̂Ψ(x̂)

)−1( .
zr − CAx̂− CBŴΦ(x̂) + Kem

)
, (21)

where K = diag{ki}, ki > 0, i = 1, 2.
Then, substituting (21) into (20), we obtain

.
em = −Kem. (22)

Therefore, the error em will converge to the origin exponentially.

Remark 2. To apply the control law (21), we have to assure the existence of
(
CBβ̂Ψ(x̂)

)−1.

To analyze the existence of
(
CBβ̂Ψ(x̂)

)−1
, the learning laws (15) and (17) can be

written in matrix form as .
Ŵ = −

.
W̃ = ηEPBS

.
β̂ = −

.
β̃ = λEPBS1U

, (23)
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where η =


η1

η2
. . .

η11

, E =


e1

e2
. . .

e11

, S =


ΦT(x̂)
ΦT(x̂)

...
ΦT(x̂)

,

λ =


λ1

λ2
. . .

λ11

,S1 =


Ψ1(x̂)

Ψ2(x̂)
. . .

Ψ3(x̂)

, U =


u

u
. . .

u

, B,

and P are as listed in Equations (6) and (14), respectively.
For our problem, expand matrix CBβ̂Ψ(x̂), and we have

CBβ̂Ψ(x̂) =
[

1 0 0 0 · · · 0
0 0 1 0 · · · 0

]
b1

b2
. . .

b11




β̂11 0 · · · 0

0 β̂22
...

...
. . . 0

0 · · · 0 β̂11,11




ψ11 ψ12
ψ21 ψ22

...
...

ψ11,1 ψ11,2


=

[
b1 β̂11ψ11 b1 β̂11ψ12
b3 β̂33ψ31 b3 β̂33ψ32

] . (24)

Since B and β̂ are diagonal matrices and bi 6= 0, ∀i = 1, 2, · · · , n, and because the outputs
of the FAHV are the velocity and the altitude, we only need to meet the condition β̂11 6= 0 and
β̂33 6= 0. A projection algorithm was proposed to assure the condition [27,28,40], but it needs
to know the optimal value of β∗, and this is difficult to obtain.

As can be seen from (24), to guarantee that CBβ̂Ψ(x̂) is reversible, one can make
the elements ψ12 and ψ31 equal to zero when generating matrix Ψ(x̂). Additionally, it is
seen from (23) that the condition β̂11 6= 0 and β̂33 6= 0 can be satisfied by adjusting the
parameters λ and B.

5. Simulation Results and Analysis

To illustrate the effectiveness of the proposed adaptive identification model and
dynamic inverse control, simulation studies were carried out under stochastic constant
control and dynamic inverse control. The parameters of the identification model are
selected as A = −0.001I,B = 0.1I, m1 = 0.5, m2 = 1.3, δ1 = δ2 = 0.0001, k = 0.4,
ηi = 1, i = 1, 2, · · · , 11, and λi = 1, i = 1, 2, · · · , 11. The initial velocity and altitude errors
of the real system and identification system are taken as 10 and 30, respectively.

5.1. System Identification under Stochastic Constant Control

Firstly, in order to verify the effectiveness of the identification method, simulation
analysis is carried out under the randomly generated constant control signals. A total of
500 times Monte Carlo simulations is performed. The constant control quantity of 500 times
is shown in Figure 1, and the root mean square (RMS) values of the errors of the true system
and identification system are shown in Figure 2. It is seen from Figure 2 that the RMS value
of the final error is less than one, indicating that the identification model has high precision.



Appl. Sci. 2023, 13, 5154 9 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 
Figure 1. 500 times random control signals. 

 
Figure 2. The root mean square values of the errors of true system (TS) and identification system (IS). 

Th
e 

co
nt

ro
l s

ig
na

l 
Th

e 
co

nt
ro

l s
ig

na
l 

e(°
)

0 100 200 300 400 500
numbers of Monte Carlo simulation

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1. 500 times random control signals.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 
Figure 1. 500 times random control signals. 

 
Figure 2. The root mean square values of the errors of true system (TS) and identification system (IS). 

Th
e 

co
nt

ro
l s

ig
na

l 
Th

e 
co

nt
ro

l s
ig

na
l 

e(°
)

0 100 200 300 400 500
numbers of Monte Carlo simulation

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2. The root mean square values of the errors of true system (TS) and identification system (IS).

Figures 3–6 show the simulation results under one of the constant control signals, and
the control law is u =

[
0.013 6.303◦

]T . In this case, since the control law is arbitrarily
given, the rigid body states are divergent, but the states of the identification system are
infinitely close to the actual system from the upper part of Figures 2 and 3. In addition, it
can be seen from the bottom half of Figures 2–4 that all state errors finally converge to 0,
which verifies that the proposed identification method is effective, and it is independent of
the controller design.
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5.2. System Identification and Tracking under Dynamic Inverse Control

Secondly, in order to verify the effectiveness of the dynamic inverse control based on
the identification model. The simulation results under dynamic inverse control law are
given, as shown in Figures 7–10, and the curves of the estimated parameter β11 and β33 are
shown in Figure 11.
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Figure 11. Curves of the estimated parameter β11 and β33 under dynamic inverse control.

In this case, the vehicle starts at initial trim conditions as listed in Table 2. and tracks
the reference trajectories of velocity and altitude generated by the second-order filters with
natural frequency ω = 0.03 rad/s and the damping ratio ς = 0.95.

Vre f (s) = ω2Vc(s)/
(
s2 + 2ςωs + ω2)

hre f (s) = ω2hc(s)/
(
s2 + 2ςωs + ω2) , (25)

where the final reference commands are Vc = 8820 ft/s and hc = 86, 000 ft.
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Table 2. States at initial trim conditions.

State Value State Value

V (ft/s) 7820 η1 0.5099
γ (deg) 0

.
η1 0

h (ft) 85,000 η2 −0.0493
α (deg) 1.6444

.
η2 0

Q (rad/s) 0 η3 −0.0136
.
η3 0

It is seen from Figure 8 that both the output of the actual system and the identification
system track the given reference signal, and it is also seen that the identification system
state quickly follows the actual system state. In addition, the attitude angle and elastic state
of the identification system can also quickly converge to the state of the actual system as
shown in Figures 9 and 10. These show that the designed adaptive DNN identification
method and dynamic inverse controller are effective. Additionally, from Figure 11, it is
seen that the estimated values of the parameter β11 and β33 are not equal to 0 throughout
the flight process which indicates that the selected parameters are valid.

Further observation of the simulation results under constant control law and dynamic
inverse control, and it can be seen that under dynamic inverse control, the states of the
identification system approach the states of the real system faster, because the weighting
coefficient of the DNN is affected by the control law as shown in Equation (16).

In summary, although the DNN identification method is independent of the control
law design, its performance will be affected by the control law.

5.3. Comparison with Back-Stepping Control Method

In order to illustrate the advantages of the proposed method, the proposed method
is compared with the back-stepping control method [41]. The simulation conditions are
set the same as Section 5.2, and the comparison curves of simulation results are shown in
Figures 12–14.
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It can be seen from Figure 12 that both methods can track the given reference signals,
and the local magnifications show that the proposed method has smaller steady-state
tracking errors. The states of the HVs all converge under the two methods from Figure 13,
and the back-stepping control method requires greater control initially from the local
magnification of Figure 14.

6. Conclusions

In this article, a dynamic inverse control method based on DNN is proposed to achieve the
trajectory tracking control for a FAHV. The designed DNN identification model does not need
to know the motion equation of FAHV, and the parameters can be designed independently
of the control law which is beneficial to engineering applications. The dynamic inverse
control law is designed based on the identification model, the complex model transformations
are avoided, and the controller design process is simplified which can be verified by the
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simulation. In future research, more practical problems faced by FAHV, such as constraints,
external interference, and unpredictable elastic modes, will be considered.
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