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Abstract: This research assessed the adsorption of a pharmaceutical compound, ibuprofen, using
rose geranium (Pelargonium graveolens L.) leaves to prepare low-cost activated carbon through or-
thophosphoric acid (H3PO4) activation. The activated carbon from rose geranium leaves (AC-RGL)
was characterized by TGA, SEM and FTIR. The results were compared with those from natural rose
geranium leaves (Raw-RGL). The influence of chemical parameters for the uptake of ibuprofen on both
adsorbents was evaluated through adsorption experiments. The results were subjected to adsorption
models, kinetics models and thermodynamic studies to determine the distribution of ibuprofen in
the solid and liquid phases. The results for both Raw-RGL and AC-RGL best fitted the Freundlich
model, and the kinetic studies were shown to be pseudo-first order. The thermodynamic evaluation
suggested exothermic and spontaneous process sorption for ibuprofen on both adsorbents. The maxi-
mum sorption capacities for AC-RGL and Raw-RGL were 113.76 and 74.12 mg/g, respectively. This
work confirms that low-cost rose geranium leaves can be used as a potential adsorbent for the sorption
of ibuprofen in solution.

Keywords: activated carbon; rose geranium; orthophosphoric; ibuprofen; adsorption

1. Introduction

Water contamination is a major environmental concern, and recently, pharmaceutical
pollutants in aquatic environments have become a major problem [1,2]. The amount of
pharmaceutical products such as ibuprofen (IBP) in the waterways is growing due to
human pollution. Ibuprofen is a crystal-like, colorless solid with a distinctive odor [3]. It is
the most common non-steroidal anti-inflammatory drug (NSAID) that relieves muscle pain
and fever [4]. As with other pharmaceutical products, ibuprofen enters the environment
through hospitals, medical effluents and wastewater treatment plants [5,6]. This poses a
hazardous impact on the environment due to its bioactive nature. It is becoming ubiquitous
in water bodies because conventional water treatment methods cannot effectively remove it.

Due to its everyday existence as a water contaminant and its use in clinical practice,
there is a need for its mitigation. The adsorption behavior of ibuprofen onto naturally
occurring particulates is hard to characterize due to its complex nature, especially in
physicochemical properties and specific functional groups [2]. Different types of adsorbents
such as carbon nanotubes [7], plant sludge [8], metal oxides [9,10], microplastics [11], copper
particles [12], metal–organic frameworks [13] and activated carbon [14] have been used
to adsorb pollutants. Activated carbon (AC) has been proposed as one of the materials
for the sorption of ibuprofen from waste water due to its exceptional properties such as
porosity, large surface area, high adsorption capacity and diverse functional groups [15].
However, using AC requires expensive precursors and is non-renewable [16]. Thus, using
activated carbon with inexpensive and renewable materials has been increasing. Biomass
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from Nigella sativa L. seeds [17], Mansonia [18], cellulose powder [19] and wheat straw [20]
have been used to produce activated carbon.

Rose geranium (Pelargonium graveolens L.) are large bushy shrubs indigenous to South
Africa and found in the Mpumalanga Lowveld, Eastern Cape, Limpopo, Western Cape,
Gauteng, North West and KwaZulu-Natal [21–23]. Rose geranium (family Geraniaceae) is
also grown in China, Algeria, Morocco, France and Spain [16]. The plant’s leaves, flowers
and stems contain oil-producing trichomes, producing a pleasant greenish oil dour [24]. Rose
geranium is used in the food industry and medical field for its antimicrobial activity [25]. It
also has antifungal and antioxidant activity [25]. Rose geranium was selected as the material
in this study because it is abundant in nature, easily accessible, inexpensive, eco-friendly,
and the plant’s surface has functional groups (hydroxyl and carboxyl), making it a good
candidate for the adsorption process. The mixture of medicinal and antibacterial properties
makes the plant important in water treatment [26]. Hence, this study aimed to evaluate
the feasibility of rose geranium for removing ibuprofen from an aqueous medium. Rose
geranium was used to assess its nano and pure zeolite capability for remediating lead-
polluted soil [27]. No documentation exists on using rose geranium as an adsorbent in
water treatment.

Activated carbons (ACs) are materials used as effective sorbents in removing different
pollutants [28]. Recently, many researchers have developed new synthesis procedures
for ACs from renewable materials such as agro-industrial wastes [29], which have been
useful in adsorption studies of organic compounds [30] and toxic metal ions [31]. AC can
be made using chemical and physical activation [32]. Physical activation procedures use
carbon dioxide and water steam as activating agents, whereas chemical activation methods
use chemical reagents [28]. Chemical activation offers better characteristics than physical
activation processes, such as lower temperatures, simplicity, lesser activation times, higher
yields and development of porous structures of the adsorbents [33]. Potassium hydroxide
(KOH) is mostly used to prepare carbons with a high specific surface area with well-
developed micropores [34,35]. However, other chemical modifications using phosphoric
acid (H3PO4) [36,37], sulfuric acid (H2SO4) [38], zinc chloride (ZnCl2) [39], hydrochloric
acid (HCl) [40] and many others have been used.

The research aimed to prepare a novel low-cost activated carbon from oil-free rose
geranium leaves using orthophosphoric acid as a chemical activating agent. The chem-
ically activated material was characterized by scanning electron microscopy (SEM) and
Fourier-Transform Infrared (FTIR). The optimum conditions for ibuprofen adsorption were
determined for pH, time, temperature and initial concentration. Kinetic and thermody-
namic studies were investigated to determine the ibuprofen adsorption process on AC
from rose geranium leaves (AC-RGL) and compared with natural rose geranium leaves
(Raw-GRL).

2. Materials and Methods
2.1. Materials

Orthophosphoric acid (H3PO4) was bought from LabChem (Edenvale, South Africa),
and sodium hydroxide (NaOH) and hydrochloric acid (HCl) were bought from Sigma
Aldrich (Sigma Aldrich-South Africa, Kempton Park, South Africa). All reagents were of
laboratory grade and used without purification. Ibuprofen was purchased from Sigma
Aldrich (South Africa).

2.2. Preparation of Activated Carbon

Rose geranium leaves were obtained from the Vaal University of Technology (Sebokeng
campus), South Africa. The oil from the leaves was extracted first. After that, the oil-free
leaves were pulverized into powder for adsorption experiments. AC was obtained by using
the method reported by Thabede et al., 2020 [41]. The pulverized raw leaves were placed in
a glass tube, inserted into a furnace with nitrogen, and carbonized at 600 ◦C, with a heating
rate of 10 ◦C/min for 2 h under nitrogen gas (99.995%). After that, the carbon material
was cooled at room temperature under a nitrogen flow. The activation of carbon leaves
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was carried out using 0.15 M orthophosphoric acid (H3PO4 P) [42]. The carbon material
was mixed with 200 mL 0.15 M H3PO4 and stirred for 24 h. Subsequently, the mixture
was rinsed with ultrapure water several times. The material was dehydrated in an oven
at 70 ◦C overnight. The formed activated carbon was named activated carbon from rose
geranium leaves (AC-RGL). The natural rose geranium leaves were called Raw-RGL.

2.3. Adsorption Studies

Experiments were conducted using a 100 mL sample holder with a stopper containing
0.5 g of AC-RGL and 50 mL ibuprofen solution at various concentrations (25, 50, 75, 100
and 120 mg/L). The solutions were mixed in a shaker at 150 rpm for 90 min. The pH
was varied at 1, 3, 5, 7 and 9. The contact time was determined for 1, 5, 10, 15, 25, 35, 45,
65, 85 and 105 min, whilst the effect of temperature was assessed at 25, 30, 35, 40, and
45 ◦C. The above procedure was also used for the Raw-RGL. The pH of the ibuprofen
solution was adjusted using 1.0 M NaOH or HCl. The method, as mentioned earlier, was
also applied to the Raw-RGL adsorbent. The adequate adsorption stirring speed using
Raw-RGL was determined.

2.4. Reusability Tudies

The reusability and regeneration of the Raw-RGL and AC-RGL were accomplished by
reusing the IBP-loaded Raw-RGL and AC-RGL adsorbents. The pre-used adsorbents were
regenerated by stirring the adsorbents several times in a 0.1 M HNO3 solution for 15 min
to desorb the IBP. Thereafter, the adsorbents were rinsed in distilled water for 30 min.

2.5. Characterization Analysis

Fourier-Transform Infrared (FTIR) spectrometer was used to determine functional
groups onto AC-RGL and Raw-RGL before ibuprofen adsorption using a 4000 Nicolet
FTIR spectrometer. Images of AC-RGL and Raw-RGL were taken using a Tescan Mira
scanning electron microscope (SEM). Thermal gravimetric analyses were conducted using
a TGA 4000 thermogravimetric analyzer from Perkin Elmer using nitrogen between 30
and 900 ◦C. The Brunauer–Emmett–Teller (BET) was used to determine surface area with
Micrometrics TriStar II 3020 BET v3.02 with nitrogen as an adsorptive gas. A pH meter from
Hach was used for measuring pH of the solution. Remaining Concentration of ibuprofen
was conducted on an Evolution 220-UV-Visible spectrophotometer from Thermo Scientific.

3. Results and Discussions
3.1. Thermal Determination

The mass change in AC-RGL and Raw-RGL adsorbents was monitored and recorded
between 30 and 900 ◦C as indicated in Figure 1. The thermogram of the Raw-RGL shows
several mass losses up to 850 ◦C. The first weight loss of approximately 8% due to water
loss occurs from 31 ◦C to 107 ◦C. The decomposition of hemicellulose, cellulose and lignin
accounts for the second weight loss of Raw-RGL of approximately 61% between 107 and
688 ◦C. The third and final step on Raw-RGL after degradation of lignocellulose material
is a tail obtained between 688 and 865 ◦C due to pyrolysis of the residues. For AC-RGL,
the first mass loss of approximately 5% occurs between 31 and 167 ◦C due to the loss of
water molecules, and the second mass loss is in the range of 167–693 ◦C. In the third step,
the weight loss beyond 693 ◦C indicates the complete decomposition of organic groups. A
slight weight loss at 383 and 572 ◦C observed on Raw-RGL could be due to some bigger
unstable molecules [38]. This loss was not observed on AC-RGL.

3.2. Textural Characterization

Figure 2A–D shows the SEM surface morphology of Raw-RGL and AC-RGL. The
images indicate that there is a morphological difference between Raw-RGL and AC-RGL.
Raw RGL images in Figure 2A,B show an irregular flower-like surface morphology, while
SEM images for AC-RGL in Figure 2C,D are made of flat structures with more developed
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pores. The carbonization and activation of Raw-RGL were responsible for the porosity
development by broadening the pores and creating new ones [43].
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3.3. Surface Element Composition

Energy-dispersive X-ray spectroscopy (EDX) is a valuable technique for identifying the
elemental composition of the surface of activated carbon [38]. The elemental components re-
garding mass percentage and the atomic percentage of Raw-RGL and AC-RGL are shown in
the EDX spectra of Figure 3A,B. The spectra for both adsorbents show two main components,
which are carbon (C) and oxygen (O), which is a characteristic of plant-based materials [44].
Chloride (Cl) is from the coating during sample preparation for SEM analysis. There are
other minor peaks corresponding to potassium (K-0.34%) and calcium (Ca-0.37%) on Raw
RGL and K (0.56%) and Ca (1.9%) on AC-RGL. Additional peaks for Si (0.64%) and Mg
(0.72%) are observed in AC-RGL. The different element ratios are shown in Tables 1 and 2.
The higher C and O content is noticed in AC-RGL because of the carbonization and activa-
tion of the Raw-RGL. The results produced using EDX agreed with the functional group
obtained using (FTIR).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19 
 

 
(A) 

 
(B) 

Figure 3. EDX graph of (A) Raw-RGL and (B) AC-RGL adsorbents. 

Table 1. The surface element analysis of Raw-RGL adsorbent. 

Element Mass (%) Atom (%) 

C 62.99 70.12 

O 34.90 29.17 

K 1.08 0.37 

Ca 1.02 0.34 

Total 100.00 100.00 

Table 2. The surface element analysis of AC-RGL adsorbent. 

Element Mass (%) Atom (%) 

C 77.15 86.05 

O 11.46 9.60 

Mg 1.30 0.72 

Si 1.33 0.64 

Cl 1.42 0.54 

K 1.63 0.56 

Ca 5.70 1.96 

Total 100.00 100.00 

3.4. Surface Characterization 

Infrared spectroscopy is the main instrumental technique used to illustrate the func-

tional groups on AC [45]. The FTIR spectra of Raw-RGL and AC-RGL adsorbents are 

shown in Figure 4. The spectrum of Raw-RGL shows six major functional groups with a 

strong, broad vibration at 3287 cm−1 due to R-O-H vibrations [46]. The peaks at 2924 and 

Figure 3. EDX graph of (A) Raw-RGL and (B) AC-RGL adsorbents.

Table 1. The surface element analysis of Raw-RGL adsorbent.

Element Mass (%) Atom (%)

C 62.99 70.12

O 34.90 29.17

K 1.08 0.37

Ca 1.02 0.34

Total 100.00 100.00
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Table 2. The surface element analysis of AC-RGL adsorbent.

Element Mass (%) Atom (%)

C 77.15 86.05

O 11.46 9.60

Mg 1.30 0.72

Si 1.33 0.64

Cl 1.42 0.54

K 1.63 0.56

Ca 5.70 1.96

Total 100.00 100.00

3.4. Surface Characterization

Infrared spectroscopy is the main instrumental technique used to illustrate the func-
tional groups on AC [45]. The FTIR spectra of Raw-RGL and AC-RGL adsorbents are
shown in Figure 4. The spectrum of Raw-RGL shows six major functional groups with a
strong, broad vibration at 3287 cm−1 due to R-O-H vibrations [46]. The peaks at 2924 and
2842 cm−1 are due to aliphatic groups indicated by the vibration of C-H stretching [38].
The absorbance peak between 1731 and 1623 cm−1 is attributed to the vibration of carbonyl
(-C=O) in the Raw-RGL [47]. The other peak at 1025 cm−1 is characteristic of C-OH vibra-
tion [48]. A different pattern is observed on AC-RGL whereby the peak at 1558 cm−1 is
associated with stretching vibrations of -C=O for primary and secondary amides, usually
between 1630 and 1520 cm−1 [47]. A peak at 1318 cm−1 indicates -O-C-O- vibrations [47].
AC-RGL have fewer peaks because most frequencies or functional groups are absent com-
pared with Raw-RGL. The disappearance of the peaks in AC-RGL might be ascribed to the
loss of volatile matter at carbonization at 600 ◦C.
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3.5. Physicochemical Characterization

The results in Table 3 indicate the data for the physicochemical characterization and
zeta potential of the Raw-RGL and AC-RGL. BET results indicated that the surface area of
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AC-RGL was 17.69 m2/g, with a micropore of 0.50 cm3/g and a mesopore of 0.10 cm3/g.
The total pore of AC-RGL was determined and found to be 0.60 cm3/g. When comparing
the magnitude of the micropore volume with the total pore volume, this contributes
approximately 80% of the total pore volume which demonstrate the high microporosity of
the AC-RGL. The obtained results proposed that AC-RGL might be the efficient adsorbent
in the removal of ibuprofen. The results of pH(PZC) for Raw-RGL and AC-RGL were found
to be 7.32 and 6.61, respectively. The results for Raw-RGL were close to neutrality, while
those of AC-RGL were slightly acidic. The maximum adsorption of ibuprofen on Raw-RGL
was 74.12 mg/g with a zeta potential of 22.56 mV, while AC-RGL capacity was 113.76 mg/g
with a zeta potential of 41.13 mV. The AC-RGL with a zeta potential of 41.13 mV adsorbed
much more ibuprofen.

Table 3. Physicochemical characterization of Raw-RGL and AC-RGL adsorbents.

Adsorbent
Surface

Area
(m2/g)

Micropore
Volume
(cm3/gh)

Mesopore
Volume
(cm3/g)

Total Pore
Volume
(cm3/g)

pH(pzc)

Zeta
Potential

(mV)

Raw-RGL 1.70 - - - 7.32 22.56
AC-RGL 17.69 0.500 0.103 0.606 6.61 41.13

3.6. Proposed Adsorption Mechanism of IBP

The proposed adsorption mechanism of IBF onto the adsorbents is shown in Figure 5.
Determining the adsorption mechanism(s) is very important. Biodegradation and adsorp-
tion are the two ways of removing pharmaceutical compounds which mainly depend on
the chemical structure and their operating conditions [49]. Mabungela et al. (2021) [50]
also mentioned that functional groups, size and charge of the adsorbent plays a role in
determining the adsorption mechanism. There are several mechanisms for the adsorption
of ibuprofen on adsorbents such as π–π interactions, hydrophobic, electrostatic hydrogen
bonds and cation exchange [49]. Plant materials contain lignocellulosic materials such as
cellulose, hemicellulose and lignin [51]. The structure of lignocellulosic materials consists
of oxygen-rich functional groups such as (CO), (OH) and (COOH) which might be good
candidates for adsorption processes [52]. Additionally, activated carbons developed from
lignin materials have revealed promising results for adsorption of different toxic ions
including pharmaceutical pollutants [51]. Based on the literature of Singh et al. (2021) [49],
the functional groups determined during FTIR analyses in this study suggest that they were
involved in the adsorption process, hence the proposed adsorption mechanism in Figure 5.

3.7. Effect of Concentration and Adsorption Models

The concentration effect was determined at 25; 50; 75; 100 and 125 mg/L at a constant
temperature (25 ◦C), and the plots are indicated in Figure 6. The ibuprofen adsorption trend
of Raw-RGL and AC-RGL illustrates increased adsorption with increased concentration.
The adsorption capacities of Raw-RGL and AC-RGL increase with maxima of 74. 12 and
113.76 mg/g, respectively. The plots show an increased uptake up to 75 mg/L and a decrease
after that. The adsorption trend indicates that the AC-RGL had better performance than
Raw-RGL. The higher sorption of ibuprofen on AC-RGL could be associated with more active
sites being exposed and a higher surface area after the chemical activation of carbon [53].

A comparison of the two models is shown in Table 4 and attained at 298 K (25 ◦C).
Freundlich and Langmuir’s isotherms are fitted to estimate the interaction behaviour
of ibuprofen onto Raw-RGL and AC-RGL. Table 3 shows that the adsorption data of
ibuprofen by Raw-RGL and AC-RGL best fitted the Freundlich model with high regression
coefficient (r2) values of 0.998 and 0.997, respectively. The Freundlich model proposes that
the adsorption forms a multilayer adsorbent on the heterogenous surface [46]. A similar
observation was made by Sekulic et al. (2019) [54] during the adsorption of IBP.
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Table 4. Adsorption isotherms of Raw-RGL and AC-RGL and parameters.

Isotherms Raw-RGL AC-RGL

Langmuir Qo 45.12 35.68

B 2.13 3.82
r2 0.812 0.951

Freundlich 1/n 69.67 125.68
kf 3.67 1.67
r2 0.998 0.997

Experimental (qe) 74.12 113.76
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3.8. Time Effect and Rate Kinetics

The results of ibuprofen adsorption by Raw-RGL and AC-RGL are indicated in Figure 7
and show that the uptake of ibuprofen is fast at the beginning of the adsorption process.
The rapid uptake of ibuprofen is due to various active sites. The uptake of ibuprofen was
particularly fast within the initial 1–35 min interval by the Raw RGL. From 45 to 105 min,
the sorption slowly decreased due to sites being filled and therefore restricted [55]. The
reaction rate onto AC-RGL was quicker and occurred between 1 and 10 min compared
with the Raw-RGL. The maximum sorption capacities were 68.97 and 101.96 mg/g for the
Raw-RGL and AC-RGL.
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Figure 7. Effect of time on ibuprofen uptake by Raw-RGL and AC-RGL adsorbents.

The kinetic data of ibuprofen adsorption by Raw-RGL and AC-RGL were fitted into
the pseudo-first-order (PFO), pseudo-second-order (PSO) models and intraparticle diffusion
(IPD) and the data are shown in Table 5. This was done to estimate whether the adsorption
process fit the PFO, PSO, or IPD models. The best-fit model must have a correlation coefficient
close to 1. Table 4 shows that PFO was the best fit with r2 of 0.995 and 0.993 for Raw-RGL
and AC-RGL, respectively. The best fit for PFO shows that the uptake of ibuprofen by
Raw-RGL and AC-RGL involves Van der Waal forces of attraction and that process was
physisorption [56]. IPD kinetic estimation shows whether adsorption occurred in the pores or
the surface. Table 4 shows that the estimated surface adsorption (ESA) was the main process
compared with the estimated pore adsorption (EPA). ESA is between 83.12 and 87.12%, and
EPA ranges from 12.88 to 16.88%.

3.9. Temperature and Thermodynamic Parameters

The temperature parameters for Raw-RGL and AC-RGL were evaluated at five tem-
peratures: 25 ◦C (298 K), 30 ◦C (308 K), 35 ◦C (318 K), 40 ◦C (328 K), and 45 ◦C (338 K);
and the experimental data are shown in Figure 8. The adsorption trends for Raw-RGL and
AC-RGL are similar, showing a rise in sorption capacity with a temperature increase from
25 to 35 ◦C. Later, less adsorption capacity was observed when the temperature increased
between 40 and 45◦C. That implies that only a slight energy increase was required for
adsorption. The maximum sorption capacities for Raw-RGL and AC-RGL adsorbents are
64.03 and 104.74 mg/g at 35 ◦C, respectively.



Appl. Sci. 2023, 13, 5133 10 of 17

Table 5. Kinetic studies of Raw-RGL and AC-RGL and their parameters.

Models Raw-RGL AC-RGL

PFO K1 0.469 0.979

r2 0.995 0.993

PSO qe 34.56 56.65
K2 0.101 1.002
r2 0.861 0.757

IPD C 33.23 47.23
Ki 7.715 13.06
r2 0.867 0.823

EPA % 12.88 16.88
ESA % 87.12 83.12

Experimental (qe) 68.97 101.96
EPA—estimated pore adsorption of IPD; ESA—estimated surface adsorption of IPD.
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Thermodynamic parameters are vital for investigating heat variation and the spontane-
ity of the sorption process [57]. ∆G◦, ∆H◦, and ∆S◦ are calculated at different temperatures
(298; 308; 318; 328 and 338 K) of ibuprofen on Raw RGL and AC-RGL sorbents and indicated
in Table 6. The ∆H◦ results for both adsorbents indicate that the sorption processes are
exothermic. The size of ∆H◦ of ibuprofen adsorption suggests a weak interactive strength,
which also suggests electrostatic attraction [55]. ∆S◦ data for ibuprofen adsorption by
Raw-RGL and AC-RGL indicate an increase in the randomness of ibuprofen in solution as
the adsorption reaches equilibrium. The ∆G◦ figures for both adsorbents indicate that the
uptake process is spontaneous and feasible.
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Table 6. Thermodynamic studies of Raw-RGL and AC-RGL and their parameters.

Parameter Raw-RGL AC-RCL

∆H◦ (KJ mol−1) −2.39 −2.34
∆S◦ (KJ mol−1K−1) 3.23 4.78

∆G◦ (KJ mol−1) 298 K −4.67 −3.80
308 K −5.65 −4.89
318 K −6.45 −5.23
328 K −7.55 −6.01
338 K −8.43 −6.89

3.10. pH Effect

The cations of the solution pH are very important because they influence the charge of
the sorption process, thus affecting the process’s extent [58]. Figure 9 shows the effect of
pH ranging from 1 to 9 for both adsorbents. The removal capacity of ibuprofen increases
as the pH increases from 1 to 5 on both adsorbents, with a maximum capacity observed
at pH 5. The adsorption due pH increases were due to the lower electrostatic repulsion
between ibuprofen and the activated carbon surface. With a pH greater than 7, the uptake
for ibuprofen decreased. Less ibuprofen uptake in neutral to basic condition might due to
be competition between protons and ibuprofen for site availability [36].
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3.11. Stirring Speed Effect

The stirring speed is a vital factor influencing the adsorption rate [59]. The stirring
speed effect was studied using 50 mL of solution for 90 min at 25 ◦C, and different stirring
speeds ranging from 50 to 250 rpm. The adsorption capacity versus different stirring rates is
shown in Figure 10. The data showed that the adsorption capacity increased as the stirring
speed increased from 50 to 150 rpm. A reasonable explanation for this is that the removal
efficiency increased due to the increased diffusion rate of IBP molecules from the liquid to
the liquid boundary layer surrounding the Raw-RGL particles because of the turbulence
formed inside the solution with a decrease in thickness of the boundary layer [60]. The
sorption capacity decreased when the stirring speed was above 150 rpm due to reduced
adsorbent–adsorbate interaction [61].
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4. Regeneration Study

A reusability test of Raw-RGL and AC-RGL was conducted over four cycles (Figure 11).
After each cycle, Raw-RGL and AC-RGL were regenerated before reuse. Both adsorbents
lost some adsorptive capacity as the cycles continued. This is probably due to the inability
of the adsorbents to desorb ibuprofen during the regeneration process. After the test, the
desorbed solutions and the adsorbents were poured into separate labelled bins assigned
specifically for this work. These bins are collected by a contractor or firm which specializes
in disposing hazardous waste.
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5. Post adsorption Characterization
5.1. SEM Images

Figure 12A–D show the morphologies of the Raw-RGL and AC-RGL after the ad-
sorption of ibuprofen. The SEM images of the Raw-RGL (Figure 12A–D) show a porous
adsorbent with small cavities and longitudinal fibers. The images of AC-RGL (Figure 12C,D)
show longitudinal fibers with a porous compact appearance. The longitudinal fibers are
the characteristic of fibrous lignocellulosic materials [28]. As indicated in Figure 12A–D, the
surface morphology of Raw-RGL and AC-RGL changed after ibuprofen adsorption. The
surface morphology of both adsorbents was not so porous before adsorption but became
very porous and rough after adsorption. This may be due to ibuprofen adsorption. A similar
observation was made by Geng et al. (2022) [62] using plant leaves as the adsorbent. They
suggested that the roughness might be attributed to the pollutants dissolving some of the
organic matter in the leaves.
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5.2. FTIR Analysis

The FTIR spectra of Raw-RGL and AC-RGL adsorbents after adsorption are indicated
in Figure 13. The graph of Raw-RGL shows the peak at 3310 cm−1 due to -OH. While the
-CH due to CH2 and CH3 shifted to 2916 and 2841 cm−1, respectively. The carbonyl (-C=O)
peak was clearly visible at 1724 cm−1 on Raw-RGL after adsorption. There were new
peaks observed at 1595, 1444 and 1304 cm−1 after adsorption of ibuprofen on Raw-RGL.
The spectrum for AC-RGL showed a peak of -C=O, which shifted to 1547 cm−1 after
adsorption and the -O-C-O peak disappeared. The changes in wavenumbers, disappearing
and formation of new peaks suggest that the functional groups were involved in the
adsorption process [50].
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6. Comparative Studies

Table 7 shows the sorption capacities of previously reported carbon-based adsorbents
for removing ibuprofen. The figures indicate the adsorption capacity of ibuprofen on Raw-
RGL and AC-RGL is higher than other sorbents, suggesting that AC-RGL is a promising
and cost-effective material for the uptake of ibuprofen in solution.

Table 7. Uptake of ibuprofen using activated carbon-based adsorbents.

Adsorbents
q(max) (mg/g)

References
Ibuprofen

Mesoporous carbon 120.1 [63]
Palm shell 114.7 [64]

Rose geranium leaves 113.76 This study
Standard activated carbon 85.0 [65]
Alkaline activated carbon 68.0 [66]

Yeast-based activated carbon 51.0 [67]
Leaves of mugwort weed 16.95 [68]

Sugarcane bagasse 13.51 [42]
Olive waste cake 12.9 [68]

7. Conclusions

In this study, a low-cost adsorbent was prepared from rose geranium leaves carbonized
at 600 ◦C and chemically activated using phosphoric acid to adsorb ibuprofen in an aqueous
solution. Ibuprofen sorption on activated carbon from rose geranium leaves (AC-RGL) was
compared with that of natural rose geranium leaves (Raw-GRL). The sorption processes
on both adsorbents were evaluated using concentration, pH effect, time and temperature.
The isotherms for the Raw-RGL and AC-RGL best fitted the Freundlich model, with a
correlation coefficient ranging from 0.998 to 0.997, respectively. The adsorption kinetics was
ascribed to the PFO model, with a regression coefficient of 0.995 for Raw-RGL and 0.993
for AC-RGL. The thermodynamic parameter (∆H◦) for Raw-RGL and AC-RGL adsorbents
indicated exothermic sorption processes. ∆S◦ data for ibuprofen adsorption on both adsor-
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bents indicated increased randomness during adsorption. The negative figures (∆G◦) for
Raw-RGL and AC-RGL adsorbents indicated that the sorption process was feasible and
spontaneous. The maximum adsorption capacity and removal efficiency of AC-RGL for
removing ibuprofen were 113.76 and 74.12 mg/g for Raw-RGL. These results indicate that
AC-RGL is an effective and efficient adsorbent for the sorption of ibuprofen.
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