
Citation: Bystrov, O.; Pacevič, R.;

Kačeniauskas, A. Adaptation of

Parallel SaaS to Heterogeneous

Co-Located Cloud Resources. Appl.

Sci. 2023, 13, 5115. https://doi.org/

10.3390/app13085115

Academic Editor: Agostino

Forestiero

Received: 1 March 2023

Revised: 8 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Adaptation of Parallel SaaS to Heterogeneous Co-Located
Cloud Resources
Oleg Bystrov 1 , Ruslan Pacevič 1 and Arnas Kačeniauskas 1,2,*

1 Department of Graphical Systems, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
oleg.bystrov@vilniustech.lt (O.B.); ruslan.pacevic@vilniustech.lt (R.P.)

2 Laboratory of Parallel Computing, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
* Correspondence: arnas.kaceniauskas@vilniustech.lt; Tel.: +370-5-274-4913

Featured Application: The presented runtime adaptation of computational load helps efficiently
run parallel SaaS on heterogeneous or co-located cloud resources.

Abstract: Cloud computing has received increasing attention due to its promise of delivering on-
demand, scalable, and virtually unlimited resources. However, heterogeneity or co-location of virtual
cloud resources can cause severe degradation of the efficiency of parallel computations because
of a priori unknown application-specific performance metrics, load imbalance, and limitations of
memory bandwidth. This paper presents the runtime adaptation of parallel discrete element method
(DEM) Software as a Service (SaaS) to heterogeneous or co-located resources of the OpenStack cloud.
The computational workload is adapted by using weighted repartitioning and runtime measured
performance of parallel computations on Docker containers. The high improvement in performance
up to 48.7% of the execution time is achieved, applying the runtime adapted repartitioning when the
load imbalance is high enough. The low load imbalance leads to the close values of computational
load, when small variations in the system load and performance can cause oscillations in subsets
of particles. Memory stress tests cause heterogeneity of non-isolated containers, which reduces the
performance of memory bandwidth bound DEM SaaS on the co-located resources. The runtime
adapted repartitioning handles the constant and periodically variable performance of non-isolated
containers and decreases the total execution time of DEM SaaS.

Keywords: heterogeneous co-located cloud resources; weighted partitioning; runtime measured
performance; Docker containers; discrete element method; memory bandwidth bound applications

1. Introduction

Cloud computing is becoming a natural solution to the problem of expanding computa-
tional needs due to its on-demand, low-cost, and virtually unlimited resources for deploying
various services [1]. The NIST SPI [2] classifies cloud services into three categories, namely
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). Private and public clouds can be developed using different implementations of cloud
software, with OpenStack [3] being an open-source cloud management platform that offers a
secure and reliable IaaS. To isolate workloads and regulate resource usage, cloud computing
heavily employs virtual machines (VMs). Containers present a technology for improving
the productivity and code portability in cloud infrastructures. Docker [4] has emerged as the
standard runtime, image format, and build system for Linux containers because its layered
file system requires less disk space and I/O compared to the equivalent VM disk images.

The scalable cloud resources can be dynamically allocated on demand according to
consumer requirements and preferences defined in service level agreement (SLA). However,
cloud resources can cause severe degradation of SaaS performance due to their heterogene-
ity or co-location issues [1]. Different types of heterogeneous VMs [5] present challenges to

Appl. Sci. 2023, 13, 5115. https://doi.org/10.3390/app13085115 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13085115
https://doi.org/10.3390/app13085115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4477-2630
https://orcid.org/0000-0002-5135-8155
https://doi.org/10.3390/app13085115
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13085115?type=check_update&version=1

Appl. Sci. 2023, 13, 5115 2 of 17

load balancing of parallel MPI-based jobs that are in frequent communication. In resource-
aware partitioning, the computational domain is divided into unequal partitions or subsets
of particles according to weights of heterogeneous resources [6]. Generally, heterogeneity
weights of parallel computations cannot be exactly defined a priori according to the number
of instructions performed by CPU per second because of domain decomposition issues,
communication overhead, and limitations of memory bandwidth. Synthetic benchmarks
conducted on cloud systems typically fail to consider all the essential factors. Therefore,
the application-specific tests need to be performed to define heterogeneity weights before
the production runs of parallel computations on heterogeneous resources.

Virtual resources can create further issues if they are co-located on the same machine
and compete for the same resources, such as memory bandwidth [7]. Common virtualization
technologies do not ensure isolation of the cache usage and memory bandwidth of individual
VMs accommodated by the same physical machine, leading to contention between them. If
one of the VMs excessively uses memory bandwidth, the performance of memory bandwidth
bound SaaS, running on the other VM, may significantly degrade. Few cloud providers [8]
offers L3 cash and memory bandwidth isolation based on existing hardware technologies [9] or
software solutions [10]. Unfortunately, existing solutions cannot be easily used for managing
memory bandwidth with all virtualization technologies in popular cloud environments.

The use of clouds to deploy computationally demanding scientific codes for high
performance computations and visualization offers better resource exploitation and greater
user mobility. Consequently, cloud resources are perceived as a promising avenue for
future advances in the area of scientific computations [11]. The discrete element method
(DEM), originally developed by Cundall and Strack [12], describes particulate media by
considering the motion and deformation behavior of individual particles. Currently, the
DEM is acknowledged to be an effective method not limited to the analysis of non-cohesive
granular materials but extended to cohesive powders, fluidized environments, rock cutting,
and couplings with different multiphysics. However, the simulation of systems at the
particle level of detail has the disadvantage of making the DEM computationally very
expensive. Naturally, to solve the industrial-scale problems, parallel computing on cloud
infrastructures has become an obvious way to increase computational capabilities. However,
cloud computing still lacks case studies and best practices on how to efficiently run parallel
memory bandwidth bound SaaS on heterogeneous co-located virtual cloud resources.

This paper presents the runtime adaptation of parallel DEM SaaS to heterogeneous
co-located resources of the private OpenStack cloud. The hybrid parallelization of memory
bandwidth bound DEM SaaS was developed by using OpenCL for shared-memory multi-
core machines and MPI for weighted repartitioning on distributed-memory architectures.
The remaining paper is organized as follows: Section 2 analyzes the related works, Section 3
describes the developed DEM SaaS based on hybrid parallelization, Section 4 discusses the
results of SaaS performance attained on heterogeneous co-located cloud resources, and the
conclusions are given in Section 5.

2. The Related Works

Previous studies [13–15] have already examined the performance of computation-
intensive benchmarks on virtual machines and lightweight containers. However, few
studies include the performance analysis of parallel MPI-based applications on heteroge-
neous cloud resources. Gang applications [16] are parallel jobs that frequently communicate
and must execute simultaneously. Moschakis and Karatza [17] evaluated gang scheduling
performance in the Amazon EC2 cloud. Hao et al. [18] proposed a 0–1 integer programming
for the gang scheduling. Mohammadi et al. [19] assessed the parallel performance of the
Linpack benchmark on public clouds. The obtained results demonstrated that the perfor-
mance per computing core on the public clouds could be comparable to modern traditional
supercomputing systems. However, the discussed studies did not investigate the impact of
heterogeneous cloud resources and partitioning issues on parallel performance.

Appl. Sci. 2023, 13, 5115 3 of 17

In cloud computing, the task scheduling, virtual machine load balancing, and resource
provisioning problems formulated from the cloud provider’s perspective have received
a lot of attention. Shahid et al. [20] evaluated the performance of existing load balancing
algorithms with different service broker policies for cloud computing. Particle swarm
optimization, round robin, equally spread current execution, and throttled load balancing
algorithms were investigated, taking into account optimized response time, data center
processing time, virtual machine costs, data transfer costs, and total cost. Heidari et al. [21]
introduced a deep post-decision-state learning algorithm for dynamic IoT-edge-cloud
offloading scenarios. The proposed technique outperformed multiple benchmarks in
terms of delay, job failure rate, cost, computational overhead, and energy consumption.
Bojato et al. [22] presented a flexible cloud-based software architecture engineered to
provide an efficient and robust password guessability service. A comprehensive literature
review [23] addressed resilience and dependability management issues in distributed
environments, namely cloud, edge, fog, internet of things, internet of drones, and internet of
vehicles. However, parallel MPI-based applications with parallel frequently communicating
jobs were rarely considered. Moreover, most researchers balanced the workload on virtual
machines of an entire subsystem rather than the enhanced performance of a parallel
frequently communicating application on heterogeneous virtual resources.

Early attempts to parallelize DEM computations were based on force decomposition
techniques or simple variants of the domain decomposition methods. Washington and
Meegoda [24] divided the interparticle force computation among the processors. The domain
decomposition methods partition the computational domain into particle subsets, each being
assigned to a processor. Kačeniauskas et al. [25] used the static domain decomposition with
regular partitions for parallel DEM computations on gLite grid infrastructure. Wang et al. [26]
applied domain decomposition with ghost layers of particles for the DEM and large eddy
simulation. However, the dynamically changing workload configuration may lead to load
imbalance and low parallel efficiency. More flexible but more complicated dynamic domain
decomposition is one of the solutions to this load balance problem that allows higher scalability
in parallel computing performance. In the case of the DEM, Owen et al. [27] used a topological
dynamic domain decomposition method based on a dynamic graph repartitioning. Walther
and Sbalzarini [28] presented large-scale parallel simulations of granular flows, employing
adaptive domain decomposition based on the multilevel k-way graph partitioning method [29].
Markauskas and Kačeniauskas [30] applied k-way graph partitioning and the recursive
coordinate bisection (RCB) [31] to solve the hopper discharge problem. Higher parallel
speedup was achieved by using RCB, which confirmed the efficiency of conceptually simpler
geometric methods for particle simulations [6]. The parallel efficiency of 0.87 was achieved on
2048 cores, modeling the hopper filled with 5.1 × 106 particles.

Distributed hardware systems based on common multicore nodes have evolved to het-
erogeneous hybrid architectures, embodying both shared and distributed memories. Hybrid
parallelization of DEM codes can lead to improved load balance, decreased communication
overhead, and reduced memory consumption on contemporary shared- and distributed-
memory systems. Liu et al. [32] described a hybrid MPI/OpenMP parallelization of their
MFIX-DEM solver, emphasizing the importance of data locality and thread placement policies
in scaling OpenMP implementation to large core counts. The speed increased 185 times on
256 cores of their hybrid parallelization compared to 138 times of a standalone MPI compu-
tation with 5.12 million particles. The LIGGGHTS DEM software [33] employed a recursive
multi-sectioning algorithm for global domain decomposition and an RCB method for defining
subsets of particles assigned to threads. Experiments of the load balancing with different
MPI/OpenMP configurations with up to 128 threads were presented. Cintra et al. [34] demon-
strated a hybrid MPI/OpenMP parallelization of DEMOOP software, employing the RCB
method for domain partitioning and various shared-memory implementations for particle
sorting and distribution. However, the parallel efficiency of the software rapidly drops,
increasing the number of cores up to 64. Incardona et al. [35] presented the open-source frame-
work OpenFPM for shared-memory and distributed-memory implementations of particle and

Appl. Sci. 2023, 13, 5115 4 of 17

particle-mesh codes. This scalable framework provides methods for domain decomposition,
dynamic load balancing, and internode communication. Yan and Regueiro [36] examined
the hybrid MPI/OpenMP mapping schemes and influences of the memory/cache hierarchy
for 3D DEM simulations of ellipsoidal and poly-ellipsoidal particles. However, the pure MPI
implementation achieved a higher efficiency than the hybrid MPI/OpenMP software. In the
discussed research, only OpenMP was used for shared-memory programming.

Compared to the CPU-based parallelization, GPU has a higher parallel structure, which
makes it very efficient for particle-based algorithms, where large blocks of data can be pro-
cessed in parallel. Software environments, such as CUDA or OpenCL [37], are targeted at
general-purpose GPU (GPGPU) programming. Govender et al. [38] designed the modular
Blaze-DEMGPU framework for the GPU architecture. Kelly et al. [39] adopted a dimension-
alization process combined with mixed-precision data to simulate 3D scenarios with up to
710 million spherical frictionless particles. To achieve a higher speedup ratio for a larger
number of particles, a few efforts have been made to use the combined GPU and MPI tech-
nology. Xu et al. [40] achieved the quasi-real-time simulation of an industrial rotating drum,
when about 9.6 × 106 particles were treated with 270 GPUs. The one-dimensional domain
decomposition with multiple GPUs was applied to the simulation of 128 million particles by
Tian et al. [41]. The GPU-based DEM combined with MPI has been applied by Gan et al. [42]
to study granular flows in the ironmaking industry. However, the communication overhead
among GPUs significantly reduces the parallel performance because of the costly data transfer
to the CPU memory and the MPI message passing among different nodes. It is worth noting
that only CUDA was employed for shared-memory programming on the GPU together with
MPI technology for distributed-memory communications in the case of DEM software.

Very few attempts to exploit low-cost flexible cloud resources for computationally de-
manding memory bandwidth bound DEM software [43] have been reported in the academic
literature [44–46]. Rescale’s cloud platform offers the commercial EDEM software for compu-
tations of particle systems by the DEM [44]. The open-source DEM code MercuryDPM [45]
was also deployed on a cloud computing platform. Bystrov et al. [46] developed parallel
MPI-based DEM software for distributed-memory architectures and deployed SaaS on the
OpenStack cloud. The presented performance analysis revealed MPI communication issues
and overhead caused by processes of the OpenStack services Nova and Zun. However, the
heterogeneity of cloud resources and co-location issues were not considered.

DEM computations were rarely performed on heterogeneous resources, but heteroge-
neous architectures were often employed for computationally intensive applications in other
research areas [47]. Danovaro et al. [47] analyzed the performance of widely used applications,
such as FFT, convolution, and N-body simulation on a multicore cluster node with or without
GPUs. In plasma plume simulations with the particle-in-cell model, Araki et al. [48] pro-
posed a patch-based dynamic load balancing method with over-decomposition and a Hilbert
space-filling curve. For microscopy image analysis, Barreiros et al. [49] developed a cost-
aware data partitioning strategy, minimizing load imbalance on hybrid CPU-GPU machines.
Zhong et al. [50] optimally distributed the workload of data-parallel scientific applications
between heterogeneous computing resources by using functional performance models of
processing elements and relevant data partitioning algorithms. Meanwhile, Bystrov et al. [51]
explored the trade-off between execution time and consumed energy for aortic valve compu-
tations on a heterogeneous OpenStack cloud, comparing parallel speedups obtained through
several partitioning techniques, but did not consider load imbalance and co-located resources.

The related works are listed and compared in Table 1. The parallel applications that
frequently communicate between nodes and must execute simultaneously are indicated in the
column “Parallel (internode)”. The parallelization software is provided in the next column.
The performance studies on heterogeneous and co-located resources are indicated in the
columns named “Heterogeneous resources” and “Co-located resources”, respectively. It
can be observed that parallel DEM computations are rarely performed on heterogeneous
resources because of increased load imbalance or communication. In other research areas,
the parallel frequently communicating applications are more often solved on heterogeneous

Appl. Sci. 2023, 13, 5115 5 of 17

cloud resources. In distributed cloud environments, parallel frequently communicating
applications are rare because of their inherent limitations to achieve high parallel performance
and scalability on heterogeneous or co-located resources. To the best of our knowledge,
there are no articles on the adaptation of parallel frequently communicating applications to
co-located cloud resources in the literature. Excessive usage of memory bandwidth by one
virtual resource can substantially reduce the performance of parallel memory bandwidth
bound DEM computations on the other resource co-located on the same physical machine.

Table 1. Comparison of the related works.

Authors Parallel
(Internode)

Parallelization
Software

Heterogeneous
Resources

Co-Located
Resources

Devine et al. [6] Yes MPI Yes No
Kačeniauskas et al. [13] Yes MPI No No

Chae et al. [14] No - No No
Potdar et al. [15] No - No No

Papazachos and Karatza [16] Yes MPI Yes No
Moschakis and Karatza [17] Yes MPI No No

Hao et al. [18] Yes MPI No No
Mohammadi and Bazhirov [19] Yes MPI No No

Shahid et al. [20] No - No Yes
Heidari at al. [21] No - Yes No
Bojato et al. [22] No - No No
Amiri et al. [23] No - No No

Washington and Meegoda [24] Yes MPI No No
Kačeniauskas et al. [25] Yes MPI No No

Wang et al. [26] Yes MPI No No
Owen and Feng [27] Yes MPI No No

Walther and Sbalzarini [28] Yes MPI Yes No
Markauskas and Kačeniauskas [30] Yes MPI No No

Liu et al. [32] Yes MPI/OpenMP No No
Berger et al. [33] Yes MPI/OpenMP No No
Cintra et al. [34] Yes MPI/OpenMP No No

Incardona et al. [35] Yes MPI No No
Yan and Regueiro [36] Yes MPI/OpenMP No No

Govender et al. [38] No CUDA No No
Kelly et al. [39] No CUDA No No

Xu et al. [40] Yes MPI/CUDA No No
Tian et al. [41] Yes MPI/CUDA No No
Gan et al. [42] Yes MPI/CUDA No No

Pacevič and Kačeniauskas [43] No OpenCL No No
Weinhart et al. [45] Yes MPI No No
Bystrov et al. [46] Yes MPI No No

Danovaro et al. [47] Yes MPI/OpenMP, CUDA,
OpenACC, and OpenCL Yes No

Araki and Martin [48] Yes MPI Yes No
Barreiros et al. [49] No CUDA Yes No

Zhong et al. [50] No CUDA Yes No
Bystrov et al. [51] Yes MPI Yes No

Current study Yes MPI/OpenCL Yes Yes

3. Cloud Infrastructure and Developed SaaS

The parallel MPI/OpenCL-based software was developed and deployed as SaaS on the
OpenStack cloud infrastructure to perform time-consuming computations of the discrete
element method.

3.1. Hosted Cloud Infrastructure

The university private cloud infrastructure based on the OpenStack Train 2019 version [3]
is hosted by Vilnius Gediminas Technical University. The deployed capabilities of the OpenStack

Appl. Sci. 2023, 13, 5115 6 of 17

cloud infrastructure include the compute service Nova, compute service Zun for containers,
networking service Neutron, container network plugin Kuryr, image service Glance, identity
service Keystone, object storage service Swift, and block storage service Cinder.

The cloud infrastructure is composed of OpenStack service nodes and compute nodes
connected to 1 Gbps Ethernet LAN. Hardware characteristics of faster compute nodes
hosting the containers are listed as follows: Intel®Core i7-6700 3.40 GHz CPU, 32 GB DDR4
2133 MHz RAM, 34.13 GB/s memory bandwidth, and 1 TB HDD. Hardware characteristics
of slower compute nodes are listed as follows: Intel®Core i7-4790 3.60 GHz CPU, 32 GB
DDR3 1866 MHz RAM, 29.87 GB/s memory bandwidth, and 1 TB HDD. Docker version
20.10.7 containers managed by Zun are used in the cloud infrastructure. Ubuntu 20.04.3 LTS
(Focal Fossa) is installed in the containers. Characteristics of containers are provided
in Table 2. The container CN-GPU is equipped with the NVIDIA® Tesla™ P100 GPU
(1792 FP64 CUDA Cores, 12 GB HBM2, 549 GB/s memory bandwidth).

Table 2. Characteristics of containers.

Containers Cores Architecture RAM, GB HDD, TB

CN-6700-1 1 i7-6700 8 0.5
CN-6700-2 2 i7-6700 16 0.5
CN-6700-3 3 i7-6700 24 0.5
CN-6700-4 4 i7-6700 32 0.5
CN-4790-4 4 i7-4790 32 0.5
CN-GPU 1792 (CUDA) Tesla™ P100 12 0.5

The architecture of a cloud system comprises multiple layers of deployed services. The
OpenStack API manages the IaaS and grants access to infrastructure services. The PaaS layer is
provided for developing and deploying software services called SaaS. The Open MPI platform
is used to create parallel software for distributed-memory architectures. The Zoltan library [52]
serves as a development platform for dynamic load balancing and partitioning particles into
subsets. OpenCL (Open Computing Language) [37] is deployed as the platform for parallel
programming on shared-memory architectures, such as accelerators, multicore CPUs, and GPUs
of various vendors. OpenCL greatly improves the speed and responsiveness of a wide spectrum
of applications, including scientific codes. The parallel DEM SaaS is deployed on top of the
provided platforms, such as GNU compilers, OpenCL for shared-memory programming, Open
MPI for message passing, and the Zoltan library for partitioning of particles into subsets.

3.2. Parallel DEM SaaS

The DEM model for granular flows of the non-cohesive frictional visco-elastic spherical
particles is implemented in the parallel SaaS. The particle system consists of a finite number
of deformable particles with the specified size distribution and material properties. An
arbitrary particle undergoes translational and rotational motion, involving the forces and
torques originated in the process of particles’ interaction. In this study, the force of gravity is
considered, but not the electrostatic force [53] or other external forces [54]. The normal contact
force comprises elastic and viscous components. The normal elastic force is calculated using
Hertz’s contact model in this research. The tangential contact force is divided into the parts of
static friction and dynamic friction. The dynamic friction force is directly proportional to the
normal component of the contact force. The static friction force is calculated by summing up
the elastic counterpart and the viscous damping counterpart. A contact search was performed
by using the infinite grid method [43]. Time integration with small time steps was performed
by the explicit velocity Verlet method [55]. The details of the governing DEM relations for
granular flows are provided in [25,30].

Hybrid Parallelization and Runtime Load Adaptation to Heterogeneous Resources

The simulations at the particle level of detail make the DEM computationally very
expensive. The specific characteristics of the solved problem and employed numerical method

Appl. Sci. 2023, 13, 5115 7 of 17

highly influence the choice of a parallel solution algorithm [30,38]. Hybrid parallelization of
the DEM SaaS was developed to exploit the potential of different types of memory and to
simplify mapping of partitions to heterogeneous multicore cloud resources. The dynamic
partitioning of particles was performed, implementing the required internode communications
by the MPI library for distributed-memory architectures. The RCB method from the Zoltan
library [52] was utilized to partition particles into subsets, as it is particularly effective for
particle simulations [6]. The main computational procedures of the DEM were implemented
by using OpenCL [37] for shared-memory multicore machines or GPUs. Thus, each OpenCL
device performs computations only on its subset of particles. However, it needs to share
data of ghost particles with OpenCL devices, working on other nodes. Therefore, internode
communication, required after partitioning, was implemented by using MPI.

The algorithm of the developed hybrid MPI/OpenCL parallelization is outlined in the
pseudocode (Algorithm 1). All computations are performed in the time loop. In line 5 of
the pseudocode, the load L is internally monitored for resource-aware partitioning. The
computational load Li of each parallel process i is measured by timers in computational
procedures of the DEM software. Heterogeneous resources, such us containers of highly
different computing performance, can cause substantial load imbalance of the parallel
software. The percentage load imbalance measure λ quantifies the uneven distribution of
computational load by using the following formula:

λ =

(
Lmax

Lavg
− 1

)
· 100%, (1)

where Lavg denotes the averaged load over all processes and Lmax represents the largest load.

Algorithm 1 The pseudocode of hybrid MPI/OpenCL parallelization

1: Input
2: W Weights of partitions, initial value 1.0
3: while time_loop do
4: Wold ←W
5: L←Monitor_load()
6: if Condition(L) then
7: W ←Weight_calculation(Wold,L)
8: Transfer_Particles_To_Host()
9: Zoltan_Partitioning(W)
10: Redistribute_Particles()
11: Registration_Ghost_Particles()
12: Exchange_Ghost_Information()
13: Transfer_Particles_To_Device()
14: end if
15: Transfer_Ghost_Particles_To_Host()
16: Exchange_Ghost_Particles()
17: Transfer_Ghost_Particles_To_Device()
18: Contact_search()
19: Contact_history()
20: Calculation_forces()
21: Boundary_conditions()
22: External_forces()
23: Integrator()
24: if write_result then
25: Transfer_Particles_To_Host()
26: Write_results()
27: end if
28: end while

Appl. Sci. 2023, 13, 5115 8 of 17

In lines 6–14 of the pseudocode, domain decomposition or partitioning of particles
into subsets is outlined. In line 6, the subroutine Condition() makes the decision if the
repartitioning procedure should be performed. Commonly, repartitioning is necessary if
load imbalance measure (1) exceeds the predefined value. In the performed research, a more
sophisticated approach is developed according to the specific needs of DEM computations.
The dynamic nature of granular flows leads to rapid particle movement through the
computational domain, large changes in contact topology, and notable variations in the
load configuration. When particles move from one partition to another, there is a need for
some communication between MPI processes. The particle data transfer is optional, but
information exchange is necessary in each time step. Despite its local character, information
exchange and internode particle data transfer consume a significant amount of time, which
decreases the performance of parallel computations. Therefore, this particle exchange
is performed during the repartitioning procedure. The skinning technique is employed
to avoid frequent repartitioning. In the considered time step, particles of one subset can
contact particles of another subset only if they are in the ghost layer. In order to make contact
with a particle from another subset, the internal particle needs time to cross the ghost layer.
This time can be estimated [55], which is often used to reduce the frequency of contact
search. Thus, repartitioning should be performed with frequency defined by granular
flow physics despite low load imbalance. Finally, the subroutine Condition() combines the
load imbalance condition with repartitioning frequency defined by application physics. In
most benchmarks of the presented research, repartitioning is regularly performed with the
frequency defined by application physics to smooth load oscillations and save execution
time extensively consumed by repartitioning. In the case of highly variable loads, the
percentage load imbalance threshold equal to 10% is also used to trigger repartitioning,
which helps accurately capture the load variations. Lower threshold values approach the
accuracy limit of the repartitioning method and can lead to insignificant improvements
sensitive to load oscillations. Higher threshold values are close to the load imbalance of the
lowest heterogeneity cases considered in the research.

In line 7, the heterogeneity of resources is evaluated by using different values of
weights that result in subsets of different sizes after repartitioning. The new weight Wnew

i
is computed according to the runtime measured computational load Li of the parallel
process i:

Wnew
i = Wold

i ·
(

2− Li
Lavg

)
, (2)

where Wold
i is the previous weight of process i. It is worth noting that these weights also

consider variations in application load and system load on virtualized hardware. Some-
times load oscillations cause high variations in weight values, which can lead to drastic
changes in topology and the size of subsets of particles after repartitioning. Thus, the previ-
ous weights help reduce significant oscillations that often occur in dynamic simulations
on co-located resources. Usually, several applications of the repartitioning procedure are
required for the computational load and weights to stabilize. In the case of over-subscribed
nodes, when several containers are co-located on the same node and compete for the
same resources, the algorithm evaluates the runtime measured computational load and
reduces the values of relevant weights. Finally, RCB-based repartitioning adapts sub-
sets of particles to heterogeneous resources according to the runtime measured load of
application-specific computations.

In line 8, data of particles are transferred from the OpenCL device memory to the
host memory for following repartitioning. In line 9, the RCB method from the Zoltan
library is used to perform parallel repartitioning for distributed-memory architectures.
In line 10, some particles migrate from the old partition to a new one, which requires
internode communication handled by MPI. The number of redistributed particles depends
on changes in load configuration. However, incremental partitions produced by RCB limit
particle transfer between nodes. In line 11, the subroutine Registration_Ghost_Particles()
defines ghost layers and registers ghost particles. In line 12, MPI processes exchange

Appl. Sci. 2023, 13, 5115 9 of 17

information of ghost particles, which is necessary for internode communications performed
after repartitioning. At the end of the repartitioning procedure, data of internal particles
are transferred from the host memory to the OpenCL device memory for the main shared-
memory computations.

In lines 15–17, the main communications are made before the main DEM computations.
Ghost particle data are copied from the OpenCL device memory to the host memory and
exchanged between neighboring partitions by MPI. The internode exchange of positions
and velocities of particles is a popular approach in parallel DEM software [35] because it
allows nodes to independently perform a contact search and computation of forces. It is
worth noting that data of ghost particles, transferred by MPI from other nodes at each time
step, also should be copied to the OpenCL device memory, which makes internode data
exchange very expensive.

The main computational procedures of the DEM are implemented by using OpenCL
kernels to run the same software on all shared-memory architectures, including CPUs and
GPUs of various vendors. Main kernels are performed on the thread-per-particle basis,
which takes advantage of the massive parallel computation capabilities of modern GPUs
and can be considered to be the most suitable parallelism in the case of DEM computations.
In lines 18–23 of the pseudocode, the main computational procedures of the DEM performed
by the OpenCL device are outlined. The contact search, the contact history, the computation
of contact forces and moments, the boundary conditions, the external gravitational force,
and the time integrator are implemented as separate OpenCL kernels to avoid overfill of
the private memory. In lines 24–27, at the end of the time step, the particle data can be
copied from the OpenCL device memory to the host memory and stored on the hard disk
drive in HDF5 format. It is recommended to transfer the data to the host memory as seldom
as possible because it is a time-consuming process.

4. Results and Discussion

To measure the performance of the parallel DEM SaaS, a gravity-packing problem
was solved on heterogeneous co-located resources of the OpenStack cloud. The gravity-
packing problem was considered because it is commonly employed as a performance
benchmark [33,46]. The solution domain was assumed to be a cubic container with 1.0 m
long edges. Half of the domain was filled with 500,000 monosized particles, using a cubic
structure. Then, 10,000 time steps equal to 1.0 × 10−8 s were performed, which resulted in
the physical time interval of 0.0001 s. Physics of the considered problem with the skinning
technique required performing repartitioning at each 1000 time steps. The size of the input
data file with DEM parameters was negligibly small; therefore, the containers did not
transfer data from the object storage in the performed benchmarks.

Six cases of heterogeneous or co-located resources were considered in the performed
research. In Case 1, four containers, CN-6700-1, CN-6700-2, CN-6700-3, and CN-6700-4,
with different numbers of cores were employed to make the benchmark. CN-6700-4 could
perform four times more floating-point operations per second than CN-6700-1 in the case
of CPU-bound applications. Thus, the computational performance of the fastest resource
was significantly higher than that of the lowest resource. In Case 2, five faster CN-6700-
4 containers were supplemented by two slower containers CN-4790-4. Thus, a higher
number of faster resources worked together with a lower number of slower resources,
but the difference in performance was not high. In Case 3, the powerful container CN-
GPU with GPU was used with five CN-6700-4 containers. Thus, one resource, of which
the computational performance was significantly higher than that of the others, worked
together with a larger number of slower resources.

In the next three cases, each pair of containers was co-located on the same physical
node. Parallel computations were carried out on several nodes, but only one of the con-
tainers co-located on each node was used by the MPI process. Synthetic stress tests were
executed on another container co-located on the same node to investigate the performance
decrease in parallel memory bandwidth bound computations on co-located containers. In

Appl. Sci. 2023, 13, 5115 10 of 17

Case 4, five CN-6700-2 containers solved the considered problem on five nodes of the cloud
infrastructure. Five other CN-6700-2 containers were co-located on the same nodes to run
stress tests and to verify isolation of containers. The CPU stress test [56]

stress-ng –cpu 2 –cpu-method fft

based on fast Fourier transform was performed on co-located containers. It was executed
on a different number of containers to introduce different heterogeneities and to produce
different load imbalances. In Case 5, the same configuration of containers was considered,
but the synthetic memory stress test [56] was carried out on co-located containers. The
memory stress test

stress-ng –vm 2 –vm-bytes 2G –vm-keep –m 2

started two workers, continuously calling mmap/munmap and writing 2 Gbytes to the
allocated memory. In Case 6, the same configuration of containers was also considered,
but the memory stress test was periodically executed on one co-located container. The
periodically variable load was generated, interrupting the fixed periods of the memory
stress test by the sleep command lasting 50 s. The periodically executed memory stress
test produces the periodically peaking load on co-located containers, which corresponds
to a real-world scenario. The ratio of the memory stress time to the whole simulation
time, including sleep periods, expresses load frequency and indirectly represents the
heterogeneity of co-located resources.

In the performed research, the benchmark execution time was considered as the main
metric to evaluate the performance of the runtime adaptive repartitioning. A comparison
of the execution time obtained by using the runtime adapted repartitioning with variable
weights with that attained by using unweighted repartitioning revealed the gain of runtime
adapted repartitioning. The percentage load imbalance measure (1) was used to deter-
mine load imbalance and indicate the heterogeneity of resources. The time evolution of
the percentage load imbalance measure also showed how efficiently the runtime adapted
repartitioning worked. Computational load, particle count, weights, wait time, and commu-
nication time can be examined to understand various issues of the repartitioning procedure.

Figure 1 shows the time evolution of the load imbalance (Figure 1a) and execution
time (Figure 1b) in the three first cases of heterogeneous cloud resources (Case 1, Case 2,
and Case 3). The dashed curves represent the results of runtime adapted repartitioning
with variable weights, while the solid lines represent that of unweighted repartitioning,
which results in partitions of nearly equal size. In Case 1, load imbalance was very high
because the theoretical performance of the fastest container CN-6700-4 was four times
higher than that of the slowest container CN-6700-1. Runtime adapted repartitioning
decreased the execution time up to 48.7% of the execution time obtained without using
weights. In Case 2, the load imbalance of computations without weighting varied from
10.7% to 17.6%. The execution time was reduced from 4.9% to 6.7% of the execution time
obtained without using weights. Thus, the low heterogeneity of resources indicated by low
load imbalance percentage limited the gain of runtime adapted repartitioning. In Case 3,
including the container CN-GPU, the load imbalance of computations without weighting
was only slightly higher than that observed in Case 2. It varied from 18.0% to 20.3%, which
was considerably lower than the load imbalance measured in Case 1. The decrease in the
execution time up to 36.1% of the execution time obtained without weighting was observed,
which was higher than the decrease obtained in Case 2 but lower than that attained in
Case 1. Generally, the employed GPU performs DEM computations significantly faster than
the CPU [43]; therefore, a higher load imbalance percentage as well as a gain in execution
time can be expected. Thus, a detailed investigation of other measures and communication
issues is required.

Appl. Sci. 2023, 13, 5115 11 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 18

In the performed research, the benchmark execution time was considered as the main
metric to evaluate the performance of the runtime adaptive repartitioning. A comparison
of the execution time obtained by using the runtime adapted repartitioning with variable
weights with that attained by using unweighted repartitioning revealed the gain of
runtime adapted repartitioning. The percentage load imbalance measure (1) was used to
determine load imbalance and indicate the heterogeneity of resources. The time evolution
of the percentage load imbalance measure also showed how efficiently the runtime
adapted repartitioning worked. Computational load, particle count, weights, wait time,
and communication time can be examined to understand various issues of the
repartitioning procedure.

Figure 1 shows the time evolution of the load imbalance (Figure 1a) and execution
time (Figure 1b) in the three first cases of heterogeneous cloud resources (Case 1, Case 2,
and Case 3). The dashed curves represent the results of runtime adapted repartitioning
with variable weights, while the solid lines represent that of unweighted repartitioning,
which results in partitions of nearly equal size. In Case 1, load imbalance was very high
because the theoretical performance of the fastest container CN-6700-4 was four times
higher than that of the slowest container CN-6700-1. Runtime adapted repartitioning
decreased the execution time up to 48.7% of the execution time obtained without using
weights. In Case 2, the load imbalance of computations without weighting varied from
10.7% to 17.6%. The execution time was reduced from 4.9% to 6.7% of the execution time
obtained without using weights. Thus, the low heterogeneity of resources indicated by
low load imbalance percentage limited the gain of runtime adapted repartitioning. In Case
3, including the container CN-GPU, the load imbalance of computations without
weighting was only slightly higher than that observed in Case 2. It varied from 18.0% to
20.3%, which was considerably lower than the load imbalance measured in Case 1. The
decrease in the execution time up to 36.1% of the execution time obtained without
weighting was observed, which was higher than the decrease obtained in Case 2 but lower
than that attained in Case 1. Generally, the employed GPU performs DEM computations
significantly faster than the CPU [43]; therefore, a higher load imbalance percentage as
well as a gain in execution time can be expected. Thus, a detailed investigation of other
measures and communication issues is required.

(a) (b)

Figure 1. Time evolution of the load imbalance (a) and execution time (b).

Figures 2 and 3 present the time evolution of additional measures, such as runtime
measured computational load, weights, and particle count. In Figure 2a, the time
evolution of the runtime measured computational load perfectly illustrates runtime
adapted repartitioning in comparison with the unweighted repartitioning. Nearly straight
solid lines, representing unweighted repartitioning, show four different computational
loads. It is worth noting that the load of the slowest container CN-6700-1 was only 3.3

Figure 1. Time evolution of the load imbalance (a) and execution time (b).

Figures 2 and 3 present the time evolution of additional measures, such as runtime
measured computational load, weights, and particle count. In Figure 2a, the time evolution
of the runtime measured computational load perfectly illustrates runtime adapted repar-
titioning in comparison with the unweighted repartitioning. Nearly straight solid lines,
representing unweighted repartitioning, show four different computational loads. It is
worth noting that the load of the slowest container CN-6700-1 was only 3.3 times larger than
that of the fastest container CN-6700-4, which was specific to memory bandwidth bound
applications. The sudden decrease in one curve indicates severe changes in subsets of parti-
cles after repartitioning, which is also confirmed by the variation in weights in Figure 2b.
Three applications of the repartitioning procedure were required for the computational
load of four containers to become nearly equal. In Figure 3, the different heterogeneity cases
can be observed. Figure 3a shows the time evolution of particle count, which is directly
related to the computational load, in Case 2. The lowest load imbalance (Figure 1a) led
to the close values of computational load and execution time (Figure 1b). The observed
oscillations of particle count uncovered the undesirable influence of chaotic variations in
the system load and performance on the results of runtime adapted repartitioning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18

times larger than that of the fastest container CN-6700-4, which was specific to memory
bandwidth bound applications. The sudden decrease in one curve indicates severe
changes in subsets of particles after repartitioning, which is also confirmed by the
variation in weights in Figure 2b. Three applications of the repartitioning procedure were
required for the computational load of four containers to become nearly equal. In Figure
3, the different heterogeneity cases can be observed. Figure 3a shows the time evolution
of particle count, which is directly related to the computational load, in Case 2. The lowest
load imbalance (Figure 1a) led to the close values of computational load and execution
time (Figure 1b). The observed oscillations of particle count uncovered the undesirable
influence of chaotic variations in the system load and performance on the results of
runtime adapted repartitioning.

(a) (b)

Figure 2. Time evolution of the computational load (a) and weights (b) in Case 1.

(a) (b)

Figure 3. Time evolution of particle count in Case 2 (a) and computational load in Case 3 (b).

Figure 3b shows the time evolution of the runtime measured computational load in
Case 3. Initially, the load of any CN-6700-4 container is approximately 4 times larger than
that of the powerful container CN-GPU. The difference in computational loads in Case 1
is lower than that in Case 3 despite the higher load imbalance of Case 1. This can be
explained by the fact that the percentage load imbalance Formula (1) compares the
maximal load with the averaged load. In Case 3, the load of any slower container serves
as the maximal load, while the averaged load is highly influenced by five slower CN-6700-
4 containers and reduced by only one powerful container CN-GPU. Anyway, all curves
of the computational load approached the average, which was closer to the initial load of

Figure 2. Time evolution of the computational load (a) and weights (b) in Case 1.

Figure 3b shows the time evolution of the runtime measured computational load in
Case 3. Initially, the load of any CN-6700-4 container is approximately 4 times larger than
that of the powerful container CN-GPU. The difference in computational loads in Case 1 is
lower than that in Case 3 despite the higher load imbalance of Case 1. This can be explained
by the fact that the percentage load imbalance Formula (1) compares the maximal load
with the averaged load. In Case 3, the load of any slower container serves as the maximal
load, while the averaged load is highly influenced by five slower CN-6700-4 containers and

Appl. Sci. 2023, 13, 5115 12 of 17

reduced by only one powerful container CN-GPU. Anyway, all curves of the computational
load approached the average, which was closer to the initial load of the container CN-GPU
than the initial loads of the CN-6700-4 containers. It is worth noting that Case 3 required
more applications of the repartitioning procedure than Case 1 to make the computational
load of all containers nearly equal.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 18

times larger than that of the fastest container CN-6700-4, which was specific to memory
bandwidth bound applications. The sudden decrease in one curve indicates severe
changes in subsets of particles after repartitioning, which is also confirmed by the
variation in weights in Figure 2b. Three applications of the repartitioning procedure were
required for the computational load of four containers to become nearly equal. In Figure
3, the different heterogeneity cases can be observed. Figure 3a shows the time evolution
of particle count, which is directly related to the computational load, in Case 2. The lowest
load imbalance (Figure 1a) led to the close values of computational load and execution
time (Figure 1b). The observed oscillations of particle count uncovered the undesirable
influence of chaotic variations in the system load and performance on the results of
runtime adapted repartitioning.

(a) (b)

Figure 2. Time evolution of the computational load (a) and weights (b) in Case 1.

(a) (b)

Figure 3. Time evolution of particle count in Case 2 (a) and computational load in Case 3 (b).

Figure 3b shows the time evolution of the runtime measured computational load in
Case 3. Initially, the load of any CN-6700-4 container is approximately 4 times larger than
that of the powerful container CN-GPU. The difference in computational loads in Case 1
is lower than that in Case 3 despite the higher load imbalance of Case 1. This can be
explained by the fact that the percentage load imbalance Formula (1) compares the
maximal load with the averaged load. In Case 3, the load of any slower container serves
as the maximal load, while the averaged load is highly influenced by five slower CN-6700-
4 containers and reduced by only one powerful container CN-GPU. Anyway, all curves
of the computational load approached the average, which was closer to the initial load of

Figure 3. Time evolution of particle count in Case 2 (a) and computational load in Case 3 (b).

Figure 4 shows time evolution of wait time and communication time in Case 3. At the
beginning of the simulation interval, the fastest container CN-GPU completed its computa-
tions and waited for the data. The runtime adapted weights increased the computational
load of the container, which gradually decreased its wait time (Figure 4a). However, the
increased number of processed particles caused the rise in communication time (Figure 4b).
Communication times of slower containers differed from each other, which revealed parti-
tioning challenges. In the time interval [0.00005, 0.00010] s, the container CN-GPU had so
much data of ghost particles to send that other containers must wait for data longer than
CN-GPU. In the time interval [0.00006, 0.00009] s, the most intensive communication of
the container CN-GPU increased the wait time of other containers even more (Figure 4a),
which caused the rise in the execution time observable in Figure 1b. Performing reparti-
tioning, the RCB method does not directly optimize internode communication; therefore,
communication issues can influence the load balance and overall performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 18

the container CN-GPU than the initial loads of the CN-6700-4 containers. It is worth noting
that Case 3 required more applications of the repartitioning procedure than Case 1 to
make the computational load of all containers nearly equal.

Figure 4 shows time evolution of wait time and communication time in Case 3. At
the beginning of the simulation interval, the fastest container CN-GPU completed its
computations and waited for the data. The runtime adapted weights increased the
computational load of the container, which gradually decreased its wait time (Figure 4a).
However, the increased number of processed particles caused the rise in communication
time (Figure 4b). Communication times of slower containers differed from each other,
which revealed partitioning challenges. In the time interval [0.00005, 0.00010] s, the
container CN-GPU had so much data of ghost particles to send that other containers must
wait for data longer than CN-GPU. In the time interval [0.00006, 0.00009] s, the most
intensive communication of the container CN-GPU increased the wait time of other
containers even more (Figure 4a), which caused the rise in the execution time observable
in Figure 1b. Performing repartitioning, the RCB method does not directly optimize
internode communication; therefore, communication issues can influence the load balance
and overall performance.

(a) (b)

Figure 4. Time evolution of wait time (a) and communication time (b) in Case 3.

Figure 5a,b show total execution times of DEM SaaS, when the CPU stress test and
memory stress test were performed on co-located containers in Case 4 and Case 5,
respectively. Stress tests were executed on one, two, three, four, or five co-located
containers, which were represented by five different cases on the horizontal axes of charts
(the abbreviations “Stress” with relevant numbering). In the legend of columns, the
abbreviations “NOW”, “RW”, and “RW5” represent unweighted repartitioning, runtime
adapted repartitioning, and runtime adapted repartitioning when weights were updated
only if the load imbalance was higher than 5%, respectively. The condition of 5% was used
to damp oscillations of repartitioning results caused by small variations in the system load
and performance. No significant difference in the results of unweighted and runtime
adapted repartitioning can be observed in Figure 5a. CPU cores of containers were well
isolated; therefore, CPU stress tests did not influence the performance of benchmarks
performed on co-located containers. In Figure 5b, the total execution time of benchmarks
with runtime adapted repartitioning is substantially shorter than that of benchmarks with
unweighted repartitioning. The memory bandwidth of co-located containers was not
isolated; therefore, memory stress tests reduced the performance of the co-located
containers, causing heterogeneity of resources. It can be observed that the largest gain in
runtime adapted repartitioning was achieved in the case of one stressed container. No
substantial gain can be observed in the case of five stressed containers, because the
performance of all containers was nearly homogeneous in the case of the same memory

Figure 4. Time evolution of wait time (a) and communication time (b) in Case 3.

Figure 5a,b show total execution times of DEM SaaS, when the CPU stress test and
memory stress test were performed on co-located containers in Case 4 and Case 5, respec-

Appl. Sci. 2023, 13, 5115 13 of 17

tively. Stress tests were executed on one, two, three, four, or five co-located containers,
which were represented by five different cases on the horizontal axes of charts (the abbre-
viations “Stress” with relevant numbering). In the legend of columns, the abbreviations
“NOW”, “RW”, and “RW5” represent unweighted repartitioning, runtime adapted repar-
titioning, and runtime adapted repartitioning when weights were updated only if the
load imbalance was higher than 5%, respectively. The condition of 5% was used to damp
oscillations of repartitioning results caused by small variations in the system load and
performance. No significant difference in the results of unweighted and runtime adapted
repartitioning can be observed in Figure 5a. CPU cores of containers were well isolated;
therefore, CPU stress tests did not influence the performance of benchmarks performed on
co-located containers. In Figure 5b, the total execution time of benchmarks with runtime
adapted repartitioning is substantially shorter than that of benchmarks with unweighted
repartitioning. The memory bandwidth of co-located containers was not isolated; there-
fore, memory stress tests reduced the performance of the co-located containers, causing
heterogeneity of resources. It can be observed that the largest gain in runtime adapted
repartitioning was achieved in the case of one stressed container. No substantial gain can be
observed in the case of five stressed containers, because the performance of all containers
was nearly homogeneous in the case of the same memory stress test executed on all five
co-located containers. It is worth noting that the condition of 5% reduced the total execution
time in the most cases, but the obtained improvement did not exceed 2.5% of the total
execution time measured without the condition of 5%.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18

stress test executed on all five co-located containers. It is worth noting that the condition
of 5% reduced the total execution time in the most cases, but the obtained improvement
did not exceed 2.5% of the total execution time measured without the condition of 5%.

(a) (b)

Figure 5. Total execution times of DEM SaaS on co-located resources: (a) benchmark co-located with
the CPU stress test in Case 4; (b) benchmark co-located with the memory stress test in Case 5.

Figure 6 shows the time evolution of load imbalance when the memory stress test
was performed on one (the solid curves) and four (the dashed curves) co-located
containers in Case 5. In the legend, the abbreviations “NOW”, “RW”, and “RW5” again
represent unweighted repartitioning, runtime adapted repartitioning, and runtime
adapted repartitioning when weights were updated only if the load imbalance was higher
than 5%, respectively. The load imbalance caused by one stressed co-located container
was almost 4 times higher than that caused by four stressed co-located containers.
Runtime adapted repartitioning required only one repartition to decrease the load
imbalance up to 5%. In both stress cases, the additional condition of 5% perfectly reduced
oscillations of the load imbalance and even slightly decreased the total execution time
(Figure 5b).

Figure 6. Time evolution of load imbalance when memory stress test was performed on one (the
solid curves) and four (the dashed curves) co-located containers in Case 5.

Figure 7 presents the dependency of the total execution time on the load frequency
ratio in Case 6. The markers show the load frequency ratios of performed experiments
that are connected by curves to improve visuality. The black curve represents the
unweighted repartitioning and serves as the reference. It shows how the growing
heterogeneity of co-located resources increases the total execution time of benchmarks

Figure 5. Total execution times of DEM SaaS on co-located resources: (a) benchmark co-located with
the CPU stress test in Case 4; (b) benchmark co-located with the memory stress test in Case 5.

Figure 6 shows the time evolution of load imbalance when the memory stress test was
performed on one (the solid curves) and four (the dashed curves) co-located containers
in Case 5. In the legend, the abbreviations “NOW”, “RW”, and “RW5” again represent
unweighted repartitioning, runtime adapted repartitioning, and runtime adapted repar-
titioning when weights were updated only if the load imbalance was higher than 5%,
respectively. The load imbalance caused by one stressed co-located container was almost
4 times higher than that caused by four stressed co-located containers. Runtime adapted
repartitioning required only one repartition to decrease the load imbalance up to 5%. In
both stress cases, the additional condition of 5% perfectly reduced oscillations of the load
imbalance and even slightly decreased the total execution time (Figure 5b).

Appl. Sci. 2023, 13, 5115 14 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18

stress test executed on all five co-located containers. It is worth noting that the condition
of 5% reduced the total execution time in the most cases, but the obtained improvement
did not exceed 2.5% of the total execution time measured without the condition of 5%.

(a) (b)

Figure 5. Total execution times of DEM SaaS on co-located resources: (a) benchmark co-located with
the CPU stress test in Case 4; (b) benchmark co-located with the memory stress test in Case 5.

Figure 6 shows the time evolution of load imbalance when the memory stress test
was performed on one (the solid curves) and four (the dashed curves) co-located
containers in Case 5. In the legend, the abbreviations “NOW”, “RW”, and “RW5” again
represent unweighted repartitioning, runtime adapted repartitioning, and runtime
adapted repartitioning when weights were updated only if the load imbalance was higher
than 5%, respectively. The load imbalance caused by one stressed co-located container
was almost 4 times higher than that caused by four stressed co-located containers.
Runtime adapted repartitioning required only one repartition to decrease the load
imbalance up to 5%. In both stress cases, the additional condition of 5% perfectly reduced
oscillations of the load imbalance and even slightly decreased the total execution time
(Figure 5b).

Figure 6. Time evolution of load imbalance when memory stress test was performed on one (the
solid curves) and four (the dashed curves) co-located containers in Case 5.

Figure 7 presents the dependency of the total execution time on the load frequency
ratio in Case 6. The markers show the load frequency ratios of performed experiments
that are connected by curves to improve visuality. The black curve represents the
unweighted repartitioning and serves as the reference. It shows how the growing
heterogeneity of co-located resources increases the total execution time of benchmarks

Figure 6. Time evolution of load imbalance when memory stress test was performed on one (the
solid curves) and four (the dashed curves) co-located containers in Case 5.

Figure 7 presents the dependency of the total execution time on the load frequency
ratio in Case 6. The markers show the load frequency ratios of performed experiments that
are connected by curves to improve visuality. The black curve represents the unweighted
repartitioning and serves as the reference. It shows how the growing heterogeneity of co-
located resources increases the total execution time of benchmarks when runtime computed
weights are not applied. The red curve represents the runtime adapted repartitioning. A
comparison of these curves reveals how much the total execution time can be reduced,
applying the runtime adapted repartitioning. In the case of the load frequency ratio equal
to zero, the memory stress test was not executed, which led to homogeneous containers.
When the load frequency ratio varied from 0 to 30% of the whole simulation time, the
memory stress test caused low load imbalance. Therefore, the gain in the runtime adapted
repartitioning was smaller than the computational costs introduced by weighting and less
regular partitions. When the load frequency ratio was larger than 30%, the load imbalance
was high enough, and the substantial gain in the runtime adapted repartitioning could be
observed. In the case of the load frequency ratio equal to 100%, the sleep command was not
performed, and the total execution time of Case 5 (Stress 1) was obtained. Thus, the runtime
adapted repartitioning handled the periodically variable performance of non-isolated
resources and decreased the total execution time of benchmarks on co-located containers.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18

when runtime computed weights are not applied. The red curve represents the runtime
adapted repartitioning. A comparison of these curves reveals how much the total
execution time can be reduced, applying the runtime adapted repartitioning. In the case
of the load frequency ratio equal to zero, the memory stress test was not executed, which
led to homogeneous containers. When the load frequency ratio varied from 0 to 30% of
the whole simulation time, the memory stress test caused low load imbalance. Therefore,
the gain in the runtime adapted repartitioning was smaller than the computational costs
introduced by weighting and less regular partitions. When the load frequency ratio was
larger than 30%, the load imbalance was high enough, and the substantial gain in the
runtime adapted repartitioning could be observed. In the case of the load frequency ratio
equal to 100%, the sleep command was not performed, and the total execution time of
Case 5 (Stress 1) was obtained. Thus, the runtime adapted repartitioning handled the
periodically variable performance of non-isolated resources and decreased the total
execution time of benchmarks on co-located containers.

Figure 7. The dependency of the total execution time on the load frequency ratio in Case 6.

Because of the heterogeneity of non-isolated resources, the memory stress tests
executed on one container substantially reduced the performance of parallel memory
bandwidth bound DEM computations on the other container co-located on the same
physical machine. To the best of our knowledge, there is no published research on the
adaptation of parallel memory bandwidth bound applications to co-located cloud
resources and relevant performance studies in the literature. In the present research, the
developed runtime adapted repartitioning handled the constant and periodically variable
performance of non-isolated resources and decreased the total execution time of
benchmarks on co-located containers.

Chaotic variation in the system load and performance can be treated as the main
limitation of runtime adapted repartitioning in the case of low load imbalance. The
application of updated weights only if load imbalance is higher than 5% damps some
oscillations of repartitioning results, but it is still difficult to substantially reduce the
execution time. The frequently variable spiky load on co-located containers can also lead
to a similar effect, when the unresolved trade-off between the spike capturing accuracy
and oscillation damping limits the gain in runtime adapted repartitioning. Highly
heterogeneous resources result in partitions of highly different sizes, which can
significantly increase communication time. The RCB method does not directly optimize
internode communication; therefore, performance analysis of a graph partitioning
method might be beneficial to overcome communication issues in the future research.

5. Conclusions
The paper presents the runtime adaptation of DEM SaaS based on the hybrid

MPI/OpenCL parallelization to heterogeneous co-located resources of the OpenStack
cloud. In three considered cases of heterogeneous cloud resources, including the container

Figure 7. The dependency of the total execution time on the load frequency ratio in Case 6.

Because of the heterogeneity of non-isolated resources, the memory stress tests exe-
cuted on one container substantially reduced the performance of parallel memory band-
width bound DEM computations on the other container co-located on the same physical
machine. To the best of our knowledge, there is no published research on the adapta-
tion of parallel memory bandwidth bound applications to co-located cloud resources and
relevant performance studies in the literature. In the present research, the developed

Appl. Sci. 2023, 13, 5115 15 of 17

runtime adapted repartitioning handled the constant and periodically variable perfor-
mance of non-isolated resources and decreased the total execution time of benchmarks on
co-located containers.

Chaotic variation in the system load and performance can be treated as the main limi-
tation of runtime adapted repartitioning in the case of low load imbalance. The application
of updated weights only if load imbalance is higher than 5% damps some oscillations of
repartitioning results, but it is still difficult to substantially reduce the execution time. The
frequently variable spiky load on co-located containers can also lead to a similar effect,
when the unresolved trade-off between the spike capturing accuracy and oscillation damp-
ing limits the gain in runtime adapted repartitioning. Highly heterogeneous resources
result in partitions of highly different sizes, which can significantly increase communication
time. The RCB method does not directly optimize internode communication; therefore,
performance analysis of a graph partitioning method might be beneficial to overcome
communication issues in the future research.

5. Conclusions

The paper presents the runtime adaptation of DEM SaaS based on the hybrid MPI/OpenCL
parallelization to heterogeneous co-located resources of the OpenStack cloud. In three
considered cases of heterogeneous cloud resources, including the container equipped by
GPU, the load imbalance varied from 11% to 81%. The highest improvement in perfor-
mance equal to 48.7% of the execution time obtained without weights was achieved by
using the runtime adapted repartitioning in the case of the highest load imbalance, which
indicated the highest heterogeneity of resources. The lowest load imbalance led to the close
values of computational load, when small variations in the system load and performance
caused oscillations in partitions of particles. Nevertheless, the runtime adapted reparti-
tioning decreased the execution time up to 6.7% of the execution time obtained without
weighting. Memory stress tests caused heterogeneity of non-isolated containers, which
reduced the performance of memory bandwidth bound DEM SaaS on the co-located cloud
resources. The decrease in the total execution time achieved by applying runtime adapted
repartitioning varied from 6.7% to 20.1% of the total execution time obtained without using
weights, which depended on load imbalance. The runtime adapted repartitioning handled
the periodically variable performance of non-isolated resources and decreased the total
execution time of DEM SaaS on co-located containers when the stress load frequency ratio
was larger than 30% of the whole simulation time. In future research, the application of a
graph partitioning method might help in overcoming communication issues and improving
performance of the runtime adapted repartitioning on highly heterogeneous resources.

Author Contributions: Conceptualization, methodology, formal analysis, and investigation, O.B.,
R.P. and A.K.; software, O.B. and R.P.; writing—original draft preparation, A.K.; writing—review and
editing, O.B. and R.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, A.A.; Zakarya, M. Energy, Performance and Cost Efficient Cloud Datacentres: A Survey. Comput. Sci. Rev. 2021, 40, 100390.

[CrossRef]
2. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; Technical Report SP 800-145; National Institute of Standards and

Technology: Gaithersburg, MD, USA, 2011. [CrossRef]
3. OpenStack. Available online: https://www.openstack.org/ (accessed on 1 December 2022).
4. Docker. Available online: https://www.docker.com/ (accessed on 1 December 2022).
5. Shirvani, M.H.; Talouki, R.N. A Novel Hybrid Heuristic-Based List Scheduling Algorithm in Heterogeneous Cloud Computing

Environment for Makespan Optimization. Parallel Comput. 2021, 108, 102828. [CrossRef]

https://doi.org/10.1016/j.cosrev.2021.100390
https://doi.org/10.6028/nist.sp.800-145
https://www.openstack.org/
https://www.docker.com/
https://doi.org/10.1016/j.parco.2021.102828

Appl. Sci. 2023, 13, 5115 16 of 17

6. Devine, K.D.; Boman, E.G.; Karypis, G. Partitioning and Load Balancing for Emerging Parallel Applications and Architectures. In
Parallel Processing for Scientific Computing; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006; Chapter
6, pp. 99–126. [CrossRef]

7. Mann, Z.Á. Allocation of Virtual Machines in Cloud Data Centers—A Survey of Problem Models and Optimization Algorithms.
ACM Comput. Surv. 2015, 48, 1–34. [CrossRef]

8. Resource Isolation Based on the L3 Cache and MBA. Available online: https://www.intel.com/content/www/us/en/developer/
articles/technical/use-intel-resource-director-technology-to-allocate-memory-bandwidth.html. (accessed on 1 December 2022).

9. Use Intel®Resource Director Technology to Allocate Memory Bandwidth. Available online: https://www.alibabacloud.com/
help/en/container-service-for-kubernetes/latest/use-the-l3-cache-and-mba-to-improve-the-resource-isolation-of-tasks-with-
different-priorities. (accessed on 1 December 2022).

10. Yun, H.; Yao, G.; Pellizzoni, R.; Caccamo, M.; Sha, L. Memory Bandwidth Management for Efficient Performance Isolation in
Multi-Core Platforms. IEEE Trans. Comput. 2016, 65, 562–576. [CrossRef]

11. Sakellari, G.; Loukas, G. A Survey of Mathematical Models, Simulation Approaches and Testbeds Used for Research in Cloud
Computing. Simul. Modell. Pract. Theory 2013, 39, 92–103. [CrossRef]

12. Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Géotechnique 1979, 29, 47–65. [CrossRef]
13. Kačeniauskas, A.; Pacevič, R.; Starikovičius, V.; Maknickas, A.; Staškūnienė, M.; Davidavičius, G. Development of Cloud Services

for Patient-Specific Simulations of Blood Flows through Aortic Valves. Adv. Eng. Softw. 2017, 103, 57–64. [CrossRef]
14. Chae, M.; Lee, H.; Lee, K. A Performance Comparison of Linux Containers and Virtual Machines Using Docker and KVM. Clust.

Comput. 2019, 22, 1765–1775. [CrossRef]
15. Potdar, A.M.; Narayan, D.G.; Kengond, S.; Mulla, M.M. Performance Evaluation of Docker Container and Virtual Machine.

Procedia Comput. Sci. 2020, 171, 1419–1428. [CrossRef]
16. Papazachos, Z.C.; Karatza, H.D. Performance Evaluation of Bag of Gangs Scheduling in a Heterogeneous Distributed System. J.

Syst. Softw. 2010, 83, 1346–1354. [CrossRef]
17. Moschakis, I.A.; Karatza, H.D. Evaluation of Gang Scheduling Performance and Cost in a Cloud Computing System. J.

Supercomput. 2010, 59, 975–992. [CrossRef]
18. Hao, Y.; Liu, G.; Hou, R.; Zhu, Y.; Lu, J. Performance Analysis of Gang Scheduling in a Grid. J. Netw. Syst. Manag. 2014, 23,

650–672. [CrossRef]
19. Mohammadi, M.; Bazhirov, T. Comparative Benchmarking of Cloud Computing Vendors with High Performance Linpack.

In Proceedings of the 2nd International Conference on High Performance Compilation, Computing and Communications,
Hongkong, China, 15–17 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–5. [CrossRef]

20. Shahid, M.A.; Alam, M.M.; Su’ud, M.M. Performance Evaluation of Load-Balancing Algorithms with Different Service Broker
Policies for Cloud Computing. Appl. Sci. 2023, 13, 1586. [CrossRef]

21. Heidari, A.; Navimipour, N.J.; Jamali, M.A.J.; Akbarpour, S. A green, secure, and deep intelligent method for dynamic IoT-edge-
cloud offloading scenarios. Sustain. Comput.: Inform. Syst. 2023, 38, 100859. [CrossRef]

22. Bojato, J.; Donado, D.; Jimeno, M.; Moreno, G.; Villanueva-Polanco, R. Password Guessability as a Service (PGaaS). Appl. Sci.
2022, 12, 1562. [CrossRef]

23. Amiri, Z.; Heidari, A.; Navimipour, N.J.; Mehmet, U. Resilient and dependability management in distributed environments: A
systematic and comprehensive literature review. Cluster. Comput. 2023, 26, 1565–1600. [CrossRef]

24. Washington, D.W.; Meegoda, J.N. Micro-Mechanical Simulation of Geotechnical Problems Using Massively Parallel Computers.
Int. J. Numer. Anal. Methods Geomech. 2003, 27, 1227–1234. [CrossRef]

25. Kačeniauskas, A.; Kačianauskas, R.; Maknickas, A.; Markauskas, D. Computation and Visualization of Discrete Particle Systems
on gLite-Based Grid. Adv. Eng. Softw. 2011, 42, 237–246. [CrossRef]

26. Wang, S.; Luo, K.; Yang, S.; Hu, C.; Fan, J. Parallel LES-DEM Simulation of Dense Flows in Fluidized Beds. Appl. Therm. Eng.
2017, 111, 1523–1535. [CrossRef]

27. Owen, D.; Feng, Y. Parallelised Finite/Discrete Element Simulation of Multi-Fracturing Solids and Discrete Systems. Eng. Comput.
2001, 18, 557–576. [CrossRef]

28. Walther, J.H.; Sbalzarini, I.F. Large-Scale Parallel Discrete Element Simulations of Granular Flow. Eng. Comput. 2009, 26, 688–697.
[CrossRef]

29. Karypis, G.; Kumar, V. Parallel Multilevel Series K-Way Partitioning Scheme for Irregular Graphs. SIAM Rev. 1999, 41, 278–300.
[CrossRef]

30. Markauskas, D.; Kačeniauskas, A. The Comparison of Two Domain Repartitioning Methods Used for Parallel Discrete Element
Computations of the Hopper Discharge. Adv. Eng. Softw. 2015, 84, 68–76. [CrossRef]

31. Berger, M.; Bokhari, S. A Partitioning Strategy for Nonuniform Problems on Multiprocessors. IEEE Trans. Comput. 1987, 36,
570–580. [CrossRef]

32. Liu, H.; Tafti, D.K.; Li, T. Hybrid Parallelism in MFIX CFD-DEM Using OpenMP. Powder Technol. 2014, 259, 22–29. [CrossRef]
33. Berger, R.; Kloss, C.; Kohlmeyer, A.; Pirker, S. Hybrid Parallelization of the LIGGGHTS Open-Source DEM Code. Powder Technol.

2015, 278, 234–247. [CrossRef]
34. Cintra, D.T.; Willmersdorf, R.B.; Lyra, P.R.M.; Lira, W.W.M. A Hybrid Parallel DEM Approach with Workload Balancing Based on

HSFC. Eng. Comput. 2016, 33, 2264–2287. [CrossRef]

https://doi.org/10.1137/1.9780898718133.ch6
https://doi.org/10.1145/2797211
https://www.intel.com/content/www/us/en/developer/articles/technical/use-intel-resource-director-technology-to-allocate-memory-bandwidth.html.
https://www.intel.com/content/www/us/en/developer/articles/technical/use-intel-resource-director-technology-to-allocate-memory-bandwidth.html.
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/use-the-l3-cache-and-mba-to-improve-the-resource-isolation-of-tasks-with-different-priorities.
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/use-the-l3-cache-and-mba-to-improve-the-resource-isolation-of-tasks-with-different-priorities.
https://www.alibabacloud.com/help/en/container-service-for-kubernetes/latest/use-the-l3-cache-and-mba-to-improve-the-resource-isolation-of-tasks-with-different-priorities.
https://doi.org/10.1109/TC.2015.2425889
https://doi.org/10.1016/j.simpat.2013.04.002
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1016/j.advengsoft.2016.01.013
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1016/j.jss.2010.01.009
https://doi.org/10.1007/s11227-010-0481-4
https://doi.org/10.1007/s10922-014-9312-x
https://doi.org/10.1145/3195612.3195613
https://doi.org/10.3390/app13031586
https://doi.org/10.1016/j.suscom.2023.100859
https://doi.org/10.3390/app12031562
https://doi.org/10.1007/s10586-022-03738-5
https://doi.org/10.1002/nag.317
https://doi.org/10.1016/j.advengsoft.2011.02.007
https://doi.org/10.1016/j.applthermaleng.2016.07.161
https://doi.org/10.1108/02644400110387154
https://doi.org/10.1108/02644400910975478
https://doi.org/10.1137/S0036144598334138
https://doi.org/10.1016/j.advengsoft.2014.12.002
https://doi.org/10.1109/TC.1987.1676942
https://doi.org/10.1016/j.powtec.2014.03.047
https://doi.org/10.1016/j.powtec.2015.03.019
https://doi.org/10.1108/EC-01-2016-0019

Appl. Sci. 2023, 13, 5115 17 of 17

35. Incardona, P.; Leo, A.; Zaluzhnyi, Y.; Ramaswamy, R.; Sbalzarini, I.F. OpenFPM: A Scalable Open Framework for Particle and
Particle-Mesh Codes on Parallel Computers. Comput. Phys. Commun. 2019, 241, 155–177. [CrossRef]

36. Yan, B.; Regueiro, R.A. Comparison between Pure MPI and Hybrid MPI-OpenMP Parallelism for Discrete Element Method
(DEM) of Ellipsoidal and Poly-Ellipsoidal Particles. Comput. Part. Mech. 2018, 6, 271–295. [CrossRef]

37. Du, P.; Weber, R.; Luszczek, P.; Tomov, S.; Peterson, G.; Dongarra, J. From CUDA to OpenCL: Towards a Performance-Portable
Solution for Multi-Platform GPU Programming. Parallel Comput. 2012, 38, 391–407. [CrossRef]

38. Govender, N. Study on the Effect of Grain Morphology on Shear Strength in Granular Materials via GPU Based Discrete Element
Method Simulations. Powder Technol. 2021, 387, 336–347. [CrossRef]

39. Kelly, C.; Olsen, N.; Negrut, D. Billion Degree of Freedom Granular Dynamics Simulation on Commodity Hardware via
Heterogeneous Data-Type Representation. Multibody Sys. Dyn. 2020, 50, 355–379. [CrossRef]

40. Xu, J.; Qi, H.; Fang, X.; Lu, L.; Ge, W.; Wang, X.; Xu, M.; Chen, F.; He, X.; Li, J. Quasi-Real-Time Simulation of Rotating Drum
Using Discrete Element Method with Parallel GPU Computing. Particuology 2011, 9, 446–450. [CrossRef]

41. Tian, Y.; Zhang, S.; Lin, P.; Yang, Q.; Yang, G.; Yang, L. Implementing Discrete Element Method for Large-Scale Simulation of
Particles on Multiple GPUs. Comput. Chem. Eng. 2017, 104, 231–240. [CrossRef]

42. Gan, J.; Evans, T.; Yu, A. Application of GPU-DEM Simulation on Large-Scale Granular Handling and Processing in Ironmaking
Related Industries. Powder Technol. 2020, 361, 258–273. [CrossRef]

43. Pacevič, R.; Kačeniauskas, A. The Performance Analysis of the Thermal Discrete Element Method Computations on the GPU.
Comput. Inform. 2022, 41, 931–956. [CrossRef]

44. Combier, R. EDEM Now Available on Rescale’s Cloud Simulation Platform. Available online: https://rescale.com/blog/edem-
now-available-on-rescales-cloud-simulation-platform/ (accessed on 7 April 2023).

45. Weinhart, T.; Orefice, L.; Post, M.; van Schrojenstein Lantman, M.P.; Denissen, I.F.; Tunuguntla, D.R.; Tsang, J.; Cheng, H.; Shaheen,
M.Y.; Shi, H.; et al. Fast, Flexible Particle Simulations—An Introduction to MercuryDPM. Comput. Phys. Commun. 2020, 249,
107129. [CrossRef]

46. Bystrov, O.; Pacevič, R.; Kačeniauskas, A. Performance of Communication- and Computation-Intensive SaaS on the OpenStack
Cloud. Appl. Sci. 2021, 11, 7379. [CrossRef]

47. Danovaro, E.; Clematis, A.; Galizia, A.; Ripepi, G.; Quarati, A.; D’Agostino, D. Heterogeneous architectures for computational
intensive applications: A cost-effectiveness analysis. J. Comput. Appl. Math. 2014, 270, 63–77. [CrossRef]

48. Araki, S.J.; Martin, R.S. Dynamic Load Balancing with over Decomposition in Plasma Plume Simulations. J. Parallel Distrib.
Comput. 2022, 163, 136–146. [CrossRef]

49. Barreiros, W.; Melo, A.C.; Kong, J.; Ferreira, R.; Kurc, T.M.; Saltz, J.H.; Teodoro, G. Efficient Microscopy Image Analysis on
CPU-GPU Systems with Cost-Aware Irregular Data Partitioning. J. Parallel Distrib. Comput. 2022, 164, 40–54. [CrossRef]

50. Zhong, Z.; Rychkov, V.; Lastovetsky, A. Data Partitioning on Multicore and Multi-GPU Platforms Using Functional Performance
Models. IEEE Trans. Comput. 2015, 64, 2506–2518. [CrossRef]

51. Bystrov, O.; Kačeniauskas, A.; Pacevič, R.; Starikovičius, V.; Maknickas, A.; Stupak, E.; Igumenov, A. Performance Evaluation of
Parallel Haemodynamic Computations on Heterogeneous Clouds. Comput. Inform. 2020, 39, 695–723. [CrossRef]

52. Devine, K.; Boman, E.; Heaphy, R.; Hendrickson, B.; Vaughan, C. Zoltan Data Management Services for Parallel Dynamic
Applications. Comput. Sci. Eng. 2002, 4, 90–96. [CrossRef]

53. Tumonis, L.; Schneider, M.; Kačianauskas, R.; Kačeniauskas, A. Comparison of Dynamic Behaviour of EMA-3 Railgun under
Differently Induced Loadings. Mechanika 2009, 78, 31–37.

54. Liu, G.; Marshall, J.S.; Li, S.Q.; Yao, Q. Discrete-Element Method for Particle Capture by a Body in an Electrostatic Field. Int. J.
Numer. Methods Eng. 2010, 84, 1589–1612. [CrossRef]

55. Norouzi, H.R.; Zarghami, R.; Sotudeh-Gharebagh, R.; Mostoufi, N. Coupled CFD-DEM Modeling: Formulation, Implementation and
Application to Multiphase Flows; John Wiley & Sons: Chichester, UK, 2016; ISBN 978-1-119-00513-1. [CrossRef]

56. Stress-ng. A Tool to Load and Stress a Computer System. Available online: https://github.com/ColinIanKing/stress-ng (accessed
on 1 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.1007/s40571-018-0213-8
https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/10.1016/j.powtec.2021.04.038
https://doi.org/10.1007/s11044-020-09749-7
https://doi.org/10.1016/j.partic.2011.01.003
https://doi.org/10.1016/j.compchemeng.2017.04.019
https://doi.org/10.1016/j.powtec.2019.08.043
https://doi.org/10.31577/cai_2022_4_931
https://rescale.com/blog/edem-now-available-on-rescales-cloud-simulation-platform/
https://rescale.com/blog/edem-now-available-on-rescales-cloud-simulation-platform/
https://doi.org/10.1016/j.cpc.2019.107129
https://doi.org/10.3390/app11167379
https://doi.org/10.1016/j.cam.2014.02.022
https://doi.org/10.1016/j.jpdc.2022.01.023
https://doi.org/10.1016/j.jpdc.2022.02.004
https://doi.org/10.1109/TC.2014.2375202
https://doi.org/10.31577/cai_2020_4_695
https://doi.org/10.1109/5992.988653
https://doi.org/10.1002/nme.2953
https://doi.org/10.1002/9781119005315
https://github.com/ColinIanKing/stress-ng

	Introduction
	The Related Works
	Cloud Infrastructure and Developed SaaS
	Hosted Cloud Infrastructure
	Parallel DEM SaaS

	Results and Discussion
	Conclusions
	References

