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Abstract: Associative classification (AC) has been shown to outperform other methods of single-label
classification for over 20 years. In order to create rules that are both more precise and simpler to
grasp, AC combines the rules of mining associations with the task of classification. However, the
current state of knowledge and the views of various specialists indicate that the issue of multi-label
classification (MLC) cannot be solved by any AC method. Since this is the case, adapting or using an
AC algorithm to manage multi-label datasets is one of the most pressing issues. To solve the MLC
issue, this research proposes modifying the classification based on associations (msCBA) method
by extending its capabilities to consider more than one class label in the consequent of its rules
and modifying its rules order procedure to fit the nature of the multi-label dataset. The proposed
algorithm outperforms several other MLC algorithms from various learning techniques across a
variety of performance measuresand using six datasets with different domains. The main findings of
this research are the significance of utilizing the local dependencies among labels compared to global
dependencies, and the important rule of AC in solving the problem of MLC.

Keywords: associative classification; classification; machine learning; multi-label classification;
prediction

1. Introduction

In data mining, classification is a common activity. The goal is to properly anticipate
the class label of unseen instances using the rules or functions learned from a labeled set,
or training set [1,2]. Many researchers [3–8] have been attracted to classification in recent
decades, and have used a wide variety of learning approaches and strategies, including
decision trees, neural networks, fuzzy logic, Bayesian and statistical approaches, rule-set
induction, and more to create highly accurate classifiers [9]. In categorization, there are three
major categories [10]. Each data point in the first two categories must match only one of the
predefined classes. The third category [11], on the other hand, enables numerous class labels
to be assigned to specific dataset instances. The first, referred to as a “binary classification”
has just two class labels, but the second, referred to as a “multi-class classification” contains
more than two [12,13]. The more general multi-label classification (MLC) system [11,14] is
the third classification scheme. This study focuses on a particular categorization strategy
that employs a single-label classification (SLC) to handle the multi-label problem.

Associative classification (AC) is one of the primary approaches that has been actively
used in addressing the classification problem [15]. AC is a rule-set induction approach that
uses the Association Rule Mining (ARM) task to solve the cassification issue [1]. In general,
the AC approach has several distinguishable features over other learning approaches, such
as the highly accurate rules produced by AC algorithms, the simplicity of representing
the learned rules through the “IF-THEN” format, and its applicability to a wide range of
real-life classification problems, i.e., medical diagnosis, e-mail phishing, fraud detection,
and software defects [16]. Most AC-based methods have only been used for binary and
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multi-class classification problems [17]. In contrast, only a few efforts have been presented
to apply AC in a broader form of classification termed MLC [16].

This research presents an update to the classification based on associations (msCBA) [18]
algorithm. The improved prediction phase is a result of the new version’s usage of the
local positive dependencies among labels to reduce the large size of the problem search
space. Multi-label classification based on associations (ML-CBA) is the new name for the
improved system.ML-CBA is one of the first methods to employ AC to address the MLC
problem by exploiting local labels’ dependencies.

The paper is organized as follows: the next section briefly overviews the main concepts
related to the AC approach and surveys some of the algorithms that have attempted to
utilize AC in MLC. Section 3 describes the proposed ML-CBA algorithm and the results of
comparing it to several other MLC algorithms that use different learning strategies. Finally,
Section 4 concludes and introduces significant future work.

2. Literature Review

A brief general overview of MLC is described in Section 2.1. Few efforts have been
presented to implement AC in MLC, which are described in Section 2.2. Section 2.3 describes
the original CBA and msCBA algorithms.

2.1. MLC Overview

MLC is a general classification type with distinguishable features over conventional
single-label classification (binary and multi-class classification) [19–21]. First, in MLC, an in-
stance could be associated with more than one class label simultaneously, whereas single-
label classification requires each instance to be associated with only one class label [22].
Second, because more than one class label could apply to the same instance simultaneously,
the labels in MLC are not mutually exclusive to each other as they are in single-label
classification [22]. Finally, the complexity of SLC is very low compared with MLC [23].
MLC has recently attracted the interest of numerous researchers due to its applicability to a
wide variety of contemporary domains, including video and image annotation [24–26], clas-
sifying songs based on the invoked emotions [27], prediction of gene functionality [28–30],
protein functionality detection [31,32], drug discovery [33], mining social networks [34–36],
direct marketing [37], and Web mining [38]. Two main strategies are being used to address
the MLC issue. The first strategy involves converting the input multi-label dataset into a
single-label dataset or several single-label datasets. The modified dataset(s) are then used
to train single-label classification algorithm [23]. This strategy has been referred to as the
problem transformation method (PTM). Very few AC-based algorithms have been utilized
as a basis classifier in this method, according to the literature [15]. The second method [6]
extends a classification algorithm for an SLC to a dataset with multiple labels. This strategy
is known as the algorithm adaptation method (AAM). Several single-label classification
algorithms, including C4.5 [38], k-nearest neighbor (KNN) [39], back propagation [40],
AdaBoost [41], and naive Bayes (NV) [42], have been modified to address the MLC issue.
Unfortunately, according to the literature [15], no AC-based algorithm has been modified
to address the MLC issue.

2.2. Utilizing AC in MLC

According to the previous studies, relatively few efforts to solve the MLC issue have
used AC. Multi-class multi-label associative classification (MMAC) is among the first
methods [43] to try to use AC in MLC. MMAC turns the original multi-label dataset into
a single-label one by replicating each instance associated with more than one class label
a number of times equals to the number of the class label it is associated with, using or
without using a weight. Hence, the dataset becomes SL dataset but, with more instances
than the original one. After that, MMAC applies any SL classifier such as CBA or msCBA
on the newly transformed dataset as described in Section 2.3. MMAC then generates its
rules by combining the outcomes of single-label rules with the same antecedent ending with
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multi-label rules. Unfortunately, MMAC has only been tested on datasets with single label,
and it may be too complicated if the original dataset has many labels as well as high number
of instances [44]. A novel multi-label method based on AC is presented in [45]. The multi-
label classifier based on associative Classification (MCAC) developed a revolutionary rule
discovery approach that creates multi-label rules from a single-label dataset without the
need for learning. These multi-label rules reflect important information that most earlier
AC algorithms often disregard. The correlative lazy associative classifier (CLAC) method,
described in [46], is a hybrid algorithm that combines the principles of AC and lazy learning.
CLAC generates classification association rules (CARs) that are graded according to their
support and confidence ratings. Each class predicted by CLAC is immediately modified as
a new characteristic to predict a different class. In comparison to the BoosTexter method,
CLAC performed well on three textual datasets. The authors of [47] presented an identical
AC-based method to the MMAC algorithm. In contrast to MMAC, the suggested method
has been examined using one multi-label dataset (Scene) and emphasizes the importance
of adopting AC in addressing the MLC issue.

2.3. CBA and msCBA Algorithms

CBA is one of the earliest algorithms that merge the ARM and classification tasks. CBA
was introduced in [48]. Since then, several more techniques based on the combination of
ARM and classification have been presented. The MMAC algorithm [43] and the multi-class
associative classification (MAC) algorithm [49] are examples of algorithms that adhere to
the AC methodology. CBA employs the a priori method in a classification dataset by the
use of three key phases. At first, all continuous attributes are discretized.discretization is
the step of converting any continuous variable or attribute into a discrete one. This step
is compulsory for any AC-based classifier. Then, CARs are generated. CARs consider
rules with arbitrary combinations of elements on antecedent (the left-hand side) and a
single class on the consequent (the right-hand side). CARs are chosen using two metrics
(support and confidence). The objective of the final phase is to construct a classifier using
the best CARs [50]. CBA was subsequently enhanced in [18] by removing two flaws in
the original CBA algorithm. The first problem is the use of a single minsup (minimum
support) threshold value, which may result in an unbalanced class distribution. Using
several minsup criteria, the modified version has addressed this problem. The exponential
increase in the number of rules issued by CBA is the second flaw of the original CBA.
This problem was fixed by combining CBA to a decision tree, as in C4.5, resulting in more
precise rules. The modified version of CBA is referred to as CBA2 or msCBA, which is
short for multiple support classification based on associations. Algorithm 1 illustrates the
first CBA algorithm.

Although msCBA demonstrated higher performance in single-label classification
compared to other classifiers from different learning strategies [16], it is incapable of
handling multi-label datasets. The msCBA method assumes that each instance input has
a single class label associated with it. Hence, it generates single-label rules with a single
class label as the rule’s consequence. When extending the msCBA method to accommodate
multi-label datasets, this assumption should thus be discarded. In addition, the msCBA
method captures the global relationships between features (attributes) and class labels,
despite the fact that local dependencies and associations outperform global dependencies
and associations [51,52].



Appl. Sci. 2023, 13, 5081 4 of 16

Algorithm 1 CBA algorithm.

1: F1 = {large1− ruleitems};
2: CARk = genRules(F1);
3: prCAR1 = pruneRules(CAR1);
4: for (k = 2; Fk−1 6= φ; k ++) do
5: Ck = candidateGent(Fk−1);
6: for each data case d ∈ D do
7: C=ruleSubset(Ck,d);
8: for each candidate c ∈ C do
9: c.condsupCont++;

10: if d.class = c.class then
11: c.rulesupCount++;
12: end if
13: end
14: end
15: Fk = {C ∈ Ck|c.rulesupCount ≥ minsup};
16: CARk = genRules(Fk);
17: prCARk = pruneRules(CARk);
18: end for
19: CARs = UkCARk;
20: prCARs = Uk prCARk;

3. ML-CBA Algorithm

This section describes the planned ML-CBA. ML-CBA employs AC to address the MLC
issue. To accommodate multi-label datasets, the classification based on associations (msCBA)
method has been modified. The msCBA algorithm was selected for a number of reasons. First,
to address one of the most pressing difficulties in the field of automatic classification, namely
the construction or adaptation of an AC based classifier to classify datasets with multi-label
and create multi-label rules, given the paucity of research in this particular area [15]. Second,
msCBA was one of the first classification systems to use the association rules revealed by
the a priori method. Interestingly, it has never been modified to support MLC. In addition,
msCBA generates a classifier in the form of “IF-THEN” rules, which makes it simpler for
experts and normal users to comprehend and use. Finally, AC algorithms are adept at
uncovering latent dependencies between various objects, which increases the information
acquired during the training phase and, as a result, improves the prediction phase of the
learnt classifier. Specifically, two significant enhancements for msCBA algorithm are given
to improve its capacity to suit MLC. Initially, the single-label CARs learnt through msCBA
should be transformed into multi-label CARs using the captured local dependencies among
labels. Second, the technique for sorting the learnt CARs should be modified to account
for the operation of MLC, in which each classification rule may result in many class labels.
Figure 1 depicts ML-CBA algorithm main stages (transformation stage, number of class labels
prediction stage, constructing sub-datasets stage).

Figure 2 shows the transformation step. This step aims to generate the complete set
of the CARs and is accomplished through three main substeps: firstly, transform the input
multi-label dataset into a single-label dataset using the HSDF (high standard deviation first)
transformation method [52]. Then, apply the Bayesian-D [53] discretization technique on the
transformed dataset, in order to convert the continuous attributes into categorical attributes.
Finally, classify the transformed single-label dataset using msCBA algorithm. Both HSDF and
Bayesian-D have been chosen after a comprehensive evaluation where they showed the best
results compared to other PTMs and discretization techniques.
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Figure 1. ML-CBA primary stages.

Figure 2. ML-CBA algorithm transformation stage.

Figure 3 illustrates the phase of predicting the number of class labels that might be
linked to an example (instance). More information regarding this stage is provided in the
second step of Algorithm 2.
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Figure 3. Number of labels associated with a stage of instance learning.

Algorithm 2 ML-CBA algorithm.
Input: Multi-label dataset ( D), minsup, minconf, minacc.

Output : Multi-label CARs

begin:
Step 1:

1.1 Transform (D) into single label dataset (S) using HSDF.
1.2 Convert continuous attributes (if any) into categorical attributes, by applying

Bayesian-D discretization technique.
1.3 Construct the single label CARs for the transformed dataset that satisfy minsup

and minconf thresholds, by applying the msCBA algorithm.

Step 2:
2.1 Amend a new feature to the dataset to represent the total number of labels

associated with each instance.
2.2 For each instance in the training set, compute the total number of labels associated

with this instance, and amend it to the new feature.
2.3 Remove the label space from the dataset, and consider the last feature as a class.
2.4 Classify the dataset using msCBA algorithm.

Step 3:
3.1 Extract the label space of the input multi-label dataset.
3.2 Divide the extracted label space into (K) subsets, where k = the maximum number

of labels that are associated with the instances - 1.
3.3 For each subset, capture all the positive local correlations among labels, with respect

to the HSDF transformation order, and the minacc threshold (50%)these correlations are
considered as local; since they have been captured among a smaller subset of the dataset,
and used only when the predicted number of class labels matches the subset with this
number of class labels.

3.4 For each label, merge all the captured positive local correlations in the previous
step, with respect to the Accuracy of the association rules.

Step 4: Amend all classes that have significant positive associations with the class under
processing, to the consequent of the selected single label CAR, with respect to the
predicted number of labels.

Step 5: Sort the new multi-label rules according to Algorithm 3.
Step 6: Use the sorted multi-label rule resulted from Step 5 to classify any new instance.
End.

Figure 4 illustrates the step of constructing several sub-datasets in order to simplify
the capturing of positive local dependencies among labels, considering the predicted total
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number of class labels associated to an example. More information regarding this step is
given in Algorithm 2, Step 3.

Figure 4. Dividing the input dataset into several subsets.

Algorithm 2 illustrates the phase of predicting the number of class labels that might
be linked to an example (instance). Figure 4 illustrates the step of constructing several
sub-datasets in order to simplify the capturing of positive local dependencies among labels,
considering the predicted total number of class labels associated to an example.

After the construction of the multi-label rules, these rules are ordered and sorted,
especially the rules with the same consequences.

If more than one single-label CARs foretell the same class label, then, the one which
has the greater confidence will be applied first, as depicted in Algorithm 3. If there are
several single-label CARs with equal confidence, then, the multi-label rule which has the
highest average of the association rules used to produce its consequent is fired. If a tie
still exists, the single-label CAR rule with the highest support will be chosen. The rule
with the highest cardinality will be removed if more than one rule has equivalent values
for the aforementioned criteria. In the end, if the scores are still tied, the fired rule will be
determined by a coin toss.

Algorithm 3 Rules ordering algorithm.

Input: Set of multi-label CARs

Output: Sorted multi-label CARs

For any two given rules r1 and r2, r1 precedes r2 if:

1. The confidence of r1 is higher than that of r2.
2. Both rules have the same confidence value, but the average accuracy of association rules

that form the consequent of r1 is higher than that of r2
3. Both rules have the same confidence value, and the same association rules accuracy average,

but r1 has a higher support than that of r2.
4. Both rules have the same confidence value, the same association rules accuracy average,

the same support value, but r1 has a lower cardinality than that of r2.
5. Chose randomly when the four previous conditions are the same for r1 and r2
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3.1. Classification Phase in ML-CBA

The ML-CBA prediction method works as follows: when a test case is being processed,
and before determining the expected class label, it first considers all SL rules learned by
msCBA algorithm during the transformation phase. Second, it estimates the possible number
of class labels linked to a test example using the classifier learnt in the previous step. ML-CBA
determines the subset and resorts all local positive dependencies with the expected class
according to the consequence of the triggered rule from the transformation phase, using the
predicted class and the predicted total number of class labels linked to an instance.

3.2. Evaluation of the Proposed ML-CBA Algorithm

In this subsection, we will discuss the testing procedure of the suggested ML-CBA
approach. The proposed strategy has been programmed using Java. high standard devia-
tion first (HSDF) has been chosen as PTM. HSDF is a new PTM that attempts to maximize
the capturing and the exploitation of the positive pairwise correlation among labels. this
method works as follows: it starts with extracting the feature space of the dataset and
considering the class label as a transactional dataset. Then, using predictive a priori, HSDF
captures all the positive pairwise among labels. After that, it ranks the class labels accord-
ing to the standard deviation of the accuracy of its correlation in a descendent fashion.
The obtained rank is used to transform the original multi-label dataset to SL one. More
information regarding HSDF and other PTMs could be found in [52]. Furthermore, predic-
tive a priori and msCBA algorithms have been used as they have been implemented and
programmed in KEEL with their default settings. KEEL which is short for knowledge ex-
traction for evolutionary learning is an open source java based library for a large number of
learning strategies and models in machine learning [54]. In the evaluation phase, ML-CBA
has been compared to other MLC algorithms which take into account both global and local
dependencies and come from a wide range of learning approaches. Currently, four forms of
evaluation have been used (accuracy, Hamming loss, exact match, and one-error). Averaged
across all instances, an accuracy metric indicates the fraction of correct predictions made
for a given set of labels. Here is the formula that determines accuracy:

Accuracy =
1
t

t

∑
i=1

|(Zi∩Yi)|
|(Zi∪Yi)

| (1)

where:

Zi: the predicted label set
Yi: the ground truth label set

The Hamming Loss measures the typical amount of incorrectly labeled instances
across all labels in a multi-label dataset. Inaccurate label predictions and missed labels are
also accounted for in this metric. The lower this parameter’s value, the better the classifier
will perform. If we take the symmetric difference between the grounded truth label set and
the expected set, we obtain an expression for the Hamming loss.

Hamming Loss =
1
t

t

∑
i=1

1
q
[Zi∆Yi] (2)

where:

q: total number of labels
t: total number of instances.

The Exact Match measure is particularly limiting since it gives equal weight to accurate
and incorrect answers. In order to get this measure, the number of situations when the
predicted label and the grounded truth label match-up is averaged. Maximizing the
following equation will result in the best possible exact match:
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Exact Match =
1
t

t

∑
i=1

[Zi = Yi] (3)

Finally, the number of times the most preferred label was not included in the final
collection of projected labels is calculated using the one-error metric. Since this metric only
considers the most prominent label and disregards the others, it is clear that it is insufficient
for the MLC problem. The following formula may be used to determine how to compute
the one-error metric:

One-Error =
1
t

t

∑
i=1

[argminτi(λ) /∈ Yi, λ ∈ L] (4)

Six different datasets that belong to MLC with unique features are being used in this
paper; four are of typical dataset size (yeast, scene, emotions, and flags), while the other
two are of big dataset size (Genbase and TMC2007). Table 1 provides a description of the
six datasetsLCard is short for label cardinality and represents the average number of class
labels per instance in the datasets.

Tables 2–9 depict a comparison between the proposed ML-CBA algorithm and other
MLC algorithms, using several evaluation metrics. The compared algorithms have been
chosen to represent the three main MLC approaches. The first order approach which
ignores any correlations among labels has been represented by two algorithms (BR and
ML-KNN [39]). The second order approach which considers pairwise correlations only
has been represented by two algorithms (BP-MLL [40] and CLR [55]). Finally, the high
order approach which considers high order correlations among labels has been represented
by eight algorithms (LP [56], RAKEL [57], CC [58], PS [59], ECC [58], EPS, ML-LOC [51],
and BR+). Further, the chosen algorithms belong to both PTMs (BR, CLR, LP, RAKEL, CC,
PS, ECC, EPS, and BR+), and AAMs (ML-KNN and BP-MLL).

Table 1. Multi-label datasets characteristics.

Dataset Instances Attributes Labels LCard

Yeast 2417 103 14 4.327
Scene 2712 294 6 1.074
Emotions 593 72 6 1.868
Flags 194 19 7 3.392
Genbase 662 1186 27 1.252
TMC2007 28,596 500 22 2.16

Furthermore, the chosen algorithms capture both types of correlations: local corre-
lations (ML-LOC and LPLC [3]), and global correlations (LP, RAkEL, CC, PS, EPS, ECC,
and BR+). Finally, it is worth mentioning that the Bayesian discretizer [60] has been used
as a discretization technique in the ML-CBA algorithm.

3.2.1. An Analysis of the Proposed ML-CBA Algorithm Utilizing Datasets of Typical Size

Table 2 shows how the proposed ML-CBA algorithm stacks up against other MLC tech-
niques in terms of accuracy. Table 2 shows that out of the thirteen algorithms considered,
the ML-CBA technique has the greatest accuracy value. Finally, ML-CBA beats the other two
approaches for capturing local dependencies between labels (ML-LOC and LPLC). Further-
more, when the cardinality of the dataset is high such as in flags and yeast, the advantages
of discovering and exploiting the local positive dependencies among labels become more
obvious. “NG” denotes “Not Given” in the tables below,since the original paper where the
considered algorithm in these tables did not examine the evaluation metrics or datasets in
this paper.
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Table 2. Evaluation of the proposed ML-CBA algorithm on the regular-sized datasets using accuracy
metric, with respect to different MLC algorithms.

Correlations Type Approach Algorithm Yeast Scene Emotions Flags

ML-CBA 0.584 0.977 0.744 0.694

1st Order
BR 0.52 0.643 0.551 0.576

ML-KNN 0.52 0.691 0.366 0.555

Global Correlations

2nd Order
BP-MLL 0.185 0.212 0.276 NG

CLR 0.514 0.695 0.557 NG

High Order

LP 0.53 0.735 0.584 NG
RAKEL 0.493 0.694 0.592 NG

CC 0.521 0.736 0.584 NG
PS 0.533 0.751 0.599 NG

ECC 0.299 0.27 0.282 NG
EPS 0.537 0.751 0.599 NG
BR+ 0.4838 0.5744 0.5537 NG

Local Correlations
ML-LOC 0.51 NG 0.497 0.568

LPLC 0.542 NG 0.565 0.607

Table 3 depicts the Hamming loss results of the proposed ML-CBA algorithm, with re-
spect to several other MLC algorithms.

Table 3. Evaluation of the proposed ML-CBA algorithm on the regular-sized datasets using Hamming
loss metric, with respect to different MLC algorithms.

Correlations Type Approach Algorithm Yeast Scene Emotions Flags

ML-CBA 0.078 0.006 0.09 0.118

1st Order
BR 0.193 0.009 0.188 0.274

ML-KNN 0.193 0.085 0.262 0.284

Global Correlations

2nd Order
BP-MLL 0.322 0.057 0.433 NG

CLR 0.226 0.101 0.214 NG

High Order

LP 0.206 0.09 0.198 NG
RAKEL 0.207 0.095 0.186 NG

CC 0.211 0.1 0.197 NG
PS 0.205 0.084 0.192 NG

ECC 0.619 0.47 0.63 NG
EPS 0.207 0.085 0.193 NG
BR+ 0.222 0.258 0.226 NG

Local Correlations
ML-LOC 0.193 NG 0.21 0.262

LPLC 0.202 NG 0.197 0.279

The results for the Hamming loss evaluation show that ML-CBA algorithm has a superior
performance on the four regular-sizes datasets (yeast, scene, emotions, and flags). Table 4
depicts the exact match results of the proposed ML-CBA algorithm, with respect to several
other MLC algorithms. Table 4 shows the superior performance of the proposed ML-CBA
algorithm, comparing with variety of different MLC algorithms that follow different learning
approaches using the exact match metric. ML-CBA overcomes all other algorithms on the
four regular-sizes datasets.
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Table 4. The exact match results of the proposed ML-CBA algorithm on the regular-sized datasets
with respect to several other MLC algorithms.

Correlations Type Approach Algorithm Yeast Scene Emotions Flags

ML-CBA 0.276 0.97 0.638 0.513

1st Order
BR 0.146 0.617 0.307 0.076

ML-KNN 0.189 0.643 0.143 0.098

Global Correlations

2nd Order
BP-MLL 0.185 0.212 0.276 NG

CLR NG NG NG NG

High Order

LP 0.194 0.696 0.351 0.123
RAKEL 0.163 0.662 0.341 NG

CC 0.196 0.669 0.349 NG
PS 0.258 0.717 0.367 NG

ECC 0.243 0.007 0.022 0.191
EPS 0.253 0.715 0.366 NG

Local Correlations
ML-LOC 0.199 NG 0.261 0.115

LPLC 0.186 NG 0.303 0.123

Table 5 depicts the one-error results of the proposed ML-CBA algorithm, with respect
to several other MLC algorithms.

Table 5 shows clearly that the proposed ML-CBA algorithm has acceptable one-error
values compared with several MLC algorithms. Nevertheless, the accuracy of the ML-CBA
algorithm is higher than the Accuracy of all other MLC algorithms as depicted in Table 2.
This indicates the high benefits of capturing the local positive correlations against capturing
global correlations. Furthermore, this is a strong evidence that local correlations are
more accurate than global correlations, and thus, have a high influence on the predictive
performance of the classification task.

Table 5. The one-error results of the proposed ML-CBA algorithm on the regular-sized datasets with
respect to several other MLC algorithms.

Correlations Type Approach Algorithm Yeast Scene Emotions Flags

ML-CBA 0.258 0.009 0.123 0.145

1st Order
BR 0.227 0.262 0.256 NG

ML-KNN 0.228 0.219 0.263 NG

Global Correlations

2nd Order
BP-MLL 0.235 0.821 0.318 NG

CLR 0.241 0.323 0.291 NG

High Order

LP 0.267 0.246 0.31 NG
RAKEL 0.255 0.237 0.26 NG

CC 0.256 0.268 0.283 NG
PS 0.321 0.287 0.427 NG

ECC 0.685 0.775 0.802 NG
EPS 0.265 0.225 0.3 NG

Local Correlations
ML-LOC 0.216 0.179 NG NG

LPLC NG NG NG NG

3.2.2. Evaluation of the Proposed ML-CBA Algorithm on the Large-sized Datasets

In this subsection, an evaluation of the proposed ML-CBA algorithm on the large-sized
multi-label datasets is presented. Two large-sizes datasets (Genbase and TMC2007) are
considered in this paper. Four evaluation metrics have been considered in this evaluation
(accuracy, Hamming loss, exact match, and one-error). Tables 6–9 shows the evaluation
results of the proposed ML-CBA algorithm on the two large-sizes datasets using the
previously mentioned evaluation metrics. Table 6 depicts the accuracy evaluation results of
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the proposed ML-CBA algorithm compared against several other MLC algorithms on the
two large-sizes multi-label datasets.

From Table 6, it can be seen that ML-CBA has a superior accuracy on TMC2007 dataset,
while it has a fair Accuracy on Genbase dataset. Genbase has a very low LCard, and only 19
local positive correlations have been captured in this dataset. Table 7 depicts the Hamming
loss evaluation results of the proposed ML-CBA algorithm compared against several other
MLC algorithms on the two large-sizes multi-label datasets.

Table 6. The accuracy results of the proposed ML-CBA algorithm on the large-sized datasets,
with respect to several other MLC algorithms.

Correlations Type Approach Algorithm Genbase TMC2007

ML-CBA 0.978 0.685

1st Order
BR 0.962 0.541

ML-KNN 0.948 0.531

Global Correlations

2nd Order
BP-MLL 0.632 0.652

CLR 0.561 0.506

High Order

RAKEL 0.982 0.549
ECC 0.978 0.517
EPS 0.945 0.549

Local Correlations ML-LOC NG NG
LPLC NG NG

Table 7 clearly shows that the ML-CBA algorithm has a superior performance on the
two large-sizes datasets, especially on TMC2007 dataset. Table 8 depicts the exact match
evaluation results of the proposed ML-CBA algorithm, with respect to several other MLC
algorithms on the two large-sizes multi-label datasets.

Table 7. The Hamming loss results of the proposed ML-CBA algorithm on the large-sized datasets,
with respect to several other MLC algorithms.

Correlations Type Approach Algorithm Genbase TMC2007

ML-CBA 0.001 0.027

1st Order
BR 0.001 0.071

ML-KNN 0.005 0.073

Global Correlations

2nd Order
BP-MLL 0.004 0.098

CLR 0.004 0.068

High Order

RAKEL 0.003 0.068
LIFT 0.003 NG
ECC 0.002 0.068
EPS 0.007 0.069

Local Correlations
ML-LOC 0.001 NG

LPLC NG NG
LEAD 0.002 0.063

Table 9 depicts the one-error evaluation results of the proposed ML-CBA algorithm
with respect to several MLC algorithms on the two large-sizes datasets.

To summarize this section, the evaluation phase of the proposed ML-CBA algorithm
shows a superior performance over other MLC algorithms that capture local and global
correlations among labels on most datasets considered in this paper and using the four
evaluation metrics. The main reason for the superior performance of the ML-CBA algorithm
is the capturing of the positive local correlations among labels, which have been proven
to be more accurate, and thus, have a strong positive influence on the final classification
step of the proposed ML-CBA algorithm. Furthermore, one of the distinguishable feature
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that causes the superior performance of the ML-CBA algorithm is the strong capabilities of
the msCBA algorithm as a base classifier. msCBA is capable to capture hidden information
that help to improve the accuracy of the msCBA algorithm, and consequently, improve the
predictive performance of the ML-CBA algorithm.

Table 8. The exact match results of the proposed ML-CBA algorithm on the large-sized datasets with
respect to several other MLC algorithms.

Correlations Type Approach Algorithm Genbase TMC2007

ML-CBA 0.978 0.52

1st Order
BR 0.48 0.26

ML-KNN NG NG

Global Correlations

2nd Order
BP-MLL NG NG

CLR 0.884 0.147

High Order

RAKEL 0.964 0.256
LIFT NG NG
ECC 0.592 0.233
EPS 0.894 0.26

Local Correlations
ML-LOC NG NG

LPLC NG NG
LEAD NG NG

Table 9. The one-error results of the proposed ML-CBA algorithm on the large-sized datasets with
respect to several MLC algorithms.

Correlations Type Approach Algorithm Genbase TMC2007

ML-CBA 0.022 0.167

1st Order
BR 0.037 0.342

ML-KNN 0.055 0.32

Global Correlations

2nd Order
BP-MLL 0.368 0.445

CLR 0.439 0.425

High Order

RAKEL NG 0.253
LIFT 0 0.213
ECC 0.001 0.232

Local Correlations
ML-LOC 0.004 NG

LPLC NG NG
LEAD 0.007 0.226

4. Conclusions and Future Work

The AC learning approach has been proven to generate more accurate classifiers
than other learning approaches. Furthermore, AC algorithms usually capture hidden
information that could not be discovered by other learning approaches, and represent the
discovered knowledge through “IF-Then” rules, which make it easier to understand by all
types of users.

In this paper, an adaptation of the popular msCBA algorithm has been presented.
The adapted algorithm has been compared against several other MLC algorithms from
different leaning strategies, and using several evaluation metrics, where the adapted
algorithm (ML-CBA) showed a superior performance.

As a future work, much more research should be conducted on adapting other AC
algorithms to handle the problem of MLC, and considering different discretization techniques.
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