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Abstract: App-based ride-hailing mobility services are becoming increasingly popular in cities 

worldwide. However, key drivers explaining the balance between supply and demand to set final 

prices remain to a considerable extent unknown. This research intends to understand and predict 

the behavior of ride-hailing fares by employing statistical and supervised machine learning ap-

proaches (such as Linear Regression, Decision Tree, and Random Forest). The data used for model 

calibration correspond to a ten-month period and were downloaded from the Uber Application Pro-

gramming Interface for the city of Madrid. The findings reveal that the Random Forest model is the 

most appropriate for this type of prediction, having the best performance metrics. To further under-

stand the pa�erns of the prediction errors, the unsupervised technique of cluster analysis (using the 

k-means clustering method) was applied to explore the variation of the discrepancy between Uber 

fares predictions and observed values. The analysis identified a small share of observations with 

high prediction errors (only 1.96%), which are caused by unexpected surges due to imbalances be-

tween supply and demand (usually occurring at major events, peak times, weekends, holidays, or 

when there is a taxi strike). This study helps policymakers understand pricing, demand for services, 

and pricing schemes in the ride-hailing market. 

Keywords: ride-hailing; dynamic pricing; machine learning; artificial intelligence; data analytics; 

prediction error; clustering analysis; decision-making process; transport policy 

 

1. Introduction 

Urban transportation has changed significantly in recent years, given the fast devel-

opment of innovative technologies. New app-based mobility services such as ride-hailing 

are becoming more and more popular because of the consumer behavior shift from own-

ership to accessibility [1]. Ride-hailing has recently exploded in popularity, as indicated 

by the business success of transportation network companies (TNCs) such as Uber and 

Lyft [2]. 

The popularity of these companies can be explained in part by the fact that they often 

provide cheap, comfortable, on-demand door-to-door transportation options in urban ar-

eas [3]. In many cities, this service has thus become an essential part of the transportation 

system. In tandem with the global rise of this mobility alternative, several scholars have 

investigated the impact of ride-hailing services on individuals’ travel behavior and mode 

choice, pricing structure, etc. Nevertheless, the findings are still uncertain in several as-

pects, particularly regarding the pricing scheme. 

Ride-hailing companies use real-time dynamic algorithms to adjust their fares at any 

moment, whereas taxi fares are usually fixed and regulated [4]. Dynamic pricing, also 

known as surge pricing, is an automated system based on demand and supply principles. 
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While it is unclear how these rates are adjusted at any given time, understanding the be-

havior of the ride-hailing fares will be valuable to (i) users, to anticipate fares in advance; 

(ii) drivers, to monitor and be prepared for fare rises and hence determine in advance 

potential opportunities to collect additional revenue; and (iii) policymakers, to apply reg-

ulatory measures to improve the overall transport system. 

The main objective of this paper is to be�er understand, explain and predict the be-

havior of ride-hailing fares by combining statistical and supervised machine learning 

models for informing transport policymaking. To that end, data from Uber (one of the 

most popular TNCs in the world) were gathered in order to make predictions and explain 

its fares as a function of a range of explanatory variables. The Uber Application Program-

ming Interface (API) was utilized to collect data on Uber ride supply in the city of Madrid 

over 10 months (from September 2018 to June 2019). This paper addresses the following 

research question: “Can existing open (big) data be combined with statistical and super-

vised machine learning techniques to help predict ride-hailing fares?”. 

This paper also sets forth a conceptual and methodological framework for combining 

open (big) data of ride-hailing fares and additional information with predictive modeling 

for understanding the pricing mechanisms and incorporating them with the decision-

making processes of agencies, stakeholders, and policymakers for the ride-hailing market. 

In Spain, the ride-hailing market is limited, as is the number of ride-hailing licenses 

[5]. The city of Madrid was chosen for this paper because it is one of the most populous 

cities in the European Union and has a variety of transport modes. There has also been a 

big conflict between ride-hailing companies and conventional taxi services over the last 

few years [5,6]. In addition, the authors were able to build a large dataset in that city, 

which is not easy to find in other locations. Rangel et al. (2021) [5] used part of this dataset 

in a previous study in the city of Madrid considering only those origin-destination routes 

where fares experience notable variations over time (dynamic prices are effective). The 

authors explored ride-hailing fares using an econometric model—a Generalized Linear 

Model. The current paper goes further in the application of machine learning models 

(more robust models), applied in this city, and considers the complete dataset thus work-

ing with fixed and dynamic prices. The current dataset is 240% larger than the dataset 

used by Rangel et al. (2021) [5]. 

This research contributes to understanding and predicting ride-hailing fares, by com-

bining supervised and unsupervised techniques. Three statistical and supervised machine 

learning models were used for short-term prediction, using scikit-learn’s open-source ma-

chine learning library (such as Linear Regression, Decision Tree, and Random Forest). 

Each model predicts Uber fares using different algorithms that can be compared in terms 

of performance metrics. The unsupervised technique of cluster analysis (using the k-

means clustering method) was also applied to verify the difficulties of predicting Uber 

fares according to the prediction errors of the models. 

Besides this introductory section, the paper has six additional sections. The back-

ground and literature review are presented in Section 2. The case study selection is de-

scribed in Section 3, which is followed by data collection and analysis in Section 4. The 

methodology used to obtain the results of this research is detailed in Section 5. The results 

and discussion are presented in the Section 6, followed by conclusions and policy recom-

mendations. 

2. Background and Literature Review 

Uber, Lyft, Cabify, and Didi are examples of ride-hailing services that use infor-

mation and communication technologies (ICT). Ride-hailing companies typically use 

smartphone apps to provide their services, allowing the users to request a ride and receive 

information about the pick-up time, vehicle location, and the fare they will pay in advance. 

The pricing strategy of ride-hailing companies is needed for their long-term success 

[7]. Dynamic pricing is a strategy by which products or services prices are adjusted in 

response to real-time supply–demand imbalances using a dynamic algorithm [8]. Up to 
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about ten years ago, dynamic pricing was primarily limited to a few industries, such as 

airlines and hotels. Now dynamic pricing is used by companies in many other sectors, 

such as ride-hailing companies. The regular fare for a ride might, for example, increase 

during rainy conditions, trip delays (congestion), morning and evening peak hours, and 

leisure days [5], which influence supply or demand. 

The flexibility of dynamic pricing should increase the global welfare for society if the 

industry market is perfect, and thus externalities are internalized. However, the signifi-

cance and distributions of welfare gains are unclear. Many critics suggest that dynamic 

pricing can decrease welfare gains for riders [9] or drivers [10]. 

The advent of ride-hailing services has significantly impacted the taxi market. Its real 

impact is difficult to measure due to the limited data. According to Chang (2017) [11], Uber 

reduced regular taxi drivers’ income by 12% in Taiwan, and up to 18% after three years. 

Willis and Tranos (2021) [12] conclude that traditional taxi trips in New York have de-

creased after the entry of Uber. Akimova et al. (2020) [13] showed that ride-hailing services 

have had a significant negative impact on the profitability of taxi companies in Madrid 

and Barcelona. Besides, the taxi supply is limited by the municipalities in many countries 

such as Spain. 

Ride-hailing and taxi services operate under different legal and regulatory frame-

works in many countries [5,7]. The ride-hailing platforms retain a percentage of the total 

fare as commissions once the ride is completed and paid, and the rest is transferred to the 

driver. The Chinese Department of Transportation started to regulate in August 2021 the 

commissions charged by the ride-hailing platforms to standardize the business of those 

companies and reduce their excessive commissions. In addition, some cities in China, such 

as Beijing, Shanghai, and Hangzhou, have adopted regulatory measures to restrict the 

number of drivers registered in Didi [5,7]. 

In recent years, the competition between Uber, Cabify, and taxis has caused strong 

opposition from taxi drivers, who have organized protests and strikes in countries such 

as Spain [5] and Chile [7]. Currently, the Chilean government is discussing the definition 

of a basic framework to regulate the system in Congress [7]. In New York, the government 

has taken regulatory measures to limit the number of Uber drivers in 2019 [7]. In Spain, 

Denmark, Italy, and Sweden, Uber services have already been declared illegal at some 

point [14]. 

Despite the increasing interest in ride-hailing topics, there are still some gaps in the 

literature that have motivated this research. Statistical models are the most common meth-

odological tools used in ride-hailing studies. From the demand perspective, Faghih et al. 

(2019) [15] used time series to predict ride-hailing demand. From the supply perspective, 

Rangel et al. (2021) [5] used an econometric model to explore Uber fares in Madrid, based 

only on time-varying fare data. In recent years, there has been growing interest in apply-

ing machine learning methods in ride-hailing studies. For instance, Ba�ifarano and Qian 

(2019) [16] proposed a general real-time framework for predicting surge multipliers. Their 

approach was based on a log-linear model, and their model was able to predict Uber surge 

multipliers in Pi�sburgh up to two hours in advance. Yan et al. (2020) [17] applied Ran-

dom Forest to model and predict the demand for ride-hailing services in Chicago. Chen 

et al. (2021) [18] adopted deep learning networks for short-time prediction of demand for 

ride-hailing services. Silveira-Santos et al. (2022) [19] analyzed Lyft fares in Atlanta and 

Boston before and during the COVID-19 pandemic, with a focus on applications of time 

series forecasting and machine learning models. However, the scientific literature on the 

prediction of ride-hailing fares is still limited. Short-term ride-hailing fares forecasting has 

room to be improved using machine learning models. 

To sum up, this paper departs from previous studies and contributes to the predic-

tion of ride-hailing fares in the following ways: 

 Total fares were predicted, not just the surge multiplier, as noted by Ba�ifarano and 

Qian (2019) [16]. This also made it possible to identify cases of low demand, in addi-

tion to cases of high demand. 
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 Data from a European city were analyzed (most research had previously focused on 

American cities) and data were collected over an extended period, a total of ten 

months. 

 Statistical and machine learning models were applied and compared considering the 

complete dataset, thus working with fixed and dynamic prices, not only dynamic 

prices, as noted by Rangel et al. (2021) [5]. 

 A conceptual framework was described that can be adopted by interesting parties to 

be�er understand the pricing dynamics of the ride-hailing market. 

 Valuable information and policy recommendations for the ride-hailing market are 

provided. 

3. Case Study Selection 

The study was conducted in the city of Madrid, which is one of the most populated 

cities in the European Union and has a variety of transport modes, both public and private. 

For a detailed description of the case study, the reader is referred to reports such as Ayun-

tamiento de Madrid (2021) [20] and Consorcio Regional de Transportes de Madrid (2019) 

[21]. 

There has also been a major conflict between ride-hailing companies and conven-

tional taxi services in recent years. Taxi drivers complained that ride-hailing companies 

did not pay taxes in Spain, did not follow labor laws, and benefited from the freedom to 

change their fares whenever they wanted. As a result, taxi sector protests and strikes have 

become common in Spain in recent years, particularly in the city of Madrid [13]. 

In Spain, Uber and Cabify are the two largest ride-hailing companies [6,22]. Never-

theless, this paper only focuses on Uber services due to the lack of data available from its 

main competitor Cabify. 

To be�er understand the cost of the ride, it is essential to know how Uber fares are 

estimated. The service fee � (total fare for a ride) for Uber is split into two parts (see Equa-

tion (1)). 

�������� ��� =  ����� ���� + �������� ������� (1)

The first component (base cost) includes regular fees, such as one-off fees, and trip 

fees proportional to the trip’s duration and distance. The second component (dynamic 

pricing) reflects the result of Uber’s surge pricing algorithm depending on supply and 

demand (S&D) imbalances [8,19]. 

Uber provides three different services in Spain (UberX, Uber Black, and Uber Van). 

UberX provides rides in regular vehicles for up to four people, while Uber Black is the 

premium service and Uber Van is a service for groups of up to 6 people. This paper pri-

marily focuses on UberX rides because it is the most popular Uber product [23,24]. Table 

1 describes the factors that influence UberX fares in Madrid during the period analyzed, 

based on multiple factors. 

Table 1. Factors that influence UberX fares in Madrid (Adapted from El Confidencial, 2019 [25]). 

Service Fee Variable UberX (EUR) 

Base cost 

One-off fee 0.40 

Cost per minute 0.15 

Cost per kilometer 1.22 

Dynamic pricing *  S&D 

Minimum fare  3.50 

* Reflects the time evolution of supply and demand (S&D) imbalances. 

Uber fares are determined by the company’s policy, and the base cost considers three 

factors: (i) the one-off fee, which remains constant regardless of the length and duration 

of the ride; (ii) the cost per minute; (iii) the cost per kilometer. Dynamic pricing is applied 
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depending on supply and demand through a real-time dynamic algorithm [4,26]. In addi-

tion, the minimum fare is also included, which is a minimum fare to compensate drivers 

for short rides. 

It is worth mentioning that the real-time dynamic algorithm is not ‘open sourced’ 

from Uber (as well as other TNCs), and in most cases, information on fares is also not 

available. As a result, the underlying pricing mechanism is not known to transport pro-

fessionals or policymakers. Given that fact, this research aims to be�er understand the 

behavior of ride-hailing fares, using applications of machine learning models that may be 

useful for transport policy purposes. 

4. Data Collection and Analysis 

Data collection was obtained using Uber’s Application Programming Interface (API). 

It was not possible to obtain information from other ride-hailing companies operating in 

the city (such as Cabify), since their APIs did not provide the availability of that infor-

mation. Given the lack of up-to-date official empirical data on ride-hailing demand in 

Spain, ride-hailing prices can serve as a good proxy for estimating the level of demand, as 

the supply of ride-hailing services in Spain is very steady since car licenses are limited and 

most of the drivers work full time [22,27]. 

Using the web-scraping technique, a script was created in which the computer was 

taught to find the data that were deemed appropriate [28]. These tools allow for the real-

time collection of requested ride information while controlling for the latitude and longi-

tude coordinates of the chosen OD points (as was conducted by Rangel et al., 2021 [5], and 

Silveira-Santos et al., 2022 [19]). 

This study is not intended to compete with existing open tools for fare prediction 

(such as Uber’s Fare Estimator (h�ps://www.uber.com/global/en/price-estimate/, ac-

cessed on 10 January 2022) and UberFareFinder (h�ps://uberfarefinder.com/, accessed on 

10 January 2022)), but rather to define a framework to identify the issues of ride-hailing 

fare prediction and the errors associated with it. 

To collect information about ride-hailing fares, 10 locations in the city of Madrid were 

selected as the origin and destination (OD) of the requested rides (see Figure 1). These 

locations were chosen to cover the city uniformly, including spots of high demand (e.g., 

airports, public transport stations, etc.). Ride-hailing demand is high at three special loca-

tions in the city of Madrid (i.e., Madrid-Barajas Airport, Atocha Train Station, and 

Chamartín Train Station). Then, using a GIS tool, another seven points were chosen to 

uniformly cover the city. In the end, 10 locations in the city of Madrid were defined (mak-

ing up a network with 90 potential routes). 

For each ride requested through the Uber API, the following data were gathered: (i) 

fare; (ii) trip distance; (iii) trip duration; and (iv) trip request time (with year, month, day, 

and hour information). The Uber fare represents the cost of the ride as displayed by the 

app. The trip distance and duration indicate the distance and travel time required to travel 

to a specific OD. 

Data were collected through the Uber API and stored at 1 h intervals over 10 months 

(from September 2018 to June 2019), and 667,051 entries were collected. Data cleaning was 

required in cases where the fare, distance, and travel time variables had zero values. After 

the data cleaning process, the final dataset ended up containing 665,977 entries (99.84% of 

the original sample). 
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Figure 1. Madrid city and selection of the ODs of the requested rides. 

Additional exogenous variables were added using feature engineering techniques 

(the process of extracting characteristics, properties, and a�ributes from raw data using 

domain knowledge) and queries to other information sources in addition to the variables 

obtained via the Uber API. Specifically, information on delay, month, and hour (time of 

day) was extracted. Other sources of information were consulted to obtain additional data 

on variables that may influence demand, such as rain precipitation, business days and 

holidays, peak hours, and taxi strike periods. All these new variables were incorporated 

into the predictive models to be�er explain the results. 

Since the Uber API’s travel time is estimated based on current traffic conditions, the 

delay variable was calculated as the difference between the travel time of an OD pair and 

the shortest travel time for that OD pair. This variable is a good indicator of the expected 

road congestion of each ride. 

Categorical variables that control time-related features for requested trips, such as 

month and hour (time of day), were included to capture changes in ride-hailing fares at 

different times. In addition, holidays and peak hours in Madrid were verified, obtaining 

the variables of the business day (which does not include weekends and holidays) and 

peak hours (on business days from 07:00 to 09:00 and 18:00 to 20:00, according to EMESA, 

2019 [29]). 

Weather conditions are included in the analysis because they can affect Uber demand 

and thus influence ride fares [30]. Data on rain precipitation (measured in millimeters) 

was collected over 1 h. The State Meteorological Agency (AEMET) of Spain provided that 

information. 

To account for special events that affect its main competitor’s transportation supply, 

the analysis also considers taxi strikes that occurred during the analysis period. A cate-

gorical variable was included to capture Madrid’s strike days from September 2018 to June 

2019. Taxi strikes occurred for 20 days during the period studied. 

Table 2 shows the descriptive statistics for the final data sample. 
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Table 2. Summary statistics of explanatory variables. 

Variable Typology Unit Summary Statistics 

UberX fare 

(FARE) 
Continuous 

Euro 

(EUR) 

Mean 18.91 

Median 18.00 

Max. 149.00 

Min. 3.50 

SD 8.14 

Trip distance 

(DIST) 
Continuous 

Kilometers 

(Km) 

Mean 11.16 

Median 10.80 

Max. 36.97 

Min. 2.03 

SD 5.05 

Travel time 

(TTIME) 
Continuous 

Minutes 

(min) 

Mean 18.32 

Median 18.00 

Max. 53.00 

Min. 5.00 

SD 5.51 

Delay 

(DELAY) 
Continuous 

Minutes 

(min) 

Mean 4.57 

Median 4.00 

Max. 32.00 

Min. 0.00 

SD 3.29 

Rain precipitation 

(PREC) 
Continuous 

Millimeter 

(mm) 

Mean 0.14 

Median 0.00 

Max. 91.00 

Min. 0.00 

SD 1.64 

Business day 

(BUSINESS_DAY) 
Categorical - 

Business day 448,300 

Not business day 217,677 

Peak hour 

(PEAK_HOUR) 
Categorical - 

Peak hour 110,709 

Not peak hour 555,268 

Taxi strike 

(STRIKE) 
Categorical - 

Strike 42,333 

No strike 623,644 

Note: The Month (MONTH) and Hour (HOUR) variables were also considered in this research, be-

ing included as dummy variables. 

Figure 2 shows the pair plot of continuous variables. 

The rain precipitation variable was highly skewed (γ1 = 23.59) and has 653,048 

(98.1%) zeros. The data out of the main diagonal represent sca�er plots of continuous var-

iables, in which the correlation between them can also be observed. Figure 3 shows the 

boxplot of continuous variables. 

It is worth noting that no outlier data were removed during the data cleaning process. 

“Extreme” ride-hailing fares were kept in the dataset because it is believed they repre-

sented some type of instant “market irregularity”, due to either low supply in cases of 

high demand or the opposite. Figure 4 shows the average fare per hour and type of day 

(business, weekends, and holidays) for a be�er understanding of the fare trend through-

out the day. 
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Figure 2. Pair plot of continuous variables. Notes: The points are in blue and linear regressions are 

in red, and the main diagonal represents kernel density estimates (KDEs). 

 

Figure 3. Boxplot of continuous variables. 
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Figure 4. Average fare per hour and type of day. 

Uber fares on business days appear to have a morning peak at 08 h and a smoother 

and wider afternoon peak at around 18 h. Weekend and holiday fares, on the other hand, 

are more expensive late at night (which can be linked to leisure trips back home) and in 

the early afternoon (which can be linked to leisure activities such as dining, shopping, 

etc.). Uber fares are on average EUR 18.72 on business days and EUR 19.29 on weekends 

and holidays. 

5. Methodology 

The conceptual methodological framework was developed in five sequential steps 

(see Figure 5). 

 

Figure 5. Methodological framework. 

The first step includes (big) data scraping, which involves extracting information 

from a website and pu�ing it into a database. The second stage includes the feature engi-

neering technique, which involves the process of extracting characteristics, properties, and 

a�ributes from raw data using domain knowledge. These first two steps have already 

been presented in data collection and analysis (see Section 4). 

The third step describes the methods used to be�er understand and predict the be-

havior of ride-hailing fares, focusing on statistical and machine learning modeling. Super-

vised machine learning models were used for short-term prediction. All models were used 

to predict the expected ride-hailing fare for the case study of Madrid with a one-hour 

forecast horizon. 

Machine learning is used as a technique to “learn” from data [31,32]. These tech-

niques were proposed in this paper as a computational alternative to solve the problem of 

interest using standard prediction error metrics and model evaluation techniques. In total, 

three predictive models were trained on Uber data (see Table 3), using scikit-learn’s open-

source machine learning library (such as Linear Regression, Decision Tree, and Random 

Forest). 
  

Web-scraping 
technique

Using domain 
knowledge

Supervised 
machine 

learning models
Cluster analysis

To inform 
different 

stakeholders

(Big) Data 
scraping

Feature 
engineering

Machine 
learning 

modeling

Prediction 
error patterns

Dynamic 
pricing 
analysis
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Table 3. Overview of each model used. 

Model Definition Main Purpose Main Advantages 

Linear 

Regression  

(LR) 

Ordinary least squares are 

used for regression prob-

lems. 

Minimize the residual sum of squares 

between the observed targets in the da-

taset and the targets predicted by the 

linear approximation by fitting a linear 

model with coefficients. 

Simple and most used statistical model. It is 

also one of the most basic machine learning al-

gorithms. 

Decision 

Tree  

(DT) 

Non-parametric super-

vised learning method, 

used for classification and 

regression. 

Create a model that uses simple decision 

rules inferred from data features to esti-

mate the value of a target variable. A 

tree approximates a piecewise constant. 

Simple to learn and analyze; minimum data 

preparation required; capable of handling both 

numerical and categorical data; capable of deal-

ing with multi-output problems; employs a 

white box model; etc. 

Random 

Forest  

(RF) 

Ensemble method based 

on randomized decision 

trees, used for classifica-

tion and regression. 

A meta estimator that employs averag-

ing to increase predicted accuracy and 

control overfitting by fitting several 

classifying decision trees on various 

sub-samples of the dataset. 

One of the most accurate general-purpose ma-

chine learning methods; is robust; ability to 

minimize overfitting without increasing error 

related to bias; minor hyper-parameter tuning; 

quick training time; etc. 

Source: Developed by authors and based on scikit-learn (h�ps://scikit-learn.org/, accessed on 10 Jan-

uary 2022), towards data science (h�ps://towardsdatascience.com/, accessed on 10 January 2022) and 

several authors [33–38]. 

The predictive ability of the models can be verified in terms of some performance 

metrics. The Root Mean Squared Error (RMSE) and the Mean Absolute Percentage Error 

(MAPE) are two metrics commonly used to assess the accuracy of prediction models [39]. 

The fourth step includes the analysis of error pa�erns, which involves analyzing the 

differences between the observed and predicted values of the models. To be�er under-

stand the prediction results of the models, the unsupervised technique of cluster analysis 

was employed (using the models’ MAPE prediction errors as variables) to compare the 

profiles of each group with the other variables. 

Capitalizing on the prediction errors analysis, the last step of the framework aims to 

highlight lessons learned from the behavior of dynamic pricing analysis and the behavior 

of misprediction (error) pa�erns caused by various supply–demand irregularities. Finally, 

the results of applying statistical and machine learning models to be�er understand the 

behavior of ride-hailing fares are linked to transport policies, highlighting the benefits of 

knowing/predicting fares for different stakeholders. 

6. Results and Discussion 

6.1. Statistical and Machine Learning Models 

This subsection shows how statistical and machine learning models were used to 

predict the fare of the Uber service in Madrid with a one-hour prediction horizon (using 

scikit-learn’s open-source machine learning library). Several input features were used, 

which include Uber API data and the new exogenous variables imposed on the model (as 

shown in Section 4). 

The Uber fare variable (FARE) was used as the target variable explained by all the 

other variables listed in Table 2 as features (e.g., trip distance, travel time, delay, etc.). In 

this study, the default hyperparameters for the three machine learning models were used. 

It is noteworthy that the same random data split of training and testing sets was used for 

all models (i.e., Train/Test equal to 80/20) for comparison purposes. Predictive accuracy is 

evaluated and compared across all models (see Table 4). 
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Table 4. Comparison of performance metrics of the models. 

Performance Metrics Linear Regression Decision Tree Random Forest 

RMSE (EUR) 3.41 3.85 3.40 

MAPE (%) 8.01 6.60 6.32 

The results show that the Random Forest model has the best average performance 

according to the RMSE (EUR3.40) and MAPE (6.32%) metrics. Although the RMSE results 

do not fluctuate as much, the MAPE results show that the Random Forest model performs 

be�er than the Decision Tree and Linear Regression models. Figure 6 shows the sca�er-

plots of real fare values versus predicted ones. 

 

Figure 6. Sca�erplots of real fare values versus predicted values. 

The Linear Regression model has difficulty in predicting higher fare values (mainly 

values above EUR 50), while the Decision Tree and Random Forest models show similar 

trends, and both predict be�er high fares (but it is the Random Forest that best predicts 

fares overall). However, it is still possible to observe some fare peaks in which the pre-

dicted values differ greatly. Thus, the next subsection presents the application of cluster 

analysis to highlight the differences in predicting Uber fares across the alternative models. 

6.2. Cluster Analysis of the Prediction Errors 

To inform policymaking, it is necessary to have an in-depth understanding of how 

Uber fares react concerning demand or supply shortages. To this end, in this subsection 

cluster analysis is applied using the prediction errors of the models as variables (namely, 

the distribution of MAPE prediction errors, which are mostly used for comparison pur-

poses), identifying, for example, cases in which models overpredict or underpredict the 

observed fares. 

Cluster analysis is a powerful technique for examining group features. Many studies 

based on clustering approaches have been conducted on feature recognition and analysis. 

Each observation belonging to one cluster is like the other ones belonging to it and differ-

ent from all the other ones belonging to other clusters. The k-means algorithm is one of 

the most frequently employed techniques in group division and feature analysis [40]. 

This study applied the k-means clustering method for which the number of clusters 

is one of the most critical decisions. In this analysis, the � cluster number was set to three, 

as was conducted by other authors, such as Kumar et al. (2016) [41]. This study considers 

the number of clusters based on the distribution of MAPE prediction errors of the three 

models (i.e., Linear Regression, Decision Tree, and Random Forest), namely: (i) Low error; 

(ii) Medium error; and (iii) High error. 

Fifty-nine iterations were necessary to achieve stability in the cluster centers. Table 5 

shows the average distance of each variable (i.e., the MAPE prediction errors of the three 

machine learning models) to every cluster center and Figure 7 shows the number and 

percentage of observations per cluster. 
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Table 5. Final cluster centers. 

MAPE Prediction Errors 
Cluster 

#1 (Low Error) #2 (Medium Error) #3 (High Error) 

Linear Regression 6.030 21.458 22.544 

Decision Tree 2.555 26.611 76.960 

Random Forest 2.917 25.045 55.860 

 

Figure 7. Number and percentage of observations per cluster. 

The characteristics of the clusters are described below: 

 Cluster #1 (Low error): This cluster has the smallest average distance values across 

all MAPE prediction error variables. The two smallest distances were found in the 

Decision Tree and Random Forest models, indicating that these models predict ob-

servations with smaller MAPE prediction errors than Linear Regression. 

 Cluster #2 (Medium error): This cluster has intermediate average distance values on 

all MAPE prediction error variables. The smallest distance was found in the Linear 

Regression model. 

 Cluster #3 (High error): This cluster has the highest average distance values across 

all MAPE prediction error variables. The smallest distance was found in the Linear 

Regression model, indicating that this model predicts the observations in the group 

with larger MAPE prediction errors be�er. 

The number of observations in each cluster also shows that cluster #1 (Low error) 

contains 87.32% of the observations, followed by cluster #2 (Medium error) with 10.72% 

and cluster #3 (High error) with 1.96%. All valid observations are included in the clusters. 

The results show that a high share of the observations have small MAPE prediction errors 

(87.32%), which shows good accuracy of the machine learning models used to predict the 

UberX fare (the Random Forest is the machine learning model with the best performance 

metrics and is also one of the models contributing the most to the group with small MAPE 

prediction errors). Likewise, it shows a very small share of the observations with high 

MAPE prediction errors (only 1.96%), which can be caused by unexpected surges due to 

imbalances between supply and demand, as well as being related to outliers that were not 

removed and/or other variables (see Section 4). 

Table 6 presents a summary of the statistics of the clusters in terms of key continuous 

variables (e.g., UberX fare, trip distance, travel time, etc.). 
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Table 6. Relationship between the continuous variables and the formed clusters. 

Cluster 
Summary 

Statistics 

FARE 

(EUR) 

DIST 

(Km) 

TTIME 

(min) 

DELAY 

(min) 

PREC 

(mm) 

#1 

(Low error) 

Mean 18.57 11.35 18.47 4.60 0.14 

SD 7.29 5.01 5.51 3.30 1.66 

#2 

(Medium error) 

Mean 20.90 9.74 17.02 4.31 0.14 

SD 11.52 5.08 5.17 2.95 1.56 

#3 

(High error) 

Mean 23.38 10.24 17.93 4.62 0.21 

SD 16.38 4.83 5.35 3.51 2.07 

Forecasting ride-hailing fares appears more difficult (high MAPE prediction errors) 

when the supply value of the fare variable (FARE) and when rain precipitation (PREC) is 

higher, but the high standard deviations of the errors overshadow this effect (due to the 

existence of outliers in all groups). It is also noteworthy there is no clear trend for the 

variables trip distance (DIST), travel time (TTIME), and delay (DELAY) concerning the 

errors across clusters, which means the models have already captured the statistical signal 

from these variables. Table 7 shows the percentage of frequency of observations of the 

categorical variables within the three clusters. 

Table 7. Percentage of frequency of observations of the categorical variables within the formed clus-

ters. 

Cluster 
STRIKE 

(Strike Is True) 

BUSINESS_DAY 

(Business Day Is True) 

PEAK_HOUR 

(Peak Hour Is True) 

#1 (Low error) 6.25% 71.06% 16.02% 

#2 (Medium error) 6.77% 42.79% 20.77% 

#3 (High error) 10.20% 31.79% 20.44% 

The results of the percentages of frequency of observations of the categorical varia-

bles per cluster show how much they interfere with the MAPE prediction errors, mainly 

in cluster #3 (High error). The prediction of ride-hailing fares becomes slightly more com-

plex when there is a taxi strike, as well as during peak hours (from 07:00 to 09:00 and from 

18:00 to 20:00). The results also show that the forecasts are more accurate on business days, 

being thus less accurate on weekends and holidays, in which there is a high percentage of 

frequency of observations in clusters #2 (57.21%) and #3 (68.21%). The previous reasons 

appear to be related to potential demand peaks that cause an imbalance between supply 

and demand. Figure 8 shows the percentage of frequency of observations per hour and 

cluster. 

 

Figure 8. Percentage of frequency of observations per hour and cluster. 
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Cluster #1 (Low Error) is the one with the highest number of observations, being the 

frequency of observations almost constant across hours of the day, ranging from 3.52% to 

4.56%. Clusters #2 (Medium error) and #3 (High error) behave in quite different ways. 

Despite having fewer observations, there is a greater share of high MAPE prediction errors 

in peak hours, the early afternoon, and late at night, which is also in line with what was 

presented in Figure 4. 

To verify the cases in which the models overestimate or underestimate the observed 

fares, Table 8 presents the over-prediction and under-prediction by cluster and model. 

Table 8. Over-prediction and under-prediction per cluster and model. 

Percentage of  

Observations 

#1 (Low Error) #2 (Medium Error) #3 (High Error) 

LR DT RF LR DT RF LR DT RF 

Over-prediction 75% 78% 71% 44% 53% 52% 67% 74% 74% 

Under-prediction 25% 22% 29% 56% 47% 48% 33% 26% 26% 

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 

The models show more over-prediction than under-prediction in all clusters, espe-

cially in clusters #1 (Low error) and #3 (High error). Cluster #2 (Medium error) presents 

similar percentages of over-prediction and under-prediction and is the only one where 

the Linear Regression model differs more from the tree-based models. 

6.3. Discussion 

The results show differences in prediction using different models, especially in 

MAPE prediction errors (see Table 4) and in the sca�erplots of real fare values versus pre-

dicted values (see Figure 6). 

To be�er understand and explore the reasons for ‘highly mispredicted’ fares, cluster 

analysis was applied, using only the MAPE prediction errors from the three models as 

variables (see Section 6.2). The results of this analysis show that the prediction of ride-

hailing fares become more difficult in the following cases: (i) the supply value of the fare 

variable is very high; (ii) there is higher rain precipitation; (iii) there is a taxi strike; (iv) 

during peak hours; and (v) during weekends and holidays. All the previous cases appear 

to be related to unexpected demand rises that produce an imbalance between supply and 

demand. The analysis thus helps identify in which circumstances there are imbalances 

between supply and demand. 

As mentioned before, machine learning models were applied considering the com-

plete dataset, thus working with fixed and dynamic prices, not only dynamic prices—as 

noted by Rangel et al. (2021) [5]. It is also noteworthy that these authors explored ride-

hailing fares using an econometric model (adopting the Generalized Linear Model—

GLM) but decided to reduce the number of combinations to just 40 OD pairs (representing 

42% of the entire sample of this research) by looking only at fare data with notable varia-

tions over time (i.e., dynamic prices). All Uber minimum fare data (fixed price equivalent 

to EUR 3.50) was excluded because the econometric model adopted did not work well 

with fixed prices. Although the sample is smaller than that of this research, these authors 

found similar prediction difficulties in the econometric model (such as the occurrence of 

taxi strikes and peak hours). 

This research shows that machine learning methods can also handle the analysis of 

more data (which skewed the results of econometric models). The Random Forest model 

is the machine learning model with the best performance metrics (see Table 4) and is also 

one of the models that most contribute to the group with small MAPE prediction errors 

(see Table 5). The models also show more over-prediction than under-prediction in all 

clusters (see Table 8). 

  



Appl. Sci. 2023, 13, 5147 15 of 17 
 

 

 

7. Conclusions and Policy Recommendations 

Three models were applied to be�er understand the behavior of ride-hailing fares, 

using scikit-learn’s open-source machine learning library (such as Linear Regression, De-

cision Tree, and Random Forest). The Random Forest was the one with the best perfor-

mance metrics and is also one of the models that most contribute to the group with small 

MAPE prediction errors. The authors hence recommend combining statistical and super-

vised machine learning models with unsupervised techniques on the errors analysis to 

predict ride-hailing fares and be�er understand the conditions under which market im-

balances occur, which lead to lower- or higher-than-expected ride-hailing fares. 

From a transport policy point of view, the authors highlight several benefits of know-

ing/predicting the behavior of ride-hailing fares for different stakeholders: public author-

ities, regulatory authorities, users, and drivers. 

Public authorities can take advantage of knowing and predicting ride-hailing fares 

to define and adopt policy measures to set a rational competition and coordination with 

the taxi industry and across ride-hailing companies. In Spain, for example, taxi services 

claim that they should be able to establish their prices with the same freedom as ride-

hailing services to compete fairly with them [5]. Knowing the fares can also help them 

understand imbalances between mobility supply and demand and promote greater coor-

dination with other mobility options (e.g., through Mobility as a Service package). 

Regulatory authorities can use the methodology and result coming out from this pa-

per to safeguard fair competition among different ride-hailing operators. The results can 

also help them identify bad practices from operators aimed to obtain larger earnings 

through a dominant position, as happened in China, according to the literature review. 

The findings can help users know the ride’s price in advance, thus facilitating them 

in choosing the most favorable option for their trips according to their priorities. They can 

also help drivers keep track of fare rises to secure higher pricing and hence more potential 

earnings. 

Future research directions include: (i) adopting these methods to perform ride-hail-

ing fare prediction using data from different stages of the COVID-19 pandemic; (ii) ex-

tending the research methods to other cities (as the ride-hailing market in Spain is re-

stricted and the number of ride-hailing licenses is also limited); (iii) using other robust 

models for predicting ride-hailing fares, especially to be�er estimate unexpected surges; 

and (iv) collecting data from shorter intervals to more accurately capture peak fares. 
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