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Abstract: Torsional stiffnesses of chords contribute considerably to the sectional torsional stiffness
of steel tubular Vierendeel truss arches and hence determine their out-of-plane buckling. To obtain
a more accurate stability design for the Vierendeel truss arches, torsional effects of chords on their
out-of-plane stability and failure mechanisms were investigated theoretically and numerically. This
paper firstly derives the theoretical formulas of the sectional torsional stiffness and the out-of-plane
elastic buckling loads for the pin-ended circular steel tubular Vierendeel truss arches. It is found
that incorporating the torsional stiffness of chords can remarkably enhance the sectional torsional
stiffness of the Vierendeel truss arches and their out-of-plane elastic buckling loads by ~41%. Then,
the out-of-plane elastic buckling loads are calculated for the pin-ended arches by the equilibrium
theorem and for the fix-ended arches by the numerical fitting. In both cases, the sectional torsional
stiffness and elastic buckling loads are closely dependent on the transverse-to-chord member stiffness
ratio (it/ic). Furthermore, the out-of-plane inelastic buckling behaviors are investigated numerically
in the end-fixed Vierendeel truss arches with large it/ic, where the ultimate bearing load in full-span
radially uniform manner can be significantly enhanced by ~43% by incorporating the torsional
stiffness of chords. The calculated reduction factors confirm the design curve b from GB50017-2017 or
Eurocode 3 and can provide a conservative design for the out-of-plane stability of the circular steel
tubular Vierendeel truss arches.

Keywords: elastic buckling load; inelastic buckling; out-of-plane stability; torsional stiffness;
Vierendeel truss arches

1. Introduction

Vierendeel truss arches are preferred for obtaining larger spacing, concise appearance,
and functional flexibility in long-span spatial structures such as bridges, stadiums, and
railway stations [1]. In the classical Pratt or Warren truss arches, chord members bear
compression and bending actions transferred from the external loadings, and diagonal
members bear most of the shears along the centroid axis of the arches. By contrast, in the
Vierendeel truss arches [2,3], no diagonal members exist and only the chords can be used
to resist the sectional shears. The weak shear resistance may determine the strength design
and thereby the in-plane and out-of-plane stability design of the Vierendeel truss arches in
practical applications.

With adequate lateral bracings, arches under compression and bending tend to deform
and fail in the in-plane modes. Pi and his coauthors revealed the elastic and inelastic
in-plane buckling behaviors for the pin-ended and end-fixed arches and proposed the
strength design equation for the I-section steel arches subjected to combined compressive
and bending actions [4–7]. Guo et al. investigated the in-plane failure mechanism of the
pin-ended circular steel arches with welded hollow sections numerically and proposed the
strength design formula accounting for web local buckling [8]. It was also reported that the
sectional shear stiffness played an important role in determining the elastic-plastic stability
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in circular arches [9]. Further, Guo et al. derived the in-plane elastic buckling loads with
the consideration of the effect of shear deformation and proposed an interaction design
equation for the circular steel tubular Vierendeel planar truss arche [10]. Moreover, the shear
effects of chords were taken into accounted to obtain the in-plane elastic buckling loads
for the pin-ended circular Vierendeel-like steel planar arches, i.e., the plate-tube-connected
arches and the web-opened steel arches [11–13]. It can be concluded that considering the
sectional shear deformation may produce a much lower in-plane buckling load in truss
arches than that calculated by the Timoshenko equation [14].

To meet functional or architectural needs, some arches are designed with sparse lateral
bracings [15,16]. With inadequate lateral supports, the arches may deform in the flexural–
torsional modes and fail in the out-of-plane before their in-plane failures if there exist
considerable initial out-of-plane geometric imperfections [17,18]. The timeline for some
researches on the out-of-plane stability of circular steel arches is shown in Figure 1. Timo-
shenko and Gere [19] first derived the out-of-plane elastic buckling load for arches under
compression-only or bending-only actions based on the equilibrium theorem. Using the
energy-based approach, Papangelis and Trahair derived the elastic flexural–torsional buck-
ling loads for the pin-ended arches [20–22], and Pi et al. derived the elastic flexural–torsional
buckling resistance of the laterally end-fixed circular arches [23–25]. However, these ana-
lytical results were derived from the close-section arches bearing uniform compression or
uniform bending. Furthermore, Pi and Bradford studied the inelastic flexural–torsional
buckling and proposed a design equation for end-fixed steel I-section arches using the
finite element method [26]. These out-of-plane buckling behaviors were consistent with the
experimental results by Guo et al. [27].

Moreover, for the circular steel tubular truss arches, out-of-plane buckling behaviors
were reported to be affected by their end restraints and sectional stiffnesses. The effect of
the end restraints was investigated by Dou and Pi on the out-of-plane buckling resistance
numerically [28], and the shear stiffness of the chords of the pin-ended circular arches was
considered by Dou et al. to derive the out-of-plane buckling loads analytically [29]. Few
studies have been reported on the contribution of the torsional effects of chords to the out-of-
plane elastic buckling loads. It is noted that, in Pratt and Warren truss arches, the sectional
torsional stiffness is mostly contributed by the shear stiffness of their diagonal tubes and
chords, and the contribution from the torsional stiffness of chords can be ignored [30].
However, in the sectional torsional stiffness of the Vierendeel truss arches, the contribution
from the torsional stiffness of chords becomes remarkable and can be comparable with that
from the shear stiffness of chords.
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Figure 1. Timeline for researches on the out-of-plane stability of circular steel arches [4,6,7,10,14,19,23–26,29].

To date, the torsional effects of the chords on the out-of-plane inelastic failure mech-
anism of the Vierendeel truss arches are still unclear. There are scarce design recommen-
dations on the out-of-plane stability of Vierendeel arches in the current design codes or
the literatures. Taking the torsional deformation of chords into account might reduce the
local buckling loads of truss arches slightly, whereas incorporating the torsional stiffness
of chords will increase the sectional torsional stiffness/resistance considerably. Thus, the
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torsional effects of chords can be deliberately ignored for a conservative strength design in
the truss arches with diagonal tubes. However, in the Vierendeel truss arches where the
sectional torsional stiffness is small, the torsional stiffness of chords should be taken into
account for achieving better architectural aesthetics and economic demand.

In this study, the out-of-plane global elastic buckling loads were derived for the pin-
ended and end-fixed circular steel tubular Vierendeel truss arches on different sectional
stiffness assumptions. The main finding is that incorporating the torsional effects of chords
can remarkably strengthen the global out-of-plane stability of the circular steel tubular
Vierendeel truss arches. Further, the out-of-plane elastic-plastic failure mechanisms were
investigated for the end-fixed arches under different loading cases. The paper is organized
as follows: Section 2 introduces the finite element models of the typical Vierendeel truss
arches used for static analyses; Section 3 derives the sectional stiffnesses analytically in
the Vierendeel truss arches; Section 4 calculates the out-of-plane elastic buckling loads for
the pin-ended and end-fixed circular tubular Vierendeel truss arches based on the derived
and numerically fitted equations, respectively; Section 5 presents the out-of-plane inelastic
buckling behaviors of the Vierendeel truss arches under different loading cases; some
conclusions are drawn in Section 6.

2. Finite Element Models

Figure 2 shows the schematic model of a typical circular steel tubular Vierendeel truss
arch studied in this work. The truss arch is constructed by four circular steel tubular chords
arranged at the four corners of the rectangular cross-section. All chords are segmented by a
set of rectangular diaphragms made of four connected transverse tubes that are distributed
normal to the arch’s sectional centroid axis with a constant interval. In each segment, no
diagonal tubes are included.
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Figure 2. Schematic model of a typical circular steel tubular Vierendeel truss arch with rectangular
section. (a) Elevation. (b) Diaphragm.

Figure 3 presents the geometric dimensions of the global and sectional models for a
typical circular steel tubular Vierendeel truss arch. L is the arch span; f is the rise of the
arch; R is the curvature radius of the cross-sectional centroid arch axis; Θ is the included
angle; S (=2ΘR) is the total developed length of the arch; B and H are the width and
height of the rectangular section, respectively; Lc is the segmental length between the
neighboring transverse diaphragms; Dc and tc are the outer diameter and thickness of
the chords, respectively; Dt and tt are the outer diameter and thickness of the transverse
tubes, respectively.

In this study, the stability analyses of the steel tubular truss arches were performed
by using the finite element (FE) software ABAQUS [31]. To consider the effect of the shear
deformation on the stability of the Vierendeel truss arches, the Timoshenko beam element
B31 was used to model the chord tubes and transverse tubes. All structural members in
each model are meshed at a constant mesh size. We calculated the computational error for
each model at different mesh sizes from 10 mm to 150 mm and found that the computational
errors for models with mesh size less than 150 mm could be negligible. Thus, in this study,
all models are meshed at the size of 100 mm for saving computational cost. A typical arch
model with a span of 50 m and a segmental length of 1 m has 2834 nodes and 2984 meshes
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in total. Two types of arches are considered with different boundary constraints: the pinned
and fixe ends. In the end-fixed arch models, all translations and rotations along the x-, y-,
and z-directions are fixed, while in the pin-ended arches, the translations in the y- and z-
directions and the rotation along the z-direction are fixed at both ends. With these boundary
constraints, circular arches are likely to bear the combined compressive and bending actions.
For simplification, the translation in the y-direction of one end is usually set free to ensure
the arch’s cross-section under a uniform compression [32], as shown in Figure 3a. Thus, the
elastic buckling loads for the pin-ended arches can be derived analytically.
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Bilinear constitutive models were adopted for all steel tubular members. Specifically,
the yielding stress for the chord tubes is 235 MPa (fyc) and that for the transverse tubes is
345 MPa (fyt). For all steel tubular members, the initial elastic modulus (E) is 2.06× 105 MPa,
and the Poisson’s ratio (ν) is 0.3. The out-of-plane global initial geometric imperfection
(with the maximum amplitude of S/500) was introduced to all FE models studied in this
work, and the influence of the welding residual stress was neglected. Moreover, three
typical loading cases were considered herein such as the full-span radially uniform load
(FSRUL) qr, the full-span uniformly vertical load (FSUVL) qf, and the half-span uniformly
vertical load (HSUVL) qh, as shown in Figure 4.
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3. Sectional Stiffnesses in Vierendeel Truss Arches

Without adequate bracings, the Vierendeel truss arches are likely to buckle in the
out-of-plane flexural–torsional mode under compressive and bending actions. The out-of-
plane stability of the truss arches is usually determined by the sectional bending stiffness,
sectional shear stiffness, and sectional torsional stiffness.
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3.1. Sectional Bending Stiffness and Sectional Shear Stiffness

In the circular Vierendeel truss arches, the chords may carry the axial compression,
bending, and shear induced by the external loading, while the transverse tubes can only
carry bending transferred from chords. Thus, the sectional bending stiffness of the chords
in a truss arch is crucial for elastic stability. The out-of-plane sectional bending stiffness
(EIy) of a truss arch can be expressed as [29]:

EIy = EAcB2 + 4EIc (1)

where EIc is the bending stiffness of each chord with the identical cross-sectional area Ac.
The effect of the shear deformation of chords was reported to be very important in

truss arches, and the out-of-plane shear stiffness was derived for the steel tubular truss
arches with rectangular sections [29]. Without the diagonal tubes, shears acting on the
cross-section of the Vierendeel truss arch can only be undertaken by chords. The sectional
shear stiffness of the Vierendeel truss arches can be calculated by the equation derived by
Timoshenko and Gere [19] for the battened lattice column. For a typical Vierendeel truss
segment under a pure shear V, the moments carried by the chords and transverse tubes are
shown in Figure 5.
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The shear deformation δ of the entire cross-section comprises the segmental deforma-
tions induced by the bending moments of chords δ1, the bending of the transverse tubes δ2,
and the shear deformation of the transverse tubes δ3. Thus, the sectional shear deformation
δ can be calculated according to the following formula:

δ = δ1 + δ2 + δ3 =
VL3

c
48EIc

+
VL2

c B
24EIt

+
nVL2

c
2BAtG

(2)

Accordingly, the sectional shear stiffness (KV) of the typical truss segment can be
calculated as:

KV =
1

L2
c

48EIc
+

LcB
24EIt

+
nLc

2BAtG

(3)

where EIc is the sectional bending stiffness of each chord; EIt is the sectional bending
stiffness of each transverse tube. G (=E/2 (1 + ν)) is the shear modulus. n is the non-
uniform distribution coefficient of shear stress in the cross-section of the transverse tubes.
For the transverse tube with an annular section, n is 2.0 and the sectional area is At [19].

3.2. Sectional Torsional Stiffness

To calculate the sectional torsional stiffness, Guo et al. assumed the web-open truss
arch to be an equivalent thin-walled box arch with a hollow rectangular section composed
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of four thin plates [33]. With the equivalent box cross-section, the torsional stiffness of a
typical Vierendeel truss arch can be expressed as:

GJ = G 4A2
0

4
∑

i=1

li
tri

tri =
E
G ×

1
L2

c li
24Ic

+
Lcl2

i
12It

(4)

where li is the i-th side length of the rectangular section, ti is the thickness of the i-th box
side plate, A0 is the area of the rectangular section.

Since the spans (L) of the considered truss arches (over 20 m) are much larger than
the sectional side length (B or H), the influence of the arch curvature on the sectional
torsional stiffness can be ignored for simplification. An equivalent straight truss model is
thus built with a length of 100 m and a square cross-section (H = B = 1.0 m). To verify the
sectional torsional stiffness, static analyses via the FE program ABAQUS were performed
on the equivalent straight truss. In the long-span truss models, boundary conditions were
confirmed to have little influence on the sectional torsional stiffness. Herein, the bottom
end of each chord is pinned to the ground, and the torsion Mz is applied on the top free
section, as shown in Figure 6a.

Under the torsional moment Mz, the sectional twist around the centroid axis z is
resisted by the shears of chords along the transverse tubes, as shown in Figure 6. Thus, the
torsional equilibrium of a typical truss segment can be calculated as:

→
V1 +

→
V2 +

→
V3 +

→
V4 = 0

4
∑

i=1
Viri = Mz

(5)

where ri (i = 1~4) is the distance from the torsion centroid (O) to the i-th side of the
rectangular section, and Vi is the shear along the i-th transverse tube. In each segment, the
shear stiffness of each chord can be expressed as:

KVi =
Vi

riβ/Lc
(6)

where β is the sectional rotation angle of a Vierendeel truss segment under the external
torsion moment Mz. Accordingly, the sectional torsional stiffness can be calculated as:

GJ =
Mz

β/Lc
=

4

∑
i=1

KVi r
2
i (7)

Further, the sectional torsional stiffness can be written as:

GJ =
H2

L2
c

12EIc
+

LcB
6EIt

+
2nLc

BAtG

+
B2

L2
c

12EIc
+

Lc H
6EIt

+
2nLc

HAtG

(8)

When the torsional stiffness of chords is considered, the sectional twist will be resisted
by both the shear and torsion of each chord, as shown in Figure 7. Thus, the torsional
equilibrium of a typical truss segment can be calculated as:

→
V1 +

→
V2 +

→
V3 +

→
V4 = 0

4
∑

i=1
(Viri+Mi) = Mz

(9)
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where Mi (i = 1~4) is the torsion moment carried out by the i-th chord. Under the sectional
torsion Mz, the torsional stiffness contributed by each chord (GIpci) can be expressed as:

GIpci =
Mi

β/Lc
(10)
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Thereby, the sectional torsional stiffness of the segment can be derived by:

GJ =
Mz

β/Lc
=

4

∑
i=1

(KVi r
2
i + GIpci) (11)

Substituting Equation (3) into Equation (11) yields the sectional torsional stiffness of
the segment including the torsional stiffness of each chord. Thus, the sectional torsional
stiffness can be rewritten as:

GJ =
H2

L2
c

12EIc
+

LcB
6EIt

+
2nLc

BAtG

+
B2

L2
c

12EIc
+

Lc H
6EIt

+
2nLc

HAtG

+ 4GIpc (12)

It can be noted that the sectional torsional stiffness of the straight truss model is
primarily determined by the shear stiffness (KVi) and torsional stiffness (GIpci) of individual
chords. Further, the shear and torsional stiffnesses of chords are influenced by their
constraints exerted by the neighboring transverse tubes. Thus, the torsional effects of
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chords on the sectional torsional stiffness should be investigated in trusses with different
transverse tubes and chords. Here, the segmental length (Lc), the external diameter (Dc),
and wall thickness (tc) of the chord tubes are set to be constant at 1000 mm, 121 mm, and
10 mm, respectively; the external diameters (Dt) ranging from 20 mm to 200 mm with a
constant wall thickness (tt) of 10 mm, are set for the transverse tubes.

Figure 8a shows the sectional torsional stiffnesses (GJ) of a series of models with
different segmental lengths. In this case, the member stiffnesses of chords decrease with
the increase in the segment length (Lc) from 1.0 m to 4.5 m in the arches with the constant
transverse tubes with Dt of 121 mm and tt of 10 mm. It is observed that, for results
calculated by either equation or the FE simulation, the sectional torsional stiffness decreases
with the increase in the Lc, and the curve of the torsional stiffness versus Lc flattens as
the Lc increases beyond 4.0 m. Figure 8b shows the sectional torsional stiffnesses of a
series of models with different transverse-to-chord member stiffness ratios (it/ic) at a
constant Lc of 1.0 m. It is observed that the sectional torsional stiffness increases with
the increase in it/ic and approaches a plateau when it/ic increases beyond a threshold of
~6, confirming that the sectional torsional stiffness of the Vierendeel truss arch is closely
dependent on it/ic [29]. Further, it can be concluded that, for the arches with it/ic ranging
from 0.1 to 9.0 and Lc from 1.0m to 4.5 m, the torsional stiffnesses obtained by Equation
(12) agree well with that from the FE simulations, and both are much larger than that
obtained by Equations (4) and (8). Some key equations and their assumptions are liste
in Table A1 (Appendix A). The remarkable discrepancy indicates that incorporating the
torsional stiffness of an individual chord can significantly enhance the sectional torsional
stiffness of the Vierendeel trusses with any it/ic considered here.
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Figure 8. Sectional torsional stiffness and as a function of (a) segment length or (b) it/ic for the
equivalent straight trusses obtained from FE results and derived equations [33].

4. Out-of-Plane Elastic Buckling Load of Vierendeel Truss Arches

For the pin-ended truss arches with diagonal tubes, Dou et al. have derived an out-of-
plane buckling load incorporating the shear effect of chords using the static equilibrium
approach [29]. Under the full-span uniform radial load (FSURL), the out-of-plane critical
buckling load (qcr) for the truss arches can be expressed as:

qcr =
qcr0

1 + qcr0R/KV
(13)

where KV is the sectional shear stiffness of the truss arch, qcr0 is the out-of-plane critical
buckling load of the truss arch without considering the shear deformation of chords.
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According to Kirchhoff’s equation [19], the elastic out-of-plane buckling load of the pin-
ended circular solid-web arch under the FSURL can be derived as:

qcr0 =
Py

[
1− (Θ/π)2

]2

R
[
1 + (EIy/GJ)(Θ/π)2

] (14)

where Py is the equivalent axial buckling compression obtained in the first flexural buckling
mode of the truss arch around the o-y axis. The arch has a developed length of S, an in-plane
radius R, and a constant cross-section. For large-span arches, the Py can be approximately
calculated as:

Py =
π2EIy

S2 (15)

Figure 9 shows the buckling loads obtained by the proposed Equations (13) and (14),
and the FE simulations for the circular steel tubular Vierendeel truss arches at different
spans (L), segmental lengths (Lc), sectional side lengths (B), and transverse-to-chord member
stiffness ratios (it/ic). The dimensions (L, Lc, and B) of the typical Vierendeel truss arch are
initially set to be 50 m, 1.0 m, and 1.0 m, respectively. The influence of each dimension on
the buckling load can be studied independently by fixing two other dimensions at their
initial values. For all cases, the rise-to-span ratio (f /L) is fixed at 0.2; the external diameter
(Dc) and wall thickness (tc) of each chord are kept at 152 mm and 8 mm, respectively.
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Figure 9. Comparison of buckling loads between FE and theoretical results for the pin-ended
Vierendeel truss arches with varying (a) spans, (b) segmental lengths, (c) sectional side lengths, and
(d) transverse-to-chord member stiffness ratios.

As observed in Figure 9a–d, the buckling loads in the FSURL manner (qcr) decrease
with the increase in L (or Lc) but increase with the increase in it/ic (or B). For all cases
considered in this study, the buckling loads calculated from Equations (13) and (14), either
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incorporating the torsional effects of chords or not, agree well with each other. This indicates
that both the Kirchhoff equation and the equation derived by Dou et al. [29] can predict
nearly identical out-of-plane buckling loads for large-span truss arches. It is also noted
that the buckling load for cases incorporating the torsional effects of chords is generally
larger than that for cases ignoring the torsional effects of chords, as shown in Table 1. This
indicates that the torsional effects play a significant role in determining the buckling loads
(qcr). However, for the arches with spans larger than 70 m, as shown in Figure 9a, the
discrepancy due to the torsional effects becomes negligible.

Table 1. Increment of the average buckling load over the considered dimensions for the pin-ended
Vierendeel truss arches considering GIpci with respect to that ignoring GIpci.

Dimension L (=50 m) Lc B it/ic

Increment of average qcr by
Equation (13) 37.93% 429.39% 52.15% 41.45%

Increment of average qcr0 by
Equation (14) 38.30% 442.88% 52.61% 41.67%

Figure 9b,c show the numerically and theoretically obtained buckling loads of the
truss arches as a function of the segmental length and the sectional side length, respectively.
Generally, the buckling loads for all cases (L = 50 m) decrease with the segmental length (Lc)
and increase with the sectional side length (B). It is also observed that the buckling loads
calculated by Equations (13) and (14), incorporating the torsional stiffness of chords or
not, are consistent with each other. The calculated loads incorporating the torsional effects
are remarkably larger than that, if we ignore the torsional effects but slightly smaller than
the FE results. Moreover, the deviation between the FE results and the theoretical results
incorporating the torsional effects decrease with Lc and increase with B.

Figure 9d presents the relationship between qcr and the transverse-to-chord member stiffness
ratio (it/ic), which represents the combined influence of Lc and B. Generally, qcr increases rapidly as
it/ic increases from 0.1 to 3.0 and then increases gradually approaching a plateau as it/ic increases
beyond 6.0. It is also noted that the qcr calculated from Equations (13) and (14) considering the
torsional effects are consistent with the FE results and much larger than that from these equations
if we ignore the torsional effects. This trend is similar to the relationship between the sectional
torsional stiffness and member stiffness ratio (it/ic), indicating that it/ic may play a critical role in
determining the out-of-plane buckling loads of the Vierendeel truss arches.

In practice, the ends of large-span truss arches are usually fixed for better flexural and
torsional resistance. However, the buckling load formulas for the end-fixed arches are too
difficult to derive analytically. Here, a fitted formula is proposed based on the out-of-plan static
analyses of the end-fixed truss arches conducted by the FE simulations. Based on the simulations,
the buckling load formulas for the end-fixed Vierendeel truss arches can be expressed as:

qcr =
qcr0

1 + qcr0R/KV

qcr0 =
4π2EIy

S2R

[
A
(

Θ
π

)2
+ B

(
Θ
π

)
+ 0.85

] (16)

where  A = 1258.18
(

GJ
EIy

)2
− 90.11

(
GJ
EIy

)
+ 1.84

B = −1435.94
(

GJ
EIy

)2
+ 97.89

(
GJ
EIy

)
− 2.76

(17)

Figure 10 shows the buckling loads of a set of Vierendeel truss arches with identi-
cal geometric dimensions: Dc × tc = 121 mm × 10 mm, Dt × tt = 100 mm × 10 mm,
B = H = Lc = 1.0 m, and L = 50 m. For the truss arches with f /L ranging from 0.1 to 0.45, the
buckling loads calculated by the fitted Equation (16) agree well with the FE simulations
(the maximum error is within 5%). These results are much larger than that of the pin-ended
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arches calculated by Equation (13), confirming the enhanced buckling resistances in the
truss arches with fixed ends.
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Figure 10. Comparison of buckling loads between FE and theoretical results for the end-fixed
Vierendeel truss arches with different rise-to-span ratios.

Figure 11 shows the buckling loads for the end-fixed Vierendeel truss arches, with identical
geometric dimensions as the corresponding the pin-ended arches shown in Figure 8. In the
end-fixed arches, the changing trends of the buckling loads with L, Lc, B, and it/ic are similar to
that of the pin-ended arches. For all cases considered here, the buckling loads of the end-fixed
arches calculated by Equation (16) agree well with the FE results and are much larger than that
of the pin-ended arches. In addition, the buckling loads incorporating the torsional stiffness of
chords are remarkably larger than that ignoring the torsional effects.
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5. Out-of-Plane Inelastic Buckling Behaviors of Vierendeel Truss Arches
5.1. Cases under the FSURL

It has been reported that the buckling behaviors of the truss arches (locally or globally)
are dependent of their loading cases [17]. Here, three typical loading cases (FSURL, FSUVL,
and HSUVL) were considered to study the elastic-plastic out-of-plane buckling behaviors of
the Vierendeel truss arches. Under the full-span uniform radial load (FSURL), the end-fixed
circular truss arches bear large compression and small bending. To prevent the elastic
local buckling before the global buckling, the Chinese Code for Design of Steel Structures
(GB50017-2017) recommended that the slenderness ratio of a single chord λc should meet
the following requirements [34]:

λc < min
{

0.5λoy, 40
}

(18)

Here, λoy is the equivalent slenderness ratio of the truss segment, which can be
expressed as:

λoy =

√
λ2

y +
π2

12
λ2

c

(
1 +

2ic

it

)
(19)

where λy is the out-of-plane slenderness ratio of the truss segment, ic and it are the member
stiffnesses of chords and transverse tubes, respectively.

Given a set of the Vierendeel truss arches having f/L = 0.3, L = 50 m, B = H = Lc = 1.0 m,
Dc× tc = 121 mm× 10 mm, and Dt× tt = 200 mm× 10 mm, λc can thus be calculated to be 25.4,
which satisfies the Equation (18), meaning that the local buckling can be prevented before the
global buckling. According to the FE results, the relationship between the vault displacements
(out-of-plane u and in-plane w) and the uniform radial load (qr) can be established, as shown in
Figure 12. It is seen that both vault displacements (u, w) of the arches (L = 50 m) increase with
the increase in the load qr. Under the increased qr, the arches deform out of the arch plane due
to the global out-of-plane geometric imperfection (S/500), leading to a second-order bending
along the o-y axis, and results in the out-of-plane buckling. It is noted that the out-of-plane
ultimate load (ignoring the torsional stiffness of chords) is 42.1 kN/m, shown as point A1
in Figure 11, which is much less than that (60.2 kN/m) in cases considering the torsional
effects, shown as point A in Figure 11. For comparison, the in-plane ultimate load of a typical
arch (L = 50 m, f/L = 0.3) is calculated to be 97.3 kN/m by introducing a global in-plane
geometric imperfection (S/500) alternatively. Figure 13 presents the overall stress distribution
of the typical arch under the ultimate FSURL (corresponding to point A). Under the combined
actions of compression and bending, the initial yielding starts from the four symmetric spots:
the right chords at both arch feet and the top-right chords at the 3/8 and 5/8 of the span.
After that, the arch fails in a symmetric inelastic global buckling mode, accompanied by the
decrease in qr and the further increase in u.

According to Pi et al. [35], the normalized slenderness of an arch can be defined as:

λn =

√
Ny

Ncr
=

√
4Ac fyc

qcrR
(20)

where Ny and Ncr are the yielding and critical compressions on the cross-section of the truss
arch, respectively; qcr is the out-of-plane elastic critical FSURL of the truss arch and can be
calculated by Equation (16). Thus, the reduction factor (ϕ) for the out-of-plane ultimate
strength relative to the yielding strength of the Vierendeel truss arches can be defined as:

ϕ =
Nu

Ny
=

quR
4Ac fyc

(21)

where Nu is the ultimate compression on the cross-section of the truss arch and qu is the
ultimate bearing load in the FSURL manner. It is acknowledged that the ultimate bearing
capacity of a truss arch is closely related to its f and L [17]. Here, we performed a series of FE
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static analyses on the considered Vierendeel truss arches with different spans (20 m~60 m)
and rise-to-span ratios ranging from 0.1 to 0.5. Based on the FE results, the reduction factors
at various λn are calculated and presented in Figure 14. For comparison, the compression-
only column design curves a, b, c, and d from the Chinese Code for Design of Steel Structures
(GB50017-2017) and Eurocode 3 [36] are also presented herein. It can be observed that the
numerically obtained reduction factors are approximately located between the curve a and
the curve b from both codes, except for the cases with very small f /L (0.1~0.2). This indicates
that the curve b may provide a conservative prediction of ϕ for the ultimate bearing capacity
of the steel tubular Vierendeel truss arches with large f /L. Thus, the reduction factor on the
curve b, referred from either GB50017-2017 or Eurocode 3, can be used to check the design
strength (N) determined by the out-of-plane stability using the design formula:

N
ϕNy

≤ 1 (22)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

Given a set of the Vierendeel truss arches having f/L = 0.3, L = 50 m, B = H = Lc = 1.0 
m, Dc × tc = 121 mm × 10 mm, and Dt × tt = 200 mm × 10 mm, λc can thus be calculated to 
be 25.4, which satisfies the Equation (18), meaning that the local buckling can be prevented 
before the global buckling. According to the FE results, the relationship between the vault 
displacements (out-of-plane u and in-plane w) and the uniform radial load (qr) can be es-
tablished, as shown in Figure 12. It is seen that both vault displacements (u, w) of the 
arches (L = 50 m) increase with the increase in the load qr. Under the increased qr, the arches 
deform out of the arch plane due to the global out-of-plane geometric imperfection 
(S/500), leading to a second-order bending along the o-y axis, and results in the out-of-
plane buckling. It is noted that the out-of-plane ultimate load (ignoring the torsional stiff-
ness of chords) is 42.1 kN/m, shown as point A1 in Figure 11, which is much less than that 
(60.2 kN/m) in cases considering the torsional effects, shown as point A in Figure 11. For 
comparison, the in-plane ultimate load of a typical arch (L = 50 m, f/L = 0.3) is calculated 
to be 97.3 kN/m by introducing a global in-plane geometric imperfection (S/500) alterna-
tively. Figure 13 presents the overall stress distribution of the typical arch under the ulti-
mate FSURL (corresponding to point A). Under the combined actions of compression and 
bending, the initial yielding starts from the four symmetric spots: the right chords at both 
arch feet and the top-right chords at the 3/8 and 5/8 of the span. After that, the arch fails 
in a symmetric inelastic global buckling mode, accompanied by the decrease in qr and the 
further increase in u. 

 
Figure 12. In-plane and out-of-plane vault displacements of a typical end-fixed Vierendeel truss arch 
under FSURLs. 

 
Figure 13. Stress distribution of a typical Vierendeel truss arch under the ultimate FSURL. 

According to Pi et al. [35], the normalized slenderness of an arch can be defined as: 

4y c yc
n

cr cr

N A f
N q R

λ = =  (20)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

10
20
30
40
50
60
70
80
90

100
110
120

w (m)

A
qr

q r
 (k

N
/m

)

u (m)

 out-of-plane buckling
 out-of-plane buckling, ignoring GIpci

 in-plane buckling
f/L=0.3, H=B=Lc=1m, L=50m

A1

Figure 12. In-plane and out-of-plane vault displacements of a typical end-fixed Vierendeel truss arch
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5.2. Cases under the FSUVL

Under the full-span uniform vertical load (FSUVL), the end-fixed circular truss arches
tend to be under the combined actions consisting of compression, bending, and shear.
For comparison, the set of the Vierendeel truss arches under the FSUVL, with the same
dimensions as the previous cases under the FSURL, was investigated based on the FE
inelastic analyses. In these cases, elastic local buckling can also be prevented before global
buckling with the same small λc. Figure 15 shows the variations of the uniform vertical load
(qf) with the vault out-of-plane displacement (u) for the arches (L = 50 m). It is seen that the
load qf for a typical arch (L = 50 m, f /L = 0.3) increases with the increase in the out-of-plane
vault displacement and reaches its ultimate value for the case ignoring the torsional stiffness
of chords at 26.8 kN/m, shown as point B1, which is smaller than that (32.2 KN/m) in the
case incorporating the torsional effects, shown as point B. Figure 16 presents the overall
stress distribution of the typical arch under the ultimate FSUVL (corresponding to point B).
It is seen that the truss arch firstly yields at both feet of chords, and then buckles under the
ultimate load. This behavior confirms the findings by Guo et al. [10] that local yielding of
chords will occur before global buckling in the planar Vierendeel truss arches with it/ic
larger than 2.25. Thereafter, with the further increase in u, the yielding spots develop from
the feet to the quarters along the arch until it fails eventually.
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Under the FSUVL, the end-fixed truss arches usually bear compression and bending
simultaneously. Thus, an interaction strength design equation can be deduced to check the
ultimate design strength, which is expressed as [27,37,38]:

N∗

ϕNy
+

αM∗

My
≤ 1 (23)

where N* and M* are the maximum axial compression and the maximum bending moment
of the Vierendeel truss arches based on the first-order elastic analyses, respectively; Ny



Appl. Sci. 2023, 13, 5082 15 of 19

and My are the compression and bending moment at yielding of the whole cross-section,
respectively; ϕ is the out-of-plane reduction factor for the buckling compressions of the
truss arches under the FSUVL and can be referred from the curve b from the GB50017-2017.
Since the Vierendeel truss arches do not have diagonal tubes to resist shear, they possess
small sectional shear stiffness. Thus, the second-order sectional bending moment under
shear should be considered by multiplying the M* with a moment amplification factor α
that can be calculated as:

α =
1

1− N∗
qcr R

(24)

where qcr is the elastic buckling load of the arches in the FSURL manner given by Equation (14).
It has been verified that, when α is less than 1.4, the first-order moment amplified by α can
provide a good estimation of the second-order moment [4]; when α is larger than 1.4, the
modified bending moment (αM*) should be replaced by the second-order moment obtained
numerically.

Based on the FE analyses, we obtained the maximum strength pairs (N*/(ϕNy),
αM*/My) for the Vierendeel truss arches at different spans (20 m~60 m) and rise-to-
span ratios ranging from 0.1 to 0.5. Moreover, the interaction design curve obtained
by Equation (23) is presented for comparison, as shown in Figure 17. It is seen that all
strength capacity pairs are above the interaction design curve, indicating that the reduction
factor calculated by Equation (21) can provide a conservative prediction for the out-of-plane
stability design of the end-fixed Vierendeel truss arches.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21 
 

1=
1

cr

N
q R

α ∗

−
 

(24)

where qcr is the elastic buckling load of the arches in the FSURL manner given by Equation 
(14). It has been verified that, when α is less than 1.4, the first-order moment amplified by 
α can provide a good estimation of the second-order moment [4]; when α is larger than 
1.4, the modified bending moment (αM*) should be replaced by the second-order moment 
obtained numerically. 

Based on the FE analyses, we obtained the maximum strength pairs (N*/(φNy), 
αM*/My) for the Vierendeel truss arches at different spans (20 m~60 m) and rise-to-span 
ratios ranging from 0.1 to 0.5. Moreover, the interaction design curve obtained by Equa-
tion (23) is presented for comparison, as shown in Figure 17. It is seen that all strength 
capacity pairs are above the interaction design curve, indicating that the reduction factor 
calculated by Equation (21) can provide a conservative prediction for the out-of-plane sta-
bility design of the end-fixed Vierendeel truss arches. 

 
Figure 17. Comparison between the maximum strength pairs and the interaction design curve for 
the end-fixed Vierendeel truss arches under FSURLs. 

5.3. Cases under the HSUVL 
Under the half-span uniform vertical load (HSUVL), the end-fixed circular truss 

arches tend to be under combined actions consisting of asymmetric compression, bending, 
and shear. Moreover, the set of the Vierendeel truss arches under the HSUVL, with the 
same dimensions as previous cases, was investigated based on the FE inelastic analyses. 
Similarly, local buckling of chords is prevented before the global buckling by introducing 
a global out-of-plane geometric imperfection (S/500). 

Figure 18 shows the variations of the half-span uniform vertical load (qh) with the 
numerically obtained out-of-plane vault displacement (u) for the arches (L = 50 m). It is 
seen that qh for a typical arch (L = 50 m, f/L = 0.3) increases with the increase in the out-of-
plane vault displacement and reaches its ultimate value for the case ignoring the torsional 
stiffness of chords at 30.0 kN/m, shown as point C1, which is smaller than that (37.8 KN/m, 
shown as point C) in the case incorporating the torsional effects. It can be noted that, under 
the qh of 24.7 kN/m (point C0), the arch yields at the chords of the 8/8 of the span and 
reaches global buckling out of the arch plane under the qh of 37.8 kN/m. Figure 19 presents 
the overall stress distribution of the arch under the ultimate HSUVL (corresponding to 
point C). Thereafter, with the increase in u, the plastic spots develop rapidly until the 
eventual failure of the arch. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
* /φ

N
y

αM*/My

 f/L=0.1
 f/L=0.2
 f/L=0.3
 f/L=0.4
 f/L=0.5

qf

Figure 17. Comparison between the maximum strength pairs and the interaction design curve for
the end-fixed Vierendeel truss arches under FSURLs.

5.3. Cases under the HSUVL

Under the half-span uniform vertical load (HSUVL), the end-fixed circular truss arches
tend to be under combined actions consisting of asymmetric compression, bending, and
shear. Moreover, the set of the Vierendeel truss arches under the HSUVL, with the same
dimensions as previous cases, was investigated based on the FE inelastic analyses. Similarly,
local buckling of chords is prevented before the global buckling by introducing a global
out-of-plane geometric imperfection (S/500).

Figure 18 shows the variations of the half-span uniform vertical load (qh) with the
numerically obtained out-of-plane vault displacement (u) for the arches (L = 50 m). It
is seen that qh for a typical arch (L = 50 m, f /L = 0.3) increases with the increase in the
out-of-plane vault displacement and reaches its ultimate value for the case ignoring the
torsional stiffness of chords at 30.0 kN/m, shown as point C1, which is smaller than that
(37.8 KN/m, shown as point C) in the case incorporating the torsional effects. It can be
noted that, under the qh of 24.7 kN/m (point C0), the arch yields at the chords of the 8/8
of the span and reaches global buckling out of the arch plane under the qh of 37.8 kN/m.
Figure 19 presents the overall stress distribution of the arch under the ultimate HSUVL
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(corresponding to point C). Thereafter, with the increase in u, the plastic spots develop
rapidly until the eventual failure of the arch.
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Figure 19 presents the numerical obtained maximum strength capacity pairs (N*/(ϕNy),
αM*/My) for the Vierendeel truss arches at different spans (20 m~60 m) and f /Ls ranging
from 0.1 to 0.5 under the HFUVL. Compared with the interaction strength design equation,
shown as the line in Figure 20, all the strength capacity pairs are observed to be well above
the interaction design line, indicating that Equation (21) provides a lower bound prediction
of the reduction factors for the stability design of the end-fixed Vierendeel truss arches
with all considered f /Ls. Particularly, Equation (21) is much more conservative for the
arches under the HFUVL. To sum up, the out-of-plane stability design of the Vierendeel
truss arches under different loading cases can be conducted following the same design
procedure, as shown in Figure 21.
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6. Conclusions

This work reported the out-of-plane stability of the circular steel tubular Vierendeel
truss arches with rectangular cross-sections under different loading cases. Considering
both the shear deformation and torsion of chords, the sectional torsional stiffness of the
pin-ended Vierendeel truss segment was deduced theoretically using the static equilibrium
theorem. The effects of torsional stiffness of chords on the out-of-plane elastic buckling
load were investigated for the circular steel tubular Vierendeel truss arches with pinned
and fixed ends. Moreover, the out-of-plane elastic and inelastic buckling incorporating
torsional effects were discussed for the stability design of the end-fixed Vierendeel truss
arches. Some conclusions can be drawn as follows:

1. The sectional torsional stiffness of the pin-ended circular steel tubular Vierendeel truss
arches decreases with the segment length but increases with the transverse-to-chord
member stiffness ratio (it/ic). Incorporating the torsional stiffness of individual chords
can remarkably enhance the sectional torsional stiffness of the Vierendeel truss arches.

2. The out-of-plane elastic buckling loads of the circular Vierendeel truss arches, either
the pin-ended cases derived by the equilibrium theorem, or the fix-ended cases
derived by the numerical fitting, increase significantly when the torsional stiffness
of each chord is taken into account. The dependence of the out-of-plane buckling
load, similar to that of the sectional torsional stiffness on it/ic, is observed in both the
pin-ended and the end-fixed Vierendeel truss arches.

3. For the fixed Vierendeel truss arches with large it/ic, the local yielding of chords
occurs before the global buckling. Incorporating the torsional stiffness of chords will
remarkably increase the ultimate buckling loads of arches under different loading
cases (FSURL, FSUVL, and HSUVL). The curve b from the design codes (GB50017-2017
or Eurocode 3) can provide a lower bound prediction of the reduction factors for the
out-of-plane stability design of the end-fixed Vierendeel truss arches.

These conclusions may provide practical guidance for the stability design of circular
steel tubular Vierendeel truss arches. However, the proposed equations in this work can
only provide a conservative prediction on the out-of-plane buckling loads in the Vierendeel
truss arches with rectangular cross-sections at some specific dimensions. For extensive
application or optimization design in practice, more research can be conducted in the near
future by utilizing the optimization methods, such as the artificial neural network or the
fuzzy logic algorithm [39,40], into the current design procedures to improve the adaptivity
of the stability design.
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Appendix A

Table A1. Equations and their assumptions.

Equation (3)
KV =

1
L2

c
48EIc

+
LcB

24EIt
+

nLc

2BAtG

Sectional shear stiffness
considering δ

Equation (4) GJ = G
4A2

0
4
∑

i=1

li
tri

Sectional torsional stiffness
ignoring δ and GIpc

Equation (8) GJ =
H2

L2
c

12EIc
+

LcB
6EIt

+
2nLc

BAtG

+
B2

L2
c

12EIc
+

Lc H
6EIt

+
2nLc

HAtG

Sectional torsional stiffness
considering δ

Equation (12)
GJ =

H2

L2
c

12EIc
+

LcB
6EIt

+
2nLc

BAtG

+
B2

L2
c

12EIc
+

Lc H
6EIt

+
2nLc

HAtG

+ 4GIpc Sectional torsional stiffness
considering δ and GIpc

Equation (13) qcr =
qcr0

1 + qcr0R/KV

Dou’s equation of critical buckling
load for pin-ended arches

Equation (14) qcr0 =
Py

[
1− (Θ/π)2

]2

R
[
1 + (EIy/GJ)(Θ/π)2

] Kirchhoff’s equation of critical
buckling load for pin-ended arches

Equation (16)


qcr =

qcr0
1 + qcr0R/KV

qcr0 =
4π2EIy

S2R

[
A
(

Θ
π

)2
+ B

(
Θ
π

)
+ 0.85

] Numerically fitted equation of critical
buckling load for end-fixed arches
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