
Citation: Zhang, Y.; Jacobs, G.;

Hoepfner, G.; Berroth, J. Towards

Hierarchical Workflows in SysML to

Support Virtual Validation of

Technical Systems. Appl. Sci. 2023, 13,

5122. https://doi.org/10.3390/

app13085122

Academic Editors: Arkadiusz Gola,

R.M. Chandima Ratnayake and

Martin Krajcovic

Received: 17 March 2023

Revised: 16 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Towards Hierarchical Workflows in SysML to Support Virtual
Validation of Technical Systems
Yizhe Zhang * , Georg Jacobs , Gregor Hoepfner and Joerg Berroth

Institute for Machine Elements and Systems Engineering, RWTH Aachen University, 52062 Aachen, Germany;
georg.jacobs@imse.rwth-aachen.de (G.J.); gregor.hoepfner@imse.rwth-aachen.de (G.H.);
joerg.berroth@imse.rwth-aachen.de (J.B.)
* Correspondence: yizhe.zhang@imse.rwth-aachen.de

Abstract: Innovative Model-Based Systems Engineering (MBSE) applies function-oriented hierar-
chical system architecture and utilizes Systems Modeling Language (SysML) for virtual testing.
However, for complex systems, the relevant virtual tests are scattered at different hierarchy levels.
Manually performing these virtual tests requires a lot of effort and leads to the potential risk of errors
due to the overlooking of some tests and functions. In order to solve these problems, it is necessary to
develop automated virtual validation workflows for the function-oriented system architecture. This
contribution proposes a standardized virtual validation workflow design framework corresponding
to the hierarchical functional architecture to organize virtual tests. The virtual tests are also modeled
in workflows consisting of a set of simulation activities that can execute domain models to simulate
system behaviors. The simulation activities are developed modularly, corresponding to the classi-
fication of the domain models. The resulting workflows are implemented in a wind turbine (WT)
system. It demonstrates that the workflows enable automated validation at all hierarchy levels and
early detection of technical system failure risks. The design framework allows for the synchronous
creation of validation workflows as functions are added or decomposed. The standardized design
ensures easy redesign and function reuse across different systems. Modular design, based on model
classification, enhances design agility and adaptability in various system contexts. The proposed
virtual testing workflows automatically execute corresponding simulation activities sequentially.

Keywords: model-based systems engineering; wind turbine; function-oriented system architecture;
virtual validation workflow

1. Introduction

As multidisciplinary technical systems become increasingly in scale and complexity,
the task of developing these systems to meet the constantly evolving and unique market
demands grows more and more difficult [1]. Taking the wind turbine (WT) system as an ex-
ample, in 2021, wind power generation increased by a record 273 TWh (17% growth), which
is the highest of all renewable energy technologies [2]. In addition, for WT manufacturers to
remain competitive, the development of WTs requires lower wind energy utilization costs
and shorter development cycles, while coping with engineering requirements to ensure the
reliability of the system [3].

To address these challenges mentioned above, an advanced system engineering ap-
proach must be adopted. Systems Engineering (SE) is a promising and interdisciplinary
systems development approach that is widely recognized as a preferred solution to meet
the challenge associated with the development of new systems or modifications of complex
systems [4]. For many years, engineers have used domain models which virtually describe
the behavior of real-world systems across multiple disciplines for cost-effective develop-
ment. These standalone model islands have been formalized into the SE approach, using
the so-called Model-Based Systems Engineering (MBSE) approach. The MBSE approach

Appl. Sci. 2023, 13, 5122. https://doi.org/10.3390/app13085122 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13085122
https://doi.org/10.3390/app13085122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5116-350X
https://orcid.org/0000-0002-7564-288X
https://orcid.org/0000-0003-4451-3978
https://orcid.org/0000-0002-9178-0596
https://doi.org/10.3390/app13085122
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13085122?type=check_update&version=1

Appl. Sci. 2023, 13, 5122 2 of 21

focuses on models rather than documents as the primary mean of information exchange for
the management of complexity, synchronizing, and maintaining consistency [5]. In contrast
to documents generated based on natural language, digital domain models have more
rigorous semantics, which provides the possibility for standardized modeling. Based on
standardized modeling, the MBSE approach can support the consistent design and bridge
the gaps between multiple disciplines, reducing information exchange time while ensuring
complex systems meet the requirements and handling trade-offs between requirements.
One of the practical MBSE methods is proposed by Jacobs [6] for function-oriented system
development. The method adapts the Motego as a modeling approach to support the
function-oriented development of technical engineering systems (e.g., WT systems). Al-
though Motego is on its way to combining system models with domain models to simulate
the system behaviors, engineers still cannot easily use SysML system models for system
virtual validation. A comprehensive virtual validation process often relates to different
functions at all system hierarchy levels and requires the participation of multiple virtual
tests that performs the domain models in sequence. As the system becomes complex,
it becomes inconvenient and unreliable to conduct these processes manually. A virtual
validation workflow consists of orchestrated and repeatable activity modules that enable
the virtual validation process by the systematic organization of virtual tests. Therefore, the
objective of this work is to design a standardized framework based on Motego to model
virtual validation workflows. The created workflows can organize various virtual tests
and conduct the virtual validation of each function of the technical system. In addition,
this work further standardizes the virtual tests in workflows based on simulation activities
in the hierarchical system architecture. The contributions of this work are to provide an
automated workflow that can be used for the virtual validation of functional requirements
for multidisciplinary technical systems. The application of the proposed workflow enables
engineers to reduce the manual work of virtual validation, and to achieve the reuse or
redesign of the virtual validation workflows in different system contexts easily.

This paper is organized as follows: Section 2 reviews state-of-the-art and related
work. Section 3 presents a current virtual validation process for a redesigned technical
engineering system. Section 4 introduces the design methods of the virtual validation
workflows based on the system model architecture. Section 5 evaluates the feasibility of
the created workflow structure with a demonstration of virtual validation workflows of
partial functions in the studied WT system. Section 6 discusses the findings, the superiority
of this work, and prospects for future research. Finally, Section 7 concludes the work.

2. State of the Art
2.1. Function-Oriented System Architecture

More and more practical MBSE methods are proposed [6–8] and applied to the design
and validation process of real-world technical systems, such as the telescope system [9], the
aero-engine system [10], the space system [11], and the wind turbine system [12]. For this
research, a more detailed and comprehensive MBSE method proposed by Jacobs et al. [6]
for function-oriented system development was chosen. On the one hand, the merit of this
method lies in its ability to offer transparent traceability by constructing clear relationships
within the system architecture, connecting requirements, functions, and the solution layer
responsible for functional fulfillment during development processes. On the other hand,
this method is able to integrate domain models from diverse engineering disciplines, going
beyond merely remaining at the conceptual design stage. This method lays the foundation
to significantly improve the practicality of MBSE in developing technical engineering
systems [6]. Motego, as a function-oriented modeling approach that provides a specific
SysML profile for technical engineering systems, is introduced in the following paragraphs.

A successful system is developed to fulfill the requirements of stakeholders. Therefore,
the significant task of system modeling is to collect and model these requirements before
and during the development process of the system. In the Motego modeling approach [13],
the requirements are mainly classified into two types: functional requirements and design

Appl. Sci. 2023, 13, 5122 3 of 21

requirements. Functional requirements outline the necessary functions and behavioral
aspects for a system to operate effectively [14]. In Motego, requirements are linked to other
SysML elements (e.g., the value properties) through different relationships, such as satisfy
and validate relationships. Functional requirements depict the desired functional behavior,
which can be virtually confirmed through functional testing, drawing on corresponding
solutions. Design requirements, on the other hand, are directly met by the property values
present in the solutions. Functions can be derived from functional requirements. They are
linked to corresponding requirements of systems through satisfy relationships. The func-
tional architecture is in the form of a hierarchy. As shown in Figure 1, the primary function
can be broken down into sub-functions, which act as components of a single higher-level
function. A system function, or a portion of it, can be defined by a boundary that allows
physical quantities to pass in and out as functional flows. These flows may consist of energy,
materials, or signals. The function of the delimited system converts the incoming flow
quantities into different outgoing flow quantities. If the transformation of the flows they
represent cannot be further decomposed, functions are termed as elementary functions.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 22

A successful system is developed to fulfill the requirements of stakeholders. There-
fore, the significant task of system modeling is to collect and model these requirements
before and during the development process of the system. In the Motego modeling ap-
proach [13], the requirements are mainly classified into two types: functional require-
ments and design requirements. Functional requirements outline the necessary functions
and behavioral aspects for a system to operate effectively [14]. In Motego, requirements
are linked to other SysML elements (e.g., the value properties) through different relation-
ships, such as satisfy and validate relationships. Functional requirements depict the de-
sired functional behavior, which can be virtually confirmed through functional testing,
drawing on corresponding solutions. Design requirements, on the other hand, are directly
met by the property values present in the solutions. Functions can be derived from func-
tional requirements. They are linked to corresponding requirements of systems through
satisfy relationships. The functional architecture is in the form of a hierarchy. As shown
in Figure 1, the primary function can be broken down into sub-functions, which act as
components of a single higher-level function. A system function, or a portion of it, can be
defined by a boundary that allows physical quantities to pass in and out as functional
flows. These flows may consist of energy, materials, or signals. The function of the delim-
ited system converts the incoming flow quantities into different outgoing flow quantities.
If the transformation of the flows they represent cannot be further decomposed, functions
are termed as elementary functions.

Figure 1. Interconnected function, solution, and domain model architecture within a system model.
Adapted from [6].

Solution describes a general effect with geometry or a set of general effects that fulfills
functions physically. The functions and the solutions are linked by generalization rela-
tionships. Therefore, the solutions will inherit the functional flows from the functions they
fulfill. Moreover, system solutions consist of hierarchically structured sub-system solu-
tions, with their parameters interconnected across various hierarchy levels. A system so-
lution is referred to as a solution element if it does not physically decompose further. A
solution element consists of the physical effects and more parts, such as active surface
pairs. Domain models are incorporated into the system model to further describe the re-
lated solution’s physical behavior. Each domain model is enclosed within a SysML con-
straint, featuring input and output ports that connect with external domain simulation
models. The constraints are connected to the parameters of the corresponding solution.
High-fidelity domain models are seamlessly linked with the structured solution to ensure

Figure 1. Interconnected function, solution, and domain model architecture within a system model.
Adapted from [6].

Solution describes a general effect with geometry or a set of general effects that
fulfills functions physically. The functions and the solutions are linked by generalization
relationships. Therefore, the solutions will inherit the functional flows from the functions
they fulfill. Moreover, system solutions consist of hierarchically structured sub-system
solutions, with their parameters interconnected across various hierarchy levels. A system
solution is referred to as a solution element if it does not physically decompose further. A
solution element consists of the physical effects and more parts, such as active surface pairs.
Domain models are incorporated into the system model to further describe the related
solution’s physical behavior. Each domain model is enclosed within a SysML constraint,
featuring input and output ports that connect with external domain simulation models. The
constraints are connected to the parameters of the corresponding solution. High-fidelity
domain models are seamlessly linked with the structured solution to ensure changes can
be propagated into the domain models. By connecting the domain model to the solution,
the modeling approach establishes traceability from requirements, over functions, and
solutions, to the domain models.

In order to provide engineers with the confidence that the right system solutions were
built or selected, it is necessary to propose a standardized method to design executable

Appl. Sci. 2023, 13, 5122 4 of 21

workflows for virtually validating whether the system solutions fulfill their intended
functionalities in a specific operating environment.

2.2. Virtual Validation Process

The virtual validation process can be viewed as an orchestrated and repeatable set
of activities. This process is able to systematically organize the simulation activities of
the domain models and update critical parameters during the simulation activities. The
common approaches to designing a workflow in the current state of the art in both the liter-
ature and in practice are either to design a descriptive workflow or to apply an executable
workflow based on one or more independent simulation calculations to satisfy specific
design requirements.

Regarding management workflow designs, such as those presented by Bretz et al. [15]
and Zou [16], these workflow designs focus on describing the workflow of entire system
development processes at the conceptual level. Although these workflows clearly define the
developer’s tasks and specific operations at each step, they do not dive into the parameter
level for simulations of the physical behavior of a system and do not consider the qualitative
analysis of the system. Therefore, it is still challenging for the designer to directly obtain
a reliable virtual validation conclusion regarding engineering issues by executing these
management workflows.

Regarding executable workflow designs, the commercial workflow builders
(e.g., ModelCenter) provide a way to design virtual testing workflows at the parame-
ter level [17]. Although these workflow designs are based on quantitative analysis, they
are still not enough to judge whether the system solution fulfills the function. This is
because the workflows and the function-oriented system architecture are built indepen-
dently in different tools, which means the changes in the system architecture need to be
propagated to the workflow design by using specific interfaces. Due to the lack of a direct
link between system functions and workflows, these individual quantitative analyses are
not sufficient to support virtual validation against functional requirements. To solve this
problem, a set of virtual testing workflows was created within the system model based
on Motego [12,18]. In Motego, there is a clear mapping between solutions and functions.
Thus, the system engineer can state that the function can be satisfied by the corresponding
designed solutions by testing all virtual tests in the relevant solutions. Ref. [19] proposed
the structured virtual testing workflows based on the classification of domain models to
increase the reusability of the workflows, so that the engineer can easily use the workflow
to meet different test purposes. However, the current workflows proposed in [19] still have
limitations in achieving the virtual validation process.

First of all, the current workflows cannot be easily used for virtual validation across the
system function level. Specifically, functions often contain sub-functions. The failure of any
sub-function may lead to failures of the entire function. Therefore, a comprehensive virtual
validation of a system at different hierarchical levels is required, which means engineers do
not only need to virtually validate a system solution, but also each of its sub-solutions. As
system complexity and the number of functions increase, where the dependencies between
system designs increase exponentially, manually managing virtual testing workflows for
the virtual validation of the specific functions increases manual efforts. Secondly, virtual
testing workflows employ a predetermined simulation sequence. When a solution is reused
in another system, the workflows must be manually reorganized and reordered according
to the system context to guarantee accurate testing. Thus, it is crucial to structure semi-
automated workflows to facilitate the efficiency of the virtual verification process across
the entire functional hierarchy. To achieve this goal, the virtual testing workflow should be
easily adjusted and redesigned when related solutions are reused or the test purpose and
accuracy demands have changed. In order to further elucidate the corresponding issues,
the following section (i.e., Section 3) will demonstrate an example of a wind turbine virtual
validation process to provide a more comprehensive and clear understanding.

Appl. Sci. 2023, 13, 5122 5 of 21

3. Wind Turbine System Virtual Validation

Examination of energy scenarios reveals that wind energy is set to become increasingly
vital in the future energy supply system [20]. The production of energy from wind is
typically achieved by the WT system [20]. For wind turbine manufacturers to remain
competitive and meet the increasing demands of customers, WT systems need to be
constantly redesigned and developed to capture more wind energy. However, as complexity
grows in the later stages of system development, the number of interdependencies between
designs also increases significantly. Therefore, ensuring that the redesigned WT system
and its sub-systems meet functional requirements is still a challenge today.

Before introducing the method of this work, this section describes a classical virtual
validation process of a technical system (i.e., WT) to identify the research object. In classical
virtual validation processes, developers often focus on their domains. In the case described
below, it is assumed that “Engineer A” considers WT as a whole system and focuses on
the annual energy production (AEP) testing of the WT, while “Engineer B” considers the
development of WT component, i.e., a bearing system, and focuses on fatigue analysis
related to bearing lifetime.

Figure 2 illustrates a joint development of a WT system and its components by the two
engineers. It was assumed that the customer’s requirement for AEP of the WT increased
from 8 GWh/year to 12 GWh/year (Step 1). In order to meet the higher power generation
requirement, the WT was redesigned with larger blades, increasing length from 61.5 to
80 m, and a higher power (from 3.2 MW to 6 MW) generator (Step 2). After the WT AEP
testing, the AEP of the redesigned WT increased from 8.25 GWh/year to 13.38 GWh/year.
Therefore, as the relevant requirement was satisfied, it was a successful redesign by “En-
gineer A”. However, in highly coupled complex systems, a design change often leads
to unsatisfied design requirements in other fields due to physical interdependencies. In
the case of these redesigns, larger blades and higher power generators will lead to in-
creased loads on the bearing system and shaft system, which then leads to potential failure
risks (Step 3). Based on the experience of engineers, a foreseeable failure risk is that the
lifetime of the bearings will be reduced and the rate of utilization of the shaft will be im-
proved. For the bearing system, the bearing lifetime requirements are set to be greater than
20 years (i.e., 175,200 h) and the requirement of the shaft rate of utilization should be less
than 1. In order to ensure the reliability of the virtual validation of the bearing, “Engineer B”
needs to obtain the latest data of loads on the bearing system from “Engineer A” (Step 4).
The executable workflow proposed in [19] can save these updated simulation results and
transmit them to the following related tests.

After the bearing fatigue analysis, it was found that the bearing lifetime was reduced
to 82,014 h, which does not meet the requirements anymore (Step 5). From the perspective
of “Engineer B”, this was a failed redesign, which may have conflicted with the conclusion
of “Engineer A”. As a result, “Engineer B” needed to inform “Engineer A” that there was a
risk of failure in the new design; this is a process that would normally rely on manual effort
rather than being seamless. In complex multi-level systems, the failure of components may
lead to the failure of the overall system. Therefore, the first problem is that the current
virtual validation process still lacks a systematic organization that can handle the virtual
testing and verification results at different hierarchy levels to achieve comprehensive and
automated virtual validation.

To fulfill all requirements, “Engineer B” needed to redesign the bearing system as well.
In order to adapt to the higher loads, “Engineer B” chose bearings with larger diameters,
which allow for a relatively long service life. Similarly, it was necessary for “Engineer B” to
provide design information for new bearings to “Engineer A” and perform the relevant
analysis (i.e., AEP analysis) again to ensure that the requirement was still satisfied. Step 6
repeats the steps from 2 to 5 until all the tests meet the design requirements. Usually, the
designer has to manually and repeatedly design and execute the workflows for the virtual
validation, which takes a lot of time and effort, especially if the system context changes.

Appl. Sci. 2023, 13, 5122 6 of 21

Thus, the second problem is that there is a lack of a method for easy reuse when the systems
are redesigned or reused in different system contexts.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 22

Figure 2. The classical virtual validation process of the development of a WT system and its com‐

ponents by the two design engineers. Adapted from [19].

To fulfill all requirements, “Engineer B” needed to redesign the bearing system as

well. In order to adapt to the higher loads, “Engineer B” chose bearings with larger diam‐

eters, which allow for a relatively long service life. Similarly, it was necessary for “Engi‐

neer B” to provide design information for new bearings to “Engineer A” and perform the

relevant analysis (i.e., AEP analysis) again to ensure that the requirement was still satis‐

fied. Step 6 repeats the steps from 2 to 5 until all the tests meet the design requirements.

Usually, the designer has to manually and repeatedly design and execute the workflows

for the virtual validation, which takes a lot of time and effort, especially if the system

context changes. Thus, the second problem is that there is a lack of a method for easy reuse

when the systems are redesigned or reused in different system contexts.

In conclusion, engineers from different teams need to communicate with each other

frequently for data exchange to find the balance of the WT design among the various re‐

quirements. In order to test that the WT design can meet various requirements, in the

classical virtual validation process, engineers need to manually perform relevant virtual

tests based on experience. However, as systems become complex and design dependen‐

cies increase, it becomes difficult to empirically define what failure analysis is required

and avoid these potential design failures. At the same time, manually performing repeti‐

tive virtual tests leads to a waste of time and effort. Thus, the case demonstrates the ne‐

cessity of an automated virtual validation process based on an MBSE approach that can

help engineers discover the potential failure risk of complex systems after redesigns.

4. Method

To implement an automated virtual validation process, this work introduces in detail

how to structure the virtual validation workflows in the system model based on Motego

(see Section 4.1). As part of the virtual validation workflow, the virtual testing workflow

is further systematically developed in Section 4.2 according to the model classification to

ensure that the workflow can be easily adapted to different system contexts.

Figure 2. The classical virtual validation process of the development of a WT system and its compo-
nents by the two design engineers. Adapted from [19].

In conclusion, engineers from different teams need to communicate with each other
frequently for data exchange to find the balance of the WT design among the various
requirements. In order to test that the WT design can meet various requirements, in the
classical virtual validation process, engineers need to manually perform relevant virtual
tests based on experience. However, as systems become complex and design dependencies
increase, it becomes difficult to empirically define what failure analysis is required and
avoid these potential design failures. At the same time, manually performing repetitive
virtual tests leads to a waste of time and effort. Thus, the case demonstrates the necessity
of an automated virtual validation process based on an MBSE approach that can help
engineers discover the potential failure risk of complex systems after redesigns.

4. Method

To implement an automated virtual validation process, this work introduces in detail
how to structure the virtual validation workflows in the system model based on Motego
(see Section 4.1). As part of the virtual validation workflow, the virtual testing workflow
is further systematically developed in Section 4.2 according to the model classification to
ensure that the workflow can be easily adapted to different system contexts.

4.1. The Framework of Virtual Validation Workflows Based on the Functional Architecture

This section proposes a workflow design framework corresponding to the hierarchical
functional architecture to organize virtual testing workflows scattered at various functional
hierarchy levels, which helps engineers easily conduct a comprehensive virtual validation.

4.1.1. Structure of Virtual Validation Workflows Based on the System Hierarchy

As the behavior of a super-function is a composition of the behavior of its sub-functions
in the hierarchical functional architecture, the failure of any sub-function will result in the

Appl. Sci. 2023, 13, 5122 7 of 21

failure of the super-function. Therefore, a comprehensive virtual validation of functions
at different levels is required. This means that engineers not only need to test whether
the system function is fulfilled by the solution, but also that each of its sub-functions is
fulfilled by the corresponding sub-solution. Therefore, a nested framework is introduced
in this section to formally organize the virtual validation workflows corresponding to the
hierarchical functional architecture.

Figure 3 shows a framework diagram for the standardized virtual validation workflow.
The virtual validation workflow framework corresponding to a function always includes
four elementary actions that invoke the activities as follows:

• “Action 1” involves the activity of checking if the function is fulfilled by the corre-
sponding solution. The specific concept and content will be introduced in detail in the
next section (see Section 4.1.2).

• The implemented virtual validation workflow framework should correspond to the
hierarchical structure of the functional architecture. Therefore, the upper-level virtual
validation workflow should also include sub-virtual validation workflows. The in-
voked activity can be further decomposed into other activities that perform various
sub-tasks with activity hierarchies. Therefore, “Action 2” invokes the activity in which
multiple “Virtual Validation Workflow” actions of its sub-functions are organized in
parallel. Validation results of sub-functions are exported and passed through pins and
object flows. The action called “Check all validation results” in “Action 2” performs
logic gate calculations on all validation results of a sub-function. When the valida-
tion result of any of the sub-functions is “False”, the overall validation result for its
sub-function is considered to be “False”. Otherwise, the overall validation result of its
sub-function is considered to be passed.

• “Action 3” invokes the activity, which validates the function by checking if the function
and its sub-functions are all fulfilled by the corresponding solutions. The checking
process is realized by a logic gate calculation: when the function is fulfilled by the
selected solution, and the overall validation result of its sub-function is passed, the
validation result of the function is considered to be passed. Otherwise, it failed.

• “Action 4” invokes the activity to save the validation result in the system model
architecture. As mentioned in “Action 2”, this result is also used to support the virtual
validation of its parent function.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 22

Figure 3. A virtual validation workflow framework.

4.1.2. Structure of Virtual Testing Workflows Based on Domain Model Classification
As mentioned in Section 4.1.1, “Action 1: Virtual Testing Workflows” aims to check

if the function is fulfilled by the corresponding solution. This section looks into the struc-
ture of “Action 1”, describing in detail how to arrange the virtual testing workflows to
achieve this aim.

As demonstrated in [21], a technical system requires different virtual tests. Therefore,
multiple virtual testing workflows need to be created for a complex technical system with
different test purposes. Executing these virtual testing workflows comprehensively can
detect failure risks (such as bearing fatigue analysis) and analyze the performance (such
as WT economic analysis) of system solutions. The testing results provide evidence that
the system solution fulfills the corresponding function.

“Action 1” invokes the standardized activity that contains the actions which are di-
vided into the following two parts in Figure 4:

Part 1 consists of multiple actions that invoke the virtual testing workflows with
different test purposes to virtually test the solution. These actions are designed
independently of each other and invoke the corresponding virtual test workflows in
parallel. As an example, to check whether the solution “Bearing” fulfills the
corresponding function “Support rotation with low friction”, fatigue testing and smearing
testing on the solution are required. The testing results of each virtual test should be
verified against design requirements and the verification values can be exported through
the output pin around the action. The specific method for developing a virtual testing
workflow will be introduced in detail in Section 4.2.

Part 2 includes the actions called “Check all verification results” and “Save require-
ment satisfaction results”. The action “Check all verification results” checks the results of
each virtual test. The inputs of this action connect the outputs of the “Virtual testing work-
flow” actions through object flows. Only when each virtual testing result is “True”, the
solution can be considered feasible, that is, it fulfills the corresponding function. Other-
wise, the solution under the current parameter setting is considered not to fulfill the

Figure 3. A virtual validation workflow framework.

Appl. Sci. 2023, 13, 5122 8 of 21

4.1.2. Structure of Virtual Testing Workflows Based on Domain Model Classification

As mentioned in Section 4.1.1, “Action 1: Virtual Testing Workflows” aims to check if
the function is fulfilled by the corresponding solution. This section looks into the structure
of “Action 1”, describing in detail how to arrange the virtual testing workflows to achieve
this aim.

As demonstrated in [21], a technical system requires different virtual tests. Therefore,
multiple virtual testing workflows need to be created for a complex technical system with
different test purposes. Executing these virtual testing workflows comprehensively can
detect failure risks (such as bearing fatigue analysis) and analyze the performance (such as
WT economic analysis) of system solutions. The testing results provide evidence that the
system solution fulfills the corresponding function.

“Action 1” invokes the standardized activity that contains the actions which are
divided into the following two parts in Figure 4:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 22

function. The action “Save satisfaction results” saves the result of whether the solution

fulfills the function of the system model.

Figure 4. The workflow to check if the solution fulfills the function based on virtual tests.

4.1.3. Implementation of the Proposed Virtual Validation Workflows in SysML

The virtual validation process consists of the continuous activities of engineers. The

activity diagram provides the ability to model a process in SysML and represent it as a

continuous flow of activities. Therefore, a virtual validation process can be modeled in the

activity diagram (i.e., virtual validation workflow) in this work. Actions serve as the foun-

dation for activities, outlining their execution process. In this research, a notable type of

action is the “Call Behavior Action”, which invokes a behavior (assumed to be an activity

or state machine) when executed. The symbol for “Call Behavior Action” (see Figure 5) is

a round-cornered box containing the action and invoked behavior name separated by a

colon: “Action name: Activity name” [22].

Input and output pins, represented by small rectangles surrounding the action, re-

ceive items containing relevant data information (e.g., validation results). Data consists of

data name and data type, separated by colons. The square brackets after the data type

contain the multiplicity of data values, and the asterisk indicates that the number of data

values can be arbitrary. Object flows transfer items between pins and can be used to route

items from the pin of an activity to the pins of its sub-actions or to connect pins of other

actions directly. An object flow is shown as a solid line connecting the flow’s source to its

destination, with an arrow pointing toward the destination.

Control flows, represented by dashed lines with arrows, convey the sequence and

timing of actions executed within an activity. When a control flow connects two actions,

the destination action cannot commence until the source action is complete. Control

nodes, including join, fork, decision, merge, initial, and final nodes, can synchronize

incoming concurrent flows and decide incoming alternative flows, thereby further

specifying the order of actions.

Figure 4. The workflow to check if the solution fulfills the function based on virtual tests.

Part 1 consists of multiple actions that invoke the virtual testing workflows with differ-
ent test purposes to virtually test the solution. These actions are designed independently of
each other and invoke the corresponding virtual test workflows in parallel. As an example,
to check whether the solution “Bearing” fulfills the corresponding function “Support rota-
tion with low friction”, fatigue testing and smearing testing on the solution are required.
The testing results of each virtual test should be verified against design requirements and
the verification values can be exported through the output pin around the action. The
specific method for developing a virtual testing workflow will be introduced in detail in
Section 4.2.

Part 2 includes the actions called “Check all verification results” and “Save requirement
satisfaction results”. The action “Check all verification results” checks the results of each
virtual test. The inputs of this action connect the outputs of the “Virtual testing workflow”

Appl. Sci. 2023, 13, 5122 9 of 21

actions through object flows. Only when each virtual testing result is “True”, the solution
can be considered feasible, that is, it fulfills the corresponding function. Otherwise, the
solution under the current parameter setting is considered not to fulfill the function. The
action “Save satisfaction results” saves the result of whether the solution fulfills the function
of the system model.

4.1.3. Implementation of the Proposed Virtual Validation Workflows in SysML

The virtual validation process consists of the continuous activities of engineers. The
activity diagram provides the ability to model a process in SysML and represent it as a
continuous flow of activities. Therefore, a virtual validation process can be modeled in
the activity diagram (i.e., virtual validation workflow) in this work. Actions serve as the
foundation for activities, outlining their execution process. In this research, a notable type
of action is the “Call Behavior Action”, which invokes a behavior (assumed to be an activity
or state machine) when executed. The symbol for “Call Behavior Action” (see Figure 5) is
a round-cornered box containing the action and invoked behavior name separated by a
colon: “Action name: Activity name” [22].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 22

In Figure 5, the nested virtual validation workflows of the WT system are shown in

the activity diagram. Each function in the system’s functional architecture corresponds to

a virtual validation workflow. As an example, the “Virtual Validation Workflow” activity

of the function “Convert wind energy to electrical energy” contains two sub‐virtual vali‐

dation workflows for validation of the functions “Convert wind energy to mechanical en‐

ergy” and “Convert mechanical energy to electrical energy”, respectively. Each function

corresponds to a standardized design virtual validation workflow. The standardized de‐

sign ensures that the virtual validation workflow can be easily redesigned, with related

functions being reused in different systems.

Figure 5. The framework of the hierarchical functional validation workflows in SysML.
Figure 5. The framework of the hierarchical functional validation workflows in SysML.

Appl. Sci. 2023, 13, 5122 10 of 21

Input and output pins, represented by small rectangles surrounding the action, receive
items containing relevant data information (e.g., validation results). Data consists of data
name and data type, separated by colons. The square brackets after the data type contain
the multiplicity of data values, and the asterisk indicates that the number of data values can
be arbitrary. Object flows transfer items between pins and can be used to route items from
the pin of an activity to the pins of its sub-actions or to connect pins of other actions directly.
An object flow is shown as a solid line connecting the flow’s source to its destination, with
an arrow pointing toward the destination.

Control flows, represented by dashed lines with arrows, convey the sequence and
timing of actions executed within an activity. When a control flow connects two actions,
the destination action cannot commence until the source action is complete. Control nodes,
including join, fork, decision, merge, initial, and final nodes, can synchronize incoming
concurrent flows and decide incoming alternative flows, thereby further specifying the
order of actions.

In Figure 5, the nested virtual validation workflows of the WT system are shown in
the activity diagram. Each function in the system’s functional architecture corresponds to a
virtual validation workflow. As an example, the “Virtual Validation Workflow” activity of
the function “Convert wind energy to electrical energy” contains two sub-virtual validation
workflows for validation of the functions “Convert wind energy to mechanical energy” and
“Convert mechanical energy to electrical energy”, respectively. Each function corresponds
to a standardized design virtual validation workflow. The standardized design ensures
that the virtual validation workflow can be easily redesigned, with related functions being
reused in different systems.

Figure 6 shows that the virtual validation workflow framework can be semi-
automatically extended and redesigned in SysML. Engineers can easily drag and drop
existing “Virtual testing workflow” activity from the corresponding function SysML pack-
age into “Action 1: Check if the function is fulfilled by corresponding solution” to agilely
add or replace any virtual testing process with a specific test need. In addition, engineers
can also easily drag and drop the existing “Virtual validation workflow” activity from
the corresponding virtual testing SysML package into “Action 2: Sub Level Functions” to
agilely add or replace any virtual validation process for a specific function. It is worth
noting that when a new workflow is added (either a virtual validation workflow or a
virtual testing workflow), a new workflow result is generated correspondingly. These
results should also participate in logic gate calculations and be checked.

4.2. The Framework of Virtual Testing Workflows Based on the Functional Architecture

As described in Section 4.1, for the virtual validation of a function’s fulfillment by its
corresponding solution, various virtual testing workflows need to be designed for distinct
test purposes. These workflows model and perform a series of simulation activities. To
perform appropriate simulation activities, engineers typically need to choose the right
domain models and manually sequence their simulations in virtual testing workflows. To
minimize manual effort in sequencing workflows, this section introduces a framework for
building multiple virtual testing workflows, enabling engineers to easily design and reuse
them for different testing purposes.

4.2.1. Modular Design of Virtual Testing Workflows

Virtual testing workflows employ a modular design, breaking down the workflows
into smaller components called modules. Each simulation activity serves as a module
for performing the related domain model simulations. Simulation activities are nested
according to the domain model’s classification. In this work, domain models are catego-
rized based on system scope, model purpose, and model fidelity [6]. The system scope
describes the extent of the physical system that the domain model deals with. The model
purpose describes the objective of the simulation for the domain model. The model fidelity
describes the degree of exactness of the domain model simulation results compared to

Appl. Sci. 2023, 13, 5122 11 of 21

reality. These classifications are interconnected; for instance, a simulation activity associ-
ated with a particular system scope includes simulation activities that execute models with
varying purposes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22

Figure 6 shows that the virtual validation workflow framework can be semi‐auto‐

matically extended and redesigned in SysML. Engineers can easily drag and drop existing

“Virtual testing workflow” activity from the corresponding function SysML package into

“Action 1: Check if the function is fulfilled by corresponding solution” to agilely add or

replace any virtual testing process with a specific test need. In addition, engineers can also

easily drag and drop the existing “Virtual validation workflow” activity from the corre‐

sponding virtual testing SysML package into “Action 2: Sub Level Functions” to agilely

add or replace any virtual validation process for a specific function. It is worth noting that

when a new workflow is added (either a virtual validation workflow or a virtual testing

workflow), a new workflow result is generated correspondingly. These results should also

participate in logic gate calculations and be checked.

Figure 6. Adding virtual validation workflows & virtual testing workflows. Figure 6. Adding virtual validation workflows & virtual testing workflows.

Modular simulation activities, organized according to domain model classification,
offer significant flexibility in designing virtual testing workflows, which ensures that
domain model simulation activities can be easily reused in different virtual testing work-
flows. Therefore, workflows can be easily adapted when the solution is used in different
system contexts.

As shown in Figure 7, corresponding to the system architecture [23], the system scopes
should be regarded at the highest level within the nested structure. In the framework,

Appl. Sci. 2023, 13, 5122 12 of 21

each system scope contains domain models with different model purposes. In addition,
analogous to the hierarchical design of the functional virtual validation workflow, a large
system scope contains small system scopes. As an example, the activity in the scope “Wind
Turbine” is divided into two parts:

• The first part is a parallel arrangement of actions that, respectively, invoke the simula-
tion activities regarding the domain models of the solution “Wind Turbine”. These
domain models are classified according to the purpose of the model, such as Load
analysis models and AEP models of the wind turbine, etc.

• The second part is the action, which contains sub-actions arranged in parallel. These
sub-actions are used to invoke the activities regarding its sub-scopes (e.g., Nacelle)
of the “Wind Turbine”. These sub-scope activities follow the same design as above,
and also contain their own sub-scopes (e.g., Gearbox, Bearing), and so on to form a
hierarchical structure.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22

Figure 7. The nested framework of virtual testing workflows corresponding to the hierarchical sys‐

tem scopes.

Ref. [19] mentioned that model fidelity also needs to be considered in the virtual test‐

ing workflow. This work further develops simulation activities with specific model pur‐

poses. As shown in Figure 8, similar to the nested structure design of the activities with a

specific system scope, an activity for the same purpose includes sub‐simulation activities

with different model fidelities. For example, the “AEP Models” activity is used to calculate

the annual energy production of a WT and this activity contains two actions arranged in

parallel. These two actions, respectively, invoke two simulation activities with different

model fidelity, which are named the “MATLAB mathematical model (Fidelity‐A)” and

Figure 7. The nested framework of virtual testing workflows corresponding to the hierarchical
system scopes.

Appl. Sci. 2023, 13, 5122 13 of 21

Ref. [19] mentioned that model fidelity also needs to be considered in the virtual
testing workflow. This work further develops simulation activities with specific model
purposes. As shown in Figure 8, similar to the nested structure design of the activities
with a specific system scope, an activity for the same purpose includes sub-simulation
activities with different model fidelities. For example, the “AEP Models” activity is used
to calculate the annual energy production of a WT and this activity contains two actions
arranged in parallel. These two actions, respectively, invoke two simulation activities with
different model fidelity, which are named the “MATLAB mathematical model (Fidelity-A)”
and the “Simpack simulation model (Fidelity-B)” to calculate the values of the annual
energy production.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 22

the “Simpack simulation model (Fidelity‐B)” to calculate the values of the annual energy

production.

Figure 8. The nested framework of virtual testing workflows based on the model classifications.

In the virtual testing workflow, the activity with specific model fidelity can perform

external simulations by triggering constraints in ibds; details are already published in the

related paper [19].

4.2.2. Implementation of the Proposed Virtual Testing Workflows in SysML

The previous chapter created a nested framework for virtual testing workflows based

on modular simulation activities. This chapter describes how to use this framework to

easily select different simulation activities and execute these simulation activities step by

step in an iterative manner based on SysML. This enables engineers to automatically de‐

sign and easily execute virtual test workflows that adapt to different test scenarios.

As mentioned earlier, virtual testing workflows typically perform a series of simula‐

tion activities in a specific order. In order to automate the entire virtual testing process

step by step, workflow designers usually need to provide the necessary model

information for each step of the virtual testing process. Designers can pre‐give the infor‐

mation of these domain models according to the classification of the domain models, such

as the scope of the model, the purpose of the model, and the fidelity of the model, so that

the workflow can automatically iteratively run according to the customized sequences.

When the scope, purpose, and fidelity of the model are determined, the required

simulation activity of the domain model is also determined. After the sequence has been

set up, the virtual testing workflow becomes reusable.

The model information can be pre‐set in the instances of the system model so that the

virtual testing workflows can be easily re‐executed by engineers. Figure 9 shows how dif‐

ferent virtual tests can be executed in SysML through an iterative process based on the

architecture. An action named “Workflow Steps Information” is designed to read required

domain model information and pass them through the pin to the framework that contains

Figure 8. The nested framework of virtual testing workflows based on the model classifications.

In the virtual testing workflow, the activity with specific model fidelity can perform
external simulations by triggering constraints in ibds; details are already published in the
related paper [19].

4.2.2. Implementation of the Proposed Virtual Testing Workflows in SysML

The previous chapter created a nested framework for virtual testing workflows based
on modular simulation activities. This chapter describes how to use this framework to
easily select different simulation activities and execute these simulation activities step by
step in an iterative manner based on SysML. This enables engineers to automatically design
and easily execute virtual test workflows that adapt to different test scenarios.

As mentioned earlier, virtual testing workflows typically perform a series of simulation
activities in a specific order. In order to automate the entire virtual testing process step
by step, workflow designers usually need to provide the necessary model information for
each step of the virtual testing process. Designers can pre-give the information of these
domain models according to the classification of the domain models, such as the scope of
the model, the purpose of the model, and the fidelity of the model, so that the workflow
can automatically iteratively run according to the customized sequences. When the scope,

Appl. Sci. 2023, 13, 5122 14 of 21

purpose, and fidelity of the model are determined, the required simulation activity of the
domain model is also determined. After the sequence has been set up, the virtual testing
workflow becomes reusable.

The model information can be pre-set in the instances of the system model so that
the virtual testing workflows can be easily re-executed by engineers. Figure 9 shows how
different virtual tests can be executed in SysML through an iterative process based on
the architecture. An action named “Workflow Steps Information” is designed to read
required domain model information and pass them through the pin to the framework
that contains all the simulation activities. To avoid the repetitive creation of simulation
activities, this study designs a unique corresponding simulation activity for each domain
model in the framework. The workflow automatically finds and executes the corresponding
simulation activity based on the model information, which is regarded as the completion
of a simulation process. The above process is repeated by executing an iterative loop and
the model information of each step is obtained in turn to sequentially execute the relevant
simulation activities in the workflow.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 22

all the simulation activities. To avoid the repetitive creation of simulation activities, this

study designs a unique corresponding simulation activity for each domain model in the

framework. The workflow automatically finds and executes the corresponding simulation

activity based on the model information, which is regarded as the completion of a simu‐

lation process. The above process is repeated by executing an iterative loop and the model

information of each step is obtained in turn to sequentially execute the relevant simulation

activities in the workflow.

Figure 9. Execution of the simulation activities in the workflow through an iterative loop.
Figure 9. Execution of the simulation activities in the workflow through an iterative loop.

Appl. Sci. 2023, 13, 5122 15 of 21

Figure 10 shows how to implement the architecture in the SysML based on the model
information to achieve automatic decision-making. Taking the bearing fatigue test as an
example, when the virtual test starts, the model information to be executed in the first
step (i.e., “Wind Turbine”; “LoadAnalysis”) is passed to the framework. A conditional
node action called “Domain models of WT” is created at the scope “Wind Turbine” of
the nested framework to determine whether to execute the domain model in the Wind
Turbine scope. A conditional node comprises a collection of clauses, each with a test and
a body, functioning similarly to an “if” statement in programming languages, where the
action is performed only under specific conditions. When the conditional node begins
execution, the test portion of the clause is carried out; if the test conditions evaluate to
“True”, the clause’s body segment is executed. Specifically, when the scope information is
“Wind Turbine”, the action “Purposes” will be executed, which encapsulates all domain
model simulation activities within the “Wind Turbine” scope. Another conditional node
action called “Domain models of WT’s sub scopes” is also created in parallel in this scope to
determine if the domain model that needs to be executed is in the sub-scope of the “Wind
Turbine” scope (e.g., Nacelle). This goes on until the required model scope is found.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22

Figure 10 shows how to implement the architecture in the SysML based on the model

information to achieve automatic decision‐making. Taking the bearing fatigue test as an

example, when the virtual test starts, the model information to be executed in the first step

(i.e., “Wind Turbine”; “LoadAnalysis”) is passed to the framework. A conditional node

action called “Domain models of WT” is created at the scope “Wind Turbine” of the nested

framework to determine whether to execute the domain model in the Wind Turbine scope.

A conditional node comprises a collection of clauses, each with a test and a body, func‐

tioning similarly to an “if” statement in programming languages, where the action is per‐

formed only under specific conditions. When the conditional node begins execution, the

test portion of the clause is carried out; if the test conditions evaluate to “True”, the

clause’s body segment is executed. Specifically, when the scope information is “Wind Tur‐

bine”, the action “Purposes” will be executed, which encapsulates all domain model sim‐

ulation activities within the “Wind Turbine” scope. Another conditional node action

called “Domain models of WT’s sub scopes” is also created in parallel in this scope to

determine if the domain model that needs to be executed is in the sub‐scope of the “Wind

Turbine” scope (e.g., Nacelle). This goes on until the required model scope is found.

Figure 10. Determination of the system scope of the domain model automatically based on condi‐

tional node activities.

After determining the scope of the model to be executed, the purpose of the model

also needs to be determined based on the information of the model. Similar to the above

judgment process, conditional node actions are created for different model purposes sep‐

arately and these actions are arranged in parallel. The purpose information of the model

will be delivered to all of these actions to determine whether the model that needs to be

executed belongs to any of them. In the same way, engineers can set the appropriate model

Figure 10. Determination of the system scope of the domain model automatically based on conditional
node activities.

After determining the scope of the model to be executed, the purpose of the model
also needs to be determined based on the information of the model. Similar to the above
judgment process, conditional node actions are created for different model purposes sepa-
rately and these actions are arranged in parallel. The purpose information of the model
will be delivered to all of these actions to determine whether the model that needs to be

Appl. Sci. 2023, 13, 5122 16 of 21

executed belongs to any of them. In the same way, engineers can set the appropriate model
fidelity before the workflow starts and the workflow can automatically find the models
that need to be executed.

It is worth noting that for information that is difficult to be given in advance, such as
model fidelity, engineers can also manually select the existing alternative models during
workflow execution. As shown in Figure 11, while the workflow is in progress, engineers
can manually choose the suitable models at the decision node. The symbol of the decision
node is a diamond that has one or more output flow that is offered to the engineer for
selection using guard conditions. For example, for bearing fatigue testing, engineers can
select “Fidelity-A” (e.g., Spring damper MBS model) or “Fidelity-B” (e.g., Lambda MBS
model) to calculate the loads on the bearing.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22

fidelity before the workflow starts and the workflow can automatically find the models

that need to be executed.

It is worth noting that for information that is difficult to be given in advance, such as

model fidelity, engineers can also manually select the existing alternative models during

workflow execution. As shown in Figure 11, while the workflow is in progress, engineers

can manually choose the suitable models at the decision node. The symbol of the decision

node is a diamond that has one or more output flow that is offered to the engineer for

selection using guard conditions. For example, for bearing fatigue testing, engineers can

select “Fidelity-A” (e.g., Spring damper MBS model) or “Fidelity-B” (e.g., Lambda MBS

model) to calculate the loads on the bearing.

Figure 11. Determination of the fidelity of the domain model manually based on decision nodes.

Similarly, engineers can define the desired model fidelity before initiating the work-

flow, enabling the workflow to automatically identify the models that require execution.

5. Case Study

Taking the virtual validation scenario described in Section 3 as an example, the pro-

posed workflows can be used to validate parts of the system functions of the WT system

at different hierarchy levels by performing specific virtual tests. When the virtual valida-

tion begins, the workflows validate each function in turn from the top functional level to

the detailed functional level, until the end of the functional hierarchy. The top-level virtual

validation workflow of the WT is created in the SysML package “Convert Wind Energy

to Electricity” at the function layer. The virtual validation workflow performs an activity

called “Check if the corresponding solution fulfills the function” to check that the function

can be fulfilled by the selected solution “Wind Turbine A”. The designer parameterizes

the solution “Wind Turbine A” in the SysML instances. This function can be decomposed

into two sub-functions in this case study, which are “Convert wind energy into mechani-

cal energy” and “Convert mechanical energy into wind energy”. These two functions also

Figure 11. Determination of the fidelity of the domain model manually based on decision nodes.

Similarly, engineers can define the desired model fidelity before initiating the workflow,
enabling the workflow to automatically identify the models that require execution.

5. Case Study

Taking the virtual validation scenario described in Section 3 as an example, the pro-
posed workflows can be used to validate parts of the system functions of the WT system at
different hierarchy levels by performing specific virtual tests. When the virtual validation
begins, the workflows validate each function in turn from the top functional level to the
detailed functional level, until the end of the functional hierarchy. The top-level virtual
validation workflow of the WT is created in the SysML package “Convert Wind Energy
to Electricity” at the function layer. The virtual validation workflow performs an activity
called “Check if the corresponding solution fulfills the function” to check that the function
can be fulfilled by the selected solution “Wind Turbine A”. The designer parameterizes
the solution “Wind Turbine A” in the SysML instances. This function can be decomposed
into two sub-functions in this case study, which are “Convert wind energy into mechanical

Appl. Sci. 2023, 13, 5122 17 of 21

energy” and “Convert mechanical energy into wind energy”. These two functions also
have their own virtual validation workflows. The two workflows can be added to the
top-level virtual validation workflow by dragging and dropping from the model tree. By
analogy, for each new function created by the engineers, the corresponding virtual valida-
tion workflows in different functional hierarchy levels need to be created. Among them,
“Support rotation with low friction” is a sub-function of the WT system that this case study
focuses on. “Bearing A” is a sub-solution in “Wind Turbine A” designed to satisfy this
sub-function.

Designers design multiple virtual testing workflows for each solution to provide
evidence that the solution can fulfill the corresponding function. For example, as mentioned
in Section 3, the AEP calculation is an important virtual test that is used to calculate the
performance of the entire system. Therefore, in this case, the AEP calculation is used as
a representative criterion to verify that “Wind Turbine A” satisfies the function “Convert
wind energy to electricity”. AEP calculation is the predicted annual energy production of a
WT calculated based on a given rated average wind speed. In this work, a co-simulation
model is used to calculate the AEP. The co-simulation model combines the mechanical and
control model, as well as directly providing the engineer with the simulation results of
the transient power output of the generator. These simulation results are post-processed
to obtain the AEP results. The co-simulation model involving a mechanical model and
a control model for wind turbine systems is conducted to optimize speed control using
pitch angles as the control output. The mechanical model considers inputs such as wind
loads and outputs, including drivetrain torque, rotor speed, structural loads, and blade
pitch angles. On the other hand, the control model processes inputs such as current
generator speed and current pitch angle as references to determine the appropriate pitch
angle settings.

For the components in a system, failure analysis can be an important virtual test to
test the reliability of the component. The result of the failure analysis (i.e., the Lifetime) can
therefore be used as a criterion to verify that “Bearing A” satisfies the function “Support
rotation with low friction”. In order to avoid fatigue failure of bearings, engineers often
use statistical methods to analyze and calculate bearing lifetime. The basic fatigue rating
life is calculated using the number of rotations in which 90% of all bearings in a specific
group achieve or exceed without failure (probability of failure: 10%). A standardized
formula, also known as the catalog method (ISO 281), is the common means of calculating
a bearing’s basic rating life. ISO 281 is applicable to the bearing under continuous rotation
subjected to axial and radial loads [24]. The activity “Check if the corresponding solution
fulfills the function” contains and executes the virtual testing workflows. The testing
results are compared with the design requirements for verification. Taking the function
“Support rotation with low friction” as an example, the virtual testing workflow “Failure
Testing” is created in the SysML package “Bearing” at the solution layer. The workflows
can be added to the activity “Check if the corresponding solution fulfills the function”
by dragging and dropping. That is, by performing the virtual testing workflow “Failure
Testing”, the simulation result “Lifetime” will be used as a criterion to check whether the
solution “Bearing A” fulfills the corresponding function. Simulation testing results must be
compared to the relevant design requirements to assess whether the function is fulfilled
based on the verification. For example, bearing lifetime serves as one criterion, assisting in
determining if the chosen solution satisfies the function according to the lifetime calculation.
If the simulated lifetime meets or exceeds the required lifetime, the verification results are
considered true, indicating a passed verification. Otherwise, the verification fails.

Figure 12 shows the validation results of the WT system under different design
parameters. The same as the scenario in Section 3, customers expect a higher energy
production from the system. Therefore, the calculated AEP value of the original solution
“Wind Turbine A” is lower than the changed AEP requirement. Therefore, the requirement
verification fails. The failed verification result states that the solution “Wind Turbine A”
does not fulfill the function “Convert wind energy into electricity”. The “Wind Turbine

Appl. Sci. 2023, 13, 5122 18 of 21

B” is designed to meet AEP requirements, while the larger blades and generator result in
higher loads on the redesigned rotor and a corresponding increase in loads on the bearings.
Therefore, the lifetime of the bearing is lower than the design requirement, and it is also
regarded as a verification failure. Bearings have been redesigned in “Wind Turbine C”. It
has been verified to meet not only AEP requirements in the scope of WT, but also lifetime
requirements in the scope of bearing.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 22

designed to meet AEP requirements, while the larger blades and generator result in higher

loads on the redesigned rotor and a corresponding increase in loads on the bearings.

Therefore, the lifetime of the bearing is lower than the design requirement, and it is also

regarded as a verification failure. Bearings have been redesigned in “Wind Turbine C”. It

has been verified to meet not only AEP requirements in the scope of WT, but also lifetime

requirements in the scope of bearing.

Figure 12. The verification & validation results of the WT system under different design alternatives.

It is worth noting that the virtual testing workflows can be easily adapted when the

system context changes. “Bearing” is a common solution in WT systems. The solution

“Bearing” can be used not only in rotor‐bearing arrangements, but also in high‐speed

bearing arrangements. In the reuse process, designers can easily add the corresponding

validation workflow, virtual testing workflow, and modular domain model simulation

activities into the framework. Due to changes in the system context, the designer might

need to change the step information of virtual testing workflows to execute the appropri‐

ate domain model. For example, to calculate the lifetime of the bearing of the high‐speed

bearing arrangement, loads on the bearing can be calculated from a “Nacelle MBS” do‐

main model instead of the “Wind Turbine MBS” domain model.

6. Discussion

The case study shows that the proposed workflow design framework can be applied

to support the virtual validation process of complex technical systems. The virtual valida‐

tion process based on the function‐oriented system architecture by using a standardized

designed virtual validation workflow has advantages over the classical validation process

mentioned in the previous literature.

First of all, a nested virtual validation workflow is designed and implemented in an

activity diagram, which contains sub‐virtual validation workflows based on a hierarchical

functional architecture. Therefore, designers can easily use automated workflows to fully

validate the functions at all hierarchy levels. Compared to classical methods that rely on

the manual work and experience of engineers, using the proposed virtual workflow

allows early and reliable detection of the risk of technical system failure due to redesign.

This work shows that since the nested framework of the virtual validation workflows

corresponds to the system’s functional architecture, virtual validation workflows can be

created synchronously as new functions are added and related sub‐virtual validation

workflows can also be created as functions are decomposed.

Secondly, each function includes a corresponding standardized designed virtual

validation workflow, such as fatigue analysis and smearing analysis. The results of these

virtual tests can be used as validation criteria. This work finds that the functions can be

validated based on these virtual tests, which contain the related simulation activities of

the domain models at different hierarchy solution levels. Compared to classical methods,

Figure 12. The verification & validation results of the WT system under different design alternatives.

It is worth noting that the virtual testing workflows can be easily adapted when the
system context changes. “Bearing” is a common solution in WT systems. The solution
“Bearing” can be used not only in rotor-bearing arrangements, but also in high-speed
bearing arrangements. In the reuse process, designers can easily add the corresponding
validation workflow, virtual testing workflow, and modular domain model simulation
activities into the framework. Due to changes in the system context, the designer might
need to change the step information of virtual testing workflows to execute the appropriate
domain model. For example, to calculate the lifetime of the bearing of the high-speed
bearing arrangement, loads on the bearing can be calculated from a “Nacelle MBS” domain
model instead of the “Wind Turbine MBS” domain model.

6. Discussion

The case study shows that the proposed workflow design framework can be applied
to support the virtual validation process of complex technical systems. The virtual valida-
tion process based on the function-oriented system architecture by using a standardized
designed virtual validation workflow has advantages over the classical validation process
mentioned in the previous literature.

First of all, a nested virtual validation workflow is designed and implemented in an
activity diagram, which contains sub-virtual validation workflows based on a hierarchical
functional architecture. Therefore, designers can easily use automated workflows to fully
validate the functions at all hierarchy levels. Compared to classical methods that rely
on the manual work and experience of engineers, using the proposed virtual workflow
allows early and reliable detection of the risk of technical system failure due to redesign.
This work shows that since the nested framework of the virtual validation workflows
corresponds to the system’s functional architecture, virtual validation workflows can be
created synchronously as new functions are added and related sub-virtual validation
workflows can also be created as functions are decomposed.

Secondly, each function includes a corresponding standardized designed virtual val-
idation workflow, such as fatigue analysis and smearing analysis. The results of these
virtual tests can be used as validation criteria. This work finds that the functions can be
validated based on these virtual tests, which contain the related simulation activities of the
domain models at different hierarchy solution levels. Compared to classical methods, the

Appl. Sci. 2023, 13, 5122 19 of 21

standardized workflow design in this work ensures that the virtual validation workflow
can be easily redesigned, with related functions being reused in different systems.

At last, the modular design based on model classification greatly improves the design
agility of the virtual testing workflows. A virtual testing workflow consisting of modular
simulation activities allows testers to select appropriate models. Additionally, the workflow
with modular design can be easily adapted in different system contexts. Compared to clas-
sical methods, the virtual testing workflows proposed in this work can automatically and
sequentially execute the corresponding simulation activities through iterations according
to the step information provided by the engineer.

This work uses a WT system as an example to demonstrate the application of workflow
in a technical system. Although the scope of the system displayed by the WT system is
very specific, as the modeling method of the system architecture is function-oriented, and
the workflow design is also modularized based on the system architecture, the conceptual
design of the workflow is considered to be scalable in theory. However, the current work-
flow still has limitations. While engineers can use pre-designed workflows to automatically
perform the virtual validations of system solutions, the workflow still relies on experienced
engineers to manually determine the order of a series of simulation activities in a workflow.
Therefore, to further automate the virtual validation process while reducing potential errors
from manual steps, a mechanism should be developed to automatically arrange simulation
sequences based on dependencies between parameters in the proposed workflow and
ensure data matching between models. After the virtual validation process, engineers
need to optimize and redesign the system based on the validation results and perform
the re-validations. However, this method does not give a solution that would provide an
adaptive system design after virtual validation is failed. Therefore, it is necessary to extend
the workflow to support optimization mechanisms. The designer should be assisted in
redesigning the system after virtual validation and decide whether the next iteration can
start or not until the design converges toward a solution that fulfills the requirement. As
the design loops can be implemented by optimization algorithms (e.g., Multidisciplinary
Analysis and Optimization (MDAO)), the automation of the proposed workflow can be
further improved. Finally, the proposed structured virtual validation workflows still need
to be created manually by engineers. The future perspective is that workflow structures
can be created automatically, corresponding to the functional architecture structure.

7. Conclusions

In order to efficiently validate whether a system’s solutions fulfill their intended
functionalities at the early development stage, this work provides a standardized method
in the function-oriented system architecture to build well-organized virtual validation
workflows. The workflows can support the system’s virtual validation across all func-
tional hierarchy levels. System engineers can carry out virtual validation of the necessary
system by utilizing the workflow. This work covers the following core content: a nested
structure for the virtual validation workflow is developed that corresponds to the func-
tional hierarchy of the system. The decomposed solutions can be virtually validated at
all hierarchy levels to satisfy the corresponding functions. The virtual testing workflows
are arranged in parallel to each other as the criteria to provide evidence that the solution
fulfills the corresponding function. Furthermore, this work presents a design approach for
a standardized virtual testing workflow framework, which is grounded in domain model
classification. The following key statements can be made: each domain model corresponds
to a simulation activity. The simulation activity is designed modularly, which increases
its reusability. Simulation activities are nested based on the system scope, model purpose,
and model fidelity within the framework. In a virtual testing workflow, engineers execute
the corresponding simulation activities in the framework step by step through an iterative
cycle. One of the case studies of this work validates the WT system, focusing on the scope
of “Wind Turbine” and its sub-systems “Bearing”. The impact on the system caused by

Appl. Sci. 2023, 13, 5122 20 of 21

design changes is observed by performing the automated virtual validation workflows,
and “Bearing” solutions can be easily reused in different system contexts.

The contribution of this work is to develop automated virtual validation processes for
complex technical systems, providing automated validation, early failure risk detection, and
ease of redesign. The function-oriented hierarchical architecture allows for synchronous
workflow creation, while the standardized design ensures function reusability. Modular
design, based on model classification, improves design agility and adaptability in different
system contexts. Future improvements involve the introduction of dependency detection
mechanisms for arranging simulation sequences, extending workflows to support opti-
mization algorithms, and automating the creation of workflow structures corresponding to
functional architecture.

Author Contributions: Conceptualization, Y.Z., G.J., J.B. and G.H.; methodology, Y.Z., G.J., J.B. and
G.H.; software, Y.Z.; validation, Y.Z.; formal analysis, Y.Z., G.H. and J.B.; writing—original draft
preparation, Y.Z.; writing—review and editing, Y.Z., J.B. and G.H.; supervision, G.J. and J.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Walden, D.D.; Roedler, G.J.; Forsberg, K.; Hamelin, R.D.; Shortell, T.M. Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities, 4th ed.; Prepared by International Council on Systems Engineering (INCOSE); David, D., Walden, E.S.E.P.,
Garry, J., Roedler, E.S.E.P., Kevin, J., Forsberg, E.S.E.P., Douglas Hamelin, R., Thomas, M., Shortell, C.S.E.P., Eds.; Wiley: Hoboken,
NJ, USA, 2015; ISBN 978-1-118-99940-0.

2. IEA. Wind Electricity—Analysis—IEA. Available online: https://www.iea.org/reports/wind-electricity (accessed on 15 January 2023).
3. Dykes, K.; Meadows, R. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems; National

Renewable Energy Lab. (NREL): Golden, CO, USA, 2011.
4. ISO/IEC/IEEE 15288; Systems and Software Engineering—System Life Cycle Processes. IEEE: Piscataway, NJ, USA, 2015.
5. INCOSE. Systems Engineering Vision 2020; INCOSE: San Diego, CA, USA, 2007.
6. Jacobs, G.; Konrad, C.; Berroth, J.; Zerwas, T.; Höpfner, G.; Spütz, K. Function-Oriented Model-Based Product Development. In

Design Methodology for Future Products; Krause, D., Heyden, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022;
pp. 243–263, ISBN 978-3-030-78367-9.

7. Drave, I.; Rumpe, B.; Wortmann, A.; Berroth, J.; Hoepfner, G.; Jacobs, G.; Spuetz, K.; Zerwas, T.; Guist, C.; Kohl, J. Modeling
mechanical functional architectures in SysML. In Proceedings of the MODELS ‘20: ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems, Virtual Event, Canada, 16–23 October 2020; Syriani, E., Sahraoui, H., Eds.;
ACM: New York, NY, USA, 2020; pp. 79–89, ISBN 9781450370196.

8. Estefan, J.A. Survey of Model-Based Systems Engineering (MBSE) Methodologies; Incose MBSE Focus Group: Pasadena, CA,
USA, 2008.

9. Karban, R. MBSE Practices in Telescope Modeling; INCOSE MBSE Challenge Team: Colorado Springs, CO, USA, 2010.
10. Graignic, P.; Vosgien, T.; Jankovic, M.; Tuloup, V.; Berquet, J.; Troussier, N. Complex System Simulation: Proposition of a MBSE

Framework for Design-Analysis Integration. Procedia Comput. Sci. 2013, 16, 59–68. [CrossRef]
11. Lange, C.; Grundmann, J.T.; Kretzenbacher, M.; Fischer, P.M. Systematic reuse and platforming: Application examples for

enhancing reuse with model-based systems engineering methods in space systems development. Concurr. Eng. 2018, 26, 77–92.
[CrossRef]

12. Zhang, Y.; Hoepfner, G.; Berroth, J.; Pasch, G.; Jacobs, G. Towards Holistic System Models Including Domain-Specific Simulation
Models Based on SysML. Systems 2021, 9, 76. [CrossRef]

13. Zerwas, T.; Jacobs, G.; Spütz, K.; Höpfner, G.; Drave, I.; Berroth, J.; Guist, C.; Konrad, C.; Rumpe, B.; Kohl, J. Mechanical concept
development using principle solution models. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1097, 12001. [CrossRef]

14. Ralph, P.; Wand, Y. A Proposal for a Formal Definition of the Design Concept. In Design Requirements Engineering: A Ten-Year
Perspective; Springer: Berlin/Heidelberg, Germany, 2009; pp. 103–136.

https://www.iea.org/reports/wind-electricity
https://doi.org/10.1016/j.procs.2013.01.007
https://doi.org/10.1177/1063293X17736358
https://doi.org/10.3390/systems9040076
https://doi.org/10.1088/1757-899X/1097/1/012001

Appl. Sci. 2023, 13, 5122 21 of 21

15. Bretz, L.; Tschirner, C.; Dumitrescu, R. A concept for managing information in early stages of product engineering by integrating
MBSE and workflow management systems. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering
(ISSE), Edinburgh, UK, 3–5 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8, ISBN 978-1-5090-0793-6.

16. Zou, M.; Vogel-Heuser, B.; Sollfrank, M.; Fischer, J. A Cross-disciplinary Model-Based Systems Engineering Workflow of
Automated Production Systems Leveraging Socio-technical Aspects. In Proceedings of the 2020 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 133–140, ISBN 978-1-5386-7220-4.

17. Spangelo, S.C.; Cutler, J.; Anderson, L.; Fosse, E.; Cheng, L. Model based systems engineering (MBSE) applied to Radio Aurora
Explorer (RAX) CubeSat mission operational scenarios. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT,
USA, 2–9 March 2013.

18. Höpfner, G.; Jacobs, G.; Zerwas, T.; Drave, I.; Berroth, J.; Guist, C.; Rumpe, B.; Kohl, J. Model-Based Design Workflows for
Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1097, 12004.
[CrossRef]

19. Zhang, Y.; Roeder, J.; Jacobs, G.; Berroth, J.; Hoepfner, G. Virtual Testing Workflows Based on the Function-Oriented System
Architecture in SysML: A Case Study in Wind Turbine Systems. Wind 2022, 2, 599–616. [CrossRef]

20. Rohrig, K.; Berkhout, V.; Callies, D.; Durstewitz, M.; Faulstich, S.; Hahn, B.; Jung, M.; Pauscher, L.; Seibel, A.; Shan, M.; et al.
Powering the 21st century by wind energy—Options, facts, figures. Appl. Phys. Rev. 2019, 6, 31303. [CrossRef]

21. Zorriassatine, F.; Wykes, C.; Parkin, R.; Gindy, N. A survey of virtual prototyping techniques for mechanical product development.
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 513–530. [CrossRef]

22. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language, 3rd ed.; Elsevier MK
Morgan Kaufmann is an imprint of Elsevier; Morgan Kaufmann: Amsterdam, The Netherlands; Boston, MA, USA, 2015;
ISBN 9780128002025.

23. Spütz, K.; Berges, J.; Jacobs, G.; Berroth, J.; Konrad, C. Classification of Simulation Models for the Model-based Design of
Plastic-Metal Hybrid Joints. Procedia CIRP 2022, 109, 37–42. [CrossRef]

24. ISO 281; Wälzlager-Dynamische Tragzahlen und Nominelle Lebensdauer. Beuth Verlag GmbH: Berlin, Germany, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1757-899X/1097/1/012004
https://doi.org/10.3390/wind2030032
https://doi.org/10.1063/1.5089877
https://doi.org/10.1243/095440503321628189
https://doi.org/10.1016/j.procir.2022.05.211

	Introduction
	State of the Art
	Function-Oriented System Architecture
	Virtual Validation Process

	Wind Turbine System Virtual Validation
	Method
	The Framework of Virtual Validation Workflows Based on the Functional Architecture
	Structure of Virtual Validation Workflows Based on the System Hierarchy
	Structure of Virtual Testing Workflows Based on Domain Model Classification
	Implementation of the Proposed Virtual Validation Workflows in SysML

	The Framework of Virtual Testing Workflows Based on the Functional Architecture
	Modular Design of Virtual Testing Workflows
	Implementation of the Proposed Virtual Testing Workflows in SysML

	Case Study
	Discussion
	Conclusions
	References

