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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver
disease, affecting approximately 2 billion individuals worldwide with a spectrum that can range
from simple steatosis to cirrhosis. Typically, the diagnosis of NAFLD is based on imaging studies,
but the gold standard remains liver biopsies. Hence, the use of artificial intelligence (AI) in this field,
which has recently undergone rapid development in various aspects of medicine, has the potential to
accurately diagnose NAFLD and steatohepatitis (NASH). This paper provides an overview of the
latest research that employs AI for the diagnosis and staging of NAFLD, as well as applications for
future developments in this field.

Keywords: liver steatosis; artificial intelligence; deep learning

1. Introduction

Fatty liver disease has slowly turned into a “silent pandemic” in recent years, mainly
due to rising obesity and type 2 diabetes rates, with a global prevalence of approximately
25% [1]. The burden of non-alcoholic fatty liver disease (NAFLD) is, however, even greater,
and its prevalence is persistently increasing at an alarming pace [2]. This is a major concern
because even though NAFLD is generally considered harmless when it only involves
simple steatosis, it can escalate to a more severe form known as steatohepatitis (NASH),
which may lead to cirrhosis and hepatocellular carcinoma. Therefore, NAFLD is now
regarded as a significant public health concern and a risk factor for higher morbidity.

Artificial intelligence (AI) is an emerging concept that refers to methods capable
of performing tasks similar to human intelligence, such as learning and problem solving.
Machine learning (ML) involves methods capable of analysing data and learning descriptive
or predictive models. The concept of deep learning (DL) involves artificial neural networks
(ANNs) that are inspired by the neural structure of the brain. Artificial neural networks or
neural networks were introduced in 1944 by neuropsychologist Warren McCullough and
mathematician Walter Pits. Neural networks are inspired by the neural structure of the
human brain and are based on a collection of nodes called “artificial neurons” that they use
to store and identify information. They are created from input and output layers, but also
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from hidden layers, which are not directly visible at the input (Figure 1). These are layers
of mathematical functions designed to transform input data and produce a specific output.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 13 
 

structure of the human brain and are based on a collection of nodes called “artificial neu-
rons” that they use to store and identify information. They are created from input and 
output layers, but also from hidden layers, which are not directly visible at the input (Fig-
ure 1). These are layers of mathematical functions designed to transform input data and 
produce a specific output. 

 
Figure 1. Representation of a neural network (ANN). 

The human brain is organized into a complex network of about 86 billion neurons, 
and in turn, each neuron is typically connected to thousands of other neurons. A biological 
neuron consists of synapses, dendrites, a cell body and axons. In a biological neural net-
work, dendrites receive signals from other neurons and are responsible for relaying this 
information to the cell body (soma). If the sum of these signals is strong enough to activate 
the neuron (if it reaches a certain level) then it transmits a signal along the axon, which 
also reaches the other neurons whose dendrites are attached to any of the axon terminals. 
An artificial neuron (Figure 2) is a mathematical function that simulates a biological neu-
ron; it receives one or more inputs (x) that it processes to produce the desired result. In 
neural networks, neurons are connected in layers, with weights (w) relating them to their 
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known as a transfer function. A specific threshold value is used to compare the sum of the 
weights before passing through the activation function to keep the response within the 
desired range [3]. 

Figure 1. Representation of a neural network (ANN).

The human brain is organized into a complex network of about 86 billion neurons,
and in turn, each neuron is typically connected to thousands of other neurons. A biological
neuron consists of synapses, dendrites, a cell body and axons. In a biological neural
network, dendrites receive signals from other neurons and are responsible for relaying
this information to the cell body (soma). If the sum of these signals is strong enough
to activate the neuron (if it reaches a certain level) then it transmits a signal along the
axon, which also reaches the other neurons whose dendrites are attached to any of the
axon terminals. An artificial neuron (Figure 2) is a mathematical function that simulates a
biological neuron; it receives one or more inputs (x) that it processes to produce the desired
result. In neural networks, neurons are connected in layers, with weights (w) relating them
to their neighbouring neurons. The sum of the weights is then subjected to a non-linear
function, known as a transfer function. A specific threshold value is used to compare the
sum of the weights before passing through the activation function to keep the response
within the desired range [3].
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Although AANs were the first neural networks modelled after biological neurons,
(most of the time) during training, they stopped at a local minimum of the training data,
leading to over-learning. Thus, neural networks have been extended to more complex
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models, called deep neural networks (DNN). As shown in Figure 3, DNNs are composed
of a stack of neural network layers and in order to solve a task, it is necessary to process
the data from the input layers to produce an output. The higher the number of layers, the
“deeper” the network is considered.
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Artificial intelligence is gaining more and more ground through the excellent perfor-
mance it has demonstrated in various applications, with the number of AI publications in
diagnostic imaging increasing significantly in the past 15 years to more than 1000 per year.
The combination of powerful hardware, new techniques and optimized libraries have
enabled the development and use of convolutional neural networks (CNN) in the medical
field. Although the shift from expert-based feature determination to data-driven feature
learning has been gradual, DL has brought significant improvements over other ML tech-
niques in medical image diagnosis. In particular, DL techniques have been investigated for
assisting different types of diagnostic modalities (medical imaging and histopathological
diagnosis) as they can help to facilitate the quantitative evaluation of imaging data in an
objective and automatic way with high accuracy. The major improvements in DL over
other ML techniques have had a great impact on medical image diagnosis, even though the
transition from methods that use features manually determined by experts to methods that
learn features from data has been gradual.

In the field of liver imaging, AI has been oriented towards various clinical applications,
some of which were addressed in several studies on detection and characterisation, staging,
quantifying and therapy of various liver disorders such as diffuse liver diseases and focal
liver lesions (FLL) [4]. The aim of this review is to analyse the clinical impact of AI tech-
niques for patients with NAFLD, based on recent developments in ultrasound technology.

2. AI Applications and Research in NAFLD
2.1. Liver Steatosis

NAFLD encompasses a wide range of histological conditions, from isolated steatosis
to the inflammation stage, and as hepatic fibrosis progresses, it can eventually result in
cirrhosis and liver cancer. In recent decades, NAFLD has made its way into the spotlight
of serious liver diseases, and is now considered the most common cause of chronic liver
disease [1]. The increasing prevalence of metabolic disorders such as obesity, dyslipidaemia
and type 2 diabetes have made it easier to reach the actual high rates of liver steatosis. In
addition to these risk factors, NAFLD has been found to be correlated with genetic factors,
intestinal microbiota and diet. However, the knowledge on pathogenesis is still unclear and
numerous hypotheses have been proposed. Among them, the “multiple hit” hypothesis [5]
has been thoroughly investigated, suggesting that various risk factors collaborate to induce
changes in the hepatocytes, also explaining why a number of patients with NAFLD do not
progress to NASH or other hepatocytic lesions.

AI has been increasingly studied for liver steatosis in the past 5 years for the anal-
ysis of large amounts of images for the detection and classification of NAFLD. In 2018,
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Byra et al. [6] paved the way for the automatic detection of fatty liver disease, proposing a
CNN model aimed at diagnosing hepatic steatosis using B-mode ultrasound images. Their
study involved 550 such images of the liver obtained from 55 obese patients who were
scheduled to undergo bariatric interventions, 70% being diagnosed with hepatic steatosis.
They extracted features that were compatible with steatosis and then used a DL algorithm
to classify images, obtaining an overall accuracy of 96.3% compared to the hepato-renal
index (HRI) and the grey level coincidence matrix (GLCM). Since then, over 50 studies
have identified different AI-assisted methods for the diagnosis or staging of NAFLD.

Studies that investigate the performance of DL algorithms in diagnosing hepatic
steatosis from US images are relatively heterogenous regarding the AI classifier and feature
extraction. An interesting observation is that one study that used a Fuzzy neural network
also used advanced image processing methods for improving the image quality, reaching
an accuracy of 100%, underlying the importance of feature parameters [7]. However, all the
DL models investigated have achieved a very good overall accuracy, exceeding 80% [8–13].
While the data for an automated diagnosis look promising, there is still a gap for the
development of a product to meet the needs of early diagnosis. As for DL algorithms used
to categorize the severity of hepatic steatosis, it appears that majority of studies used larger
datasets, up to even over 30,000 ultrasound images [14]. Nevertheless, even studies with
a lower amount of images analysed have achieved a similar accuracy of about 90% [15].
This may suggest that the accuracy is related to the feature extraction model rather than
the AI classifier. Actually, two studies [16,17] found that ResNet had the highest accuracy
compared to other CNN models and entropy imaging. While some studies have found
that DL algorithms can differentiate moderate and severe steatosis more efficiently, other
classified early or severe steatosis more efficiently [14,17–19]. However, all the studies
concluded that AI classifiers can be reliably used for quantitative steatosis assessment,
similar to or outperforming Fibroscan and the controlled attenuated parameter (CAP),
showing a good correlation with MR spectroscopy and medical experts [14,15,17,19,20].

Moreover, two recent systematic reviews [21,22] addressed how AI can be integrated
for the diagnosis of NAFLD, NASH and liver fibrosis, as well as how it performs on ul-
trasound images to diagnose and quantify NAFLD. The first review [21], also contained
a meta-analysis which included 25 studies, showing an AUC of 0.98 for AI-assisted ul-
trasonography for the diagnosis of NAFLD, pointing out that AI-integrated methods are
capable of detecting early stage steatosis, a downside of conventional ultrasound. The
heterogeneity was relatively low, probably due to different diagnostic methods. As for the
AI identification of NASH, the heterogeneity was higher and the AUC was lower at 0.8.
The second systematic review [22] emphasised the good performance of combining AI with
ultrasonography image analyses, particularly to detect early stage steatosis. Both studies
confirm the superior performance of neural networks over non-neural networks [21,22].

2.2. Liver Fibrosis

A variable percentage of patients with NAFLD develop NASH, which furthermore
leads to fibrotic changes. Sustained and progressive fibrosis is a long-term process, but
patients can present with end-stage liver disease and fibrosis, which is also the most
significant predictor of prognosis in NAFLD. In a systematic review and meta-analysis,
Dulai et al. found that the risk for all-cause and liver-related mortality increases as the
fibrosis progresses to higher stages in patients with NAFLD [23]. Thus, accurate non-
invasive fibrosis tests play a significant role in lowering the increasing incidence of liver
cirrhosis and hepatocellular carcinoma.

The degree of liver fibrosis is also important in the evaluation of NAFLD patients, with
non-invasive methods such as real-time elastography (RTE) or shear-wave elastography
(SWE) being extensively used instead of liver biopsies [24].

RTE was proposed initially for the evaluation of liver fibrosis in chronic hepatitis with
a good correlation between the elasticity scores obtained using RTE and the histological
fibrosis stage [25]. A direct comparison between RTE and transient elastography (Fibroscan)
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showed the superiority of RTE for the diagnosis of liver fibrosis in chronic hepatitis C [26].
The method was validated in both chronic hepatitis B and C [27,28]. RTE has been used
in patients with NAFLD, with a diagnostic accuracy of 82.6–96.0% based on cut-offs of
2.47 for F1, 2.67 for F2, 3.02 for F3 and 3.36 for F4 [29]. Additionally, the Liver Fibrosis
Index was calculated based on RTE and showed a significant correlation with the increas-
ing histological severity of fibrosis in both chronic hepatitis C and NAFLD [30]. These
data were confirmed in a meta-analysis that compared transient elastography, acoustic
radiation force impulse (ARFI) imaging and RTE, indicating a similar overall accuracy for
the evaluation of significant liver fibrosis [31]. Real-time SWE is also considered accurate
for the evaluation of liver fibrosis in chronic hepatitis C, more accurate than transient
elastography for the assessment of significant liver fibrosis [32]. A recent meta-analysis
showed that pSWE and transient elastography have similar accuracies in the detection of
significant fibrosis, advanced fibrosis and cirrhosis in patients with NAFLD [33]. Even
though both methods have limitations for obese patients, 2D SWE was shown to be feasible
in severely obese patients, as it was successfully performed in 97.3% of patients and was
correlated with BMI, waist circumference, NAFLD activity score and steatosis in a uni-
variate analysis [34]. Furthermore, transient elastography, 2D SWE and MRI have similar
diagnostic accuracies for significant and especially for advanced fibrosis in patients with
biopsy-proven NAFLD [35]. Multiparametric ultrasound techniques including dispersion
slope ((m/s)/kHz), attenuation coefficient (dB/cm/MHz) and shear-wave speed (in meters
per second) allow the discrimination of inflammation (A1 to A3), steatosis (S1 to S3) and
fibrosis (F1 to F4: cirrhosis), with the combination yielding an area under the receiver
operating curve of 0.81% for patients with biopsy-proven NAFLD [36]. The introduction
of attenuation imaging represented a significant step forward in ultrasound technologies
in order to accurately quantify liver fibrosis and steatosis in NAFLD patients [37]. The
accuracy of various techniques of elastography (vibration controlled transient elastography,
pSWE and 2D SWE) in comparison with MRI in NAFLD patients was analysed in a recent
meta-analysis, showing acceptable summary estimates of the area under the receiver op-
erating curve for the diagnosis of significant fibrosis, advanced fibrosis and cirrhosis [38].
The multitude of ultrasound elastography methods used for the identification of advanced
liver fibrosis in patients with NAFLD and NASH clearly allow the quantitative charac-
terisation of inflammation, steatosis and fibrosis, but a multistep algorithmic approach is
certainly needed, with AI techniques being needed for distinct clinical decision-making
scenarios [39]. The application of non-invasive ultrasound elastography techniques such as
SWE is especially important for identifying the presence of significant fibrosis in paediatric
patients, where liver biopsy should be avoided [40].

Various AI and ML approaches have already been used for the evaluation of liver
fibrosis based on either RTE or SWE, as both methods are still difficult to interpret in a
clinical setting [41,42]. Thus, various ML classifiers (i.e., support vector machine, naïve
Bayes, random forest and K-nearest neighbour) have been employed to stage liver fibrosis
in chronic B hepatitis, outperforming the original Liver Fibrosis Index developed through
regression analyses based on RTE images [41]. Another stiffness value clustering and ML
algorithm indicated that the classification of healthy versus chronic liver disease patients
based on a support vector machine (SVM) model had 87.3% accuracy with sensitivity and
specificity values of 93.5% and 81.2%, respectively [42]. Additionally, DL has been used
to assess liver fibrosis in a recent prospective multicentric trial, showing high values of
the area under the receiver curve of 0.97 (for F4), 0.98 (for ≥F3) and 0.85 (for ≥F2) [43].
Based on 398 patients and 1990 images included, this approach yielded a better overall
performance in predicting liver fibrosis stages compared with 2D-SWE and biomarkers,
at least for the patients with chronic HBV infection. Nevertheless, both RTE and SWE
still have a significant bias with intra- and inter-observer variability, whilst automated
frameworks such as SWE-Assist can help by checking SWE image quality, selecting a region
of interest and classifying the ROI into fibrosis stages (over F2) [44]. This kind of automated
AI and DL/ML analysis based on CNNs will certainly help doctors to easily classify and
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stage inflammation, steatosis and fibrosis based on non-invasive ultrasound techniques
that are highly accurate, extremely cheap and largely available in the primary setting
or at the point-of-care. A recent meta-analysis studied AI-assisted ultrasonography and
elastography, but also CT, MRI and clinical parameters, showing high sensitivity, specificity,
PPV, NPV and diagnostic odd ratios (DORs), especially for liver steatosis, but also for
significant fibrosis, advanced fibrosis and liver cirrhosis [45].

2.3. Liver Cirrhosis

For a long time, the leading cause of cirrhosis worldwide was viral hepatitis, but NASH
and alcoholic fatty liver disease (AFLD) are soon expected to surpass it as the primary
causes of cirrhosis [46,47]. Currently, the prevalence of NAFLD-associated cirrhosis in the
United States is relatively low, at around 1–2% [48], but screening for chronic liver disease
in NAFLD high-risk groups is a key strategy for HCC surveillance programs.

The importance of elastography for the early identification of patients with liver
cirrhosis has been highlighted in a clinical guideline accompanied by a technical review
of the American Gastroenterology Association (AGA) [49,50]. Thus, non-invasive imag-
ing modalities for the evaluation of chronic liver diseases (chronic hepatitis B and/or C,
NAFLD or AFLD) prioritised VCTE and MRI elastography looking at (1) the diagnostic
performance of VCTE and MRE relative to non-proprietary, serum-based fibrosis markers
for the detection of cirrhosis in patients with chronic liver disease mentioned above; (2) the
performance of specific VCTE-defined liver stiffness cut-offs as a test replacement strategy
for liver biopsies in establishing clinical decision-making algorithms for these patients;
and (3) the performance of specific VCTE-defined liver stiffness cut-offs as a triage test to
identify patients with a low likelihood of high-risk oesophageal varices (EVs) or having clin-
ically significant portal hypertension (for pre-surgical risk stratification). Meanwhile, other
non-invasive modalities for the assessment of fibrosis (e.g., RTE, ARFI or pSWE/2D-SWE)
or steatosis (CAP or MRI—estimated proton density fat fraction) have been developed
and will certainly be used in clinical decision-making practice algorithms [51]. Thus, ac-
cording to the latest data, a “rule of five” for LSMs with VCTE and a “rule of four” for
LSMs with the ARFI-based techniques have been proposed to discriminate various fibrosis
stages. Furthermore, in patients with advanced CLD, the risk of liver decompensation
increases with an increasing liver stiffness value, whilst SWE has been proposed as a risk
predictor of morbidity and mortality in patients with cirrhosis. Both VCTE and ARFI tech-
niques have already been validated as non-invasive methods for the screening of varices
in this setting. Even more, LSM measurements were part of predictive algorithms for
HCC occurrence in this high-risk population with advanced chronic liver diseases. For
clinical validation, the AGA studied patients with NAFLD and predicted advanced liver
fibrosis [52]. Thus, patients aged over 18 with a Fibrosis-4 (FIB-4) score of less than 1.3 and
an LSM of <8 kilopascals (kPa) by VCTE have a low risk of significant fibrosis, although
other strategies were deemed necessary to predict patients with advanced fibrosis.

Based on all these endeavours and the plethora of non-invasive markers used for
risk prediction in chronic liver diseases, it is obvious that AI and DL/ML techniques will
be the future avenue for assessment of these patients. Conventional approaches based
on ANNs and parenchymal echo patterns of greyscale imaging were already employed
even 25 years ago in order to better assess chronic hepatitis and regenerative nodule
characteristics of liver cirrhosis [53]. The same group employed a similar methodology to
assess the risk of HCC in liver cirrhosis patients [54,55]. The next step was to analyse the
Doppler information yielded by colour flow and pulsed Doppler measurements using an
ANN [56]. Thus, several US parameters (liver parenchyma, thickness of spleen, hepatic
vein waveform, hepatic artery pulsatile index and hepatic vein damping index) were used
to establish an ANN model capable of quantifying advanced liver fibrosis or cirrhosis.
ANNs including several serological tests (either alone or combined into scores) and liver
stiffness measurements based on VCTE were further analysed for the diagnosis of cirrhosis
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and significant portal hypertension and oesophageal varices (with an estimated accuracy
of over 80%) [57].

DL approaches have developed over time and have led to the automatic classifica-
tion of liver fibrosis, in comparison with non-deep learning-based algorithms (artificial
neural networks, multinomial logistic regression, support vector machines and random
forests) [58]. CNNs used in this particular study lead to higher areas under receiver op-
erating characteristic curve, with values of up to 0.85–0.95 when automatically scoring
liver fibrosis stages. Another study focused on the prediction of the METAVIR score based
on a –four-class model (F0 vs. F1 vs. F2–3 vs. F4) based on 3446 patients and 13,608 US
images, validated on a separate internal set (266 patients and 300 images) and an external
set (572 patients and 1232 US images) [59]. The areas under the receiver operating curve
(AUROC) for classification of liver cirrhosis were 0.901 (internal test set) and 0.857 (external
test set). Moreover, the AUROC for the DCNN classification of liver cirrhosis based on US
imaging was significantly higher than all five radiologists, at least for the prediction of the
METAVIR score.

ML is useful to predict bleeding oesophageal varices in compensated advanced chronic
liver disease, based on laboratory measurements and liver stiffness measurements used
to generate an AI algorithm based on extreme-gradient boosting [60]. The study included
828 patients with advanced chronic liver diseases and oesophageal varices, mostly with
NAFLD, AFLD and hepatitis B and C, with the DL-assisted algorithm exhibiting an accuracy
of 98.7% in predicting variceal bleeding, better than endoscopic classification alone, which
reached only 58.9%. A similar multicentric approach (17 institutions from China, Singapore
and India) used an ML-based strategy to predict the presence of high-risk varices in
compensated cirrhosis to avoid unnecessary endoscopies based on liver stiffness, platelet
count and total bilirubin [61]. The model worked well for the prediction of high-risk varices,
and is also accompanied by a web-based calculator (http://www.pan-chess.cn/calculator/
MLEGD_score, accessed on 4 March 2023). Thus, the ML-based model spared 52.6% of
unnecessary endoscopies (in the training cohort) with a missed high-risk varices rate of
3.6%, and spared 58.1% (in the validation cohort) with a missed high-risk varices rate of
1.4%. Similar numbers were also obtained based on two separate external test cohorts.

Another ML model was used to predict portal vein thrombosis (PVT) after splenectomy
in portal hypertension patients, with a good accuracy and a satisfactory agreement between
prediction models and real life observations [62].

2.4. Liver Tumours

Approximately 25% of patients with NAFLD may develop steatohepatitis (NASH),
which is further associated with other complications of liver cirrhosis (hepatic encephalopa-
thy, ascites and hepato-renal syndrome, upper gastrointestinal bleeding, etc.) and develop-
ment of HCC. The prognosis of HCC is considered dismal as it represents the 2nd leading
cause of cancer-related death worldwide. A particular feature of NAFLD-associated HCC
is that it involves a higher risk of non-cirrhotic HCC compared to other chronic liver
diseases [63], accounting for about 25–45% of the total cases of HCC in NAFLD patients [64].
The epidemiology for NAFLD-associated HCC is similar to NAFLD cirrhosis, with data
from the first decade of this century indicating that NASH has become the second most
common cause of HCC leading to liver transplants in Unites States [65].

A recent clinical practice update from the American Gastroenterological Association
addressed the topic of surveillance of NAFLD for HCC, including optimal screening tools,
frequency of monitoring and the presence of risk factors [66]. An interesting approach was
to develop a SWOT (strengths, weaknesses, opportunities and threats) analysis in order
to identify non-invasive tests used in NAFLD to select high-risk patients for NASH. The
facilitates the surveillance of HCC in order for early diagnosis and to possibly treat and
assess the effectiveness of interventions [67].

An initial systematic review focused on medical imaging and artificial intelligence
identified 11 initial papers that studied the differential diagnosis of focal liver lesions (FLL),

http://www.pan-chess.cn/calculator/MLEGD_score
http://www.pan-chess.cn/calculator/MLEGD_score
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with the aim of diagnosing, segmenting or differentiating HCC based on various CNN
techniques [68]. Whilst conventional ANNs were scarcely used initially [69–71], it soon
became clear that a more structured approach using DL and CNNs would be needed for
automatic recognition of HCC areas in ultrasound images [72].

A recent review analysed the value of AI and DL for the diagnosis, prognosis and ther-
apy of HCC [73]. Newer techniques integrate sets of textured features into ensemble models
further analysed by CNN to differentiate normal liver, chronic hepatitis, liver cirrhosis
and HCC with an overall accuracy of 96.6% [74]. Furthermore, real-time systems based on
full-length ultrasound movies have recently been developed, achieving an overall detection
rate of 89.8%, significantly higher than that achieved by non-radiologist physicians and
radiologists [75].

Nevertheless, for correct assessment, contrast-enhanced ultrasound (CEUS) should
be employed, as this has better accuracy than greyscale ultrasound imaging alone [76].
Quantitative analysis approaches have been developed recently to avoid errors induced
by motion artifacts and the dynamic changes in contrast enhancement during different
vascular phases (arterial, portal and venous), achieving an accuracy of 0.84 in the distinc-
tion between benign and malignant phases [77]. Similar DL approaches are useful for the
differential diagnosis of focal nodular hyperplasia and atypical HCC [78] or for the differ-
ential diagnosis of HCC and intrahepatic cholangiocarcinoma [79]. Last, but not least, a
similar approach has been employed in the evaluation of patients after therapy, either after
transarterial chemoembolization, microwave/radiofrequency ablation or surgery [80,81].

3. Discussion

For the automatic diagnosis of liver steatosis, out of the algorithms discussed, CNNs
exhibit superior performance compared to more basic logistic regression models. AI models
can accurately detect early stage steatosis on a level similar to or outperforming other non-
invasive techniques (Fibroscan and CAP). These models could thus be used as a screening
tool for identifying patients with NAFLD, even in early stages, in the general population. In
addition, the utilization of CNN classification algorithms has the potential to replace liver
biopsies for assessing the severity of NAFLD and liver fibrosis in certain patients. CNNs
have successfully graded F3 and F4 fibrosis using 2D SWE, surpassing the performance of
only 2D-SWE and biomarkers, proving it can be the current standard for classification of
advanced fibrosis and cirrhosis. CNNs also demonstrate exceptional performance in the
classification of liver tumours (detection, characterization and segmentation). Even though
real-time systems achieve a high detection rate, for the moment, AI can only be regarded as
an assistant for image interpretation.

Moreover, another area where DL can assist clinicians in quick and accurate decision
making is in AI automated ultrasound report generation. Usually, the process of writing
comprehensive reports on the ultrasound assessment can be cumbersome, time consuming
and prone to error. Thus, DL can answer this need by image caption algorithms, which
involves computers generating captions by processing visual inputs such as images [82,83].
An interesting approach will be to use generative pre-trained transformer (GPT)-based
models, which have suggested in a variety of applications for report generation, educational
support, clinical decision support, patient communication and data analysis [84]. For
example, ChatGPT is a variant of GPT that is fine-tuned for conversational language
understanding and generation, possibly useful for radiologists and ultrasonographers,
with various advantages but also limitations.

Undoubtedly, AI has generated extensive discussions with great excitement, but there
are still limitations and obstacles to be addressed and to take into consideration in future
research in this area. These include various different diagnostic methods among studies,
the need for large and standardized image databases, the use of different AI classifiers
in research, implementation of classification models in hardware for clinical use and
overdiagnosis by detecting minor changes that could indicate indolent disease.
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4. Conclusions

Data from medical imaging research support the implementation of AI in healthcare
settings, with clinical implications such as improving the performance of early stage
NAFLD diagnosis, accurately quantifying NAFLD and estimating the stage of liver fibrosis,
decreasing subjectivity and minimizing human errors, as well as introducing computer-
aided diagnosis for less experienced doctors.

Thus, in the future, considering all the presented research, AI techniques integrated
with ultrasound could support clinical decision making in the management of NAFLD
patients. However, despite the increasing interest in this area of research, currently there
are only a limited number of clinically approved and available applications for diagnosis
and prognosis of NAFLD. The next step in implementing AI-assisted models in clinical
practice is to extend the research in larger studies with external and prospective validation
and to improve the healthcare infrastructure.
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