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Abstract: South African agriculture accounts for 62% of the national water demand. Almost 45% of
the water is wasted. Therefore, irrigation systems need to improve their water-use efficiency (WUE).
However, the WUE of smallholder irrigation schemes in the country, including Agri-Parks, is not
precisely known. A study was performed at four Agri-Parks (Rooiwal, Soshanguve, Tarlton, and
Westonaria) in Gauteng province to assess the condition and performance of the irrigation systems,
as part of a project that aimed to develop a WUE model for smallholder irrigation systems. The
Agri-Parks were equipped with efficient irrigation systems in forms of drip and microjets. The
assessments were performed at the system component level in February–March 2021. A Condition
Assessment Model (CAM), developed by ARC-NRE/AE, was used for the condition assessment.
Enumerators observed the system components visually and assigned conditions, which they up-
loaded into the model to generate condition indices (CIs). Water conveyance efficiency (CE) and
distribution uniformity (DU) were assessed on delivery and infield systems, respectively. The CI
values ranged 4–6, implying significant deterioration had occurred. The CE was 61–78%, while the
DU was 60–95%. The infield system CI correlated positively with the DU, suggesting the CI could
predict the DU in drip systems, which was encouraging for the proposed WUE model. However,
further research covering a longer period and more Agri-Parks is recommended.

Keywords: Agri-Parks; condition index; performance evaluation; irrigation water management

1. Introduction

Water is a limited resource in many countries where agriculture is the cornerstone for
food security, economic development, and poverty reduction. In general, agriculture is the
biggest user of water worldwide accounting for 70–90% of water utilization [1,2]. Most of
the agricultural water use is for irrigation because its contribution to food security is very
significant [3,4]. While only 20% of the global agricultural land is irrigated, about 39% of
the food supply across the world is produced under irrigation. Irrigation also improves the
efficiency of production inputs, such as fertilizers, improved seeds, and agrichemicals [5].
However, water losses in agriculture, in particular irrigation schemes, are generally high [6].
In South Africa, where agriculture accounts for 62% of the national demand [7], the water
losses from agriculture are estimated at about 45% of the water supplied [8]. Irrigation
schemes are reported to account for about 27% of the water losses, with about 12% of the
losses occurring in conveyance networks [8]. However, the challenge of water scarcity
in South Africa goes beyond the losses in agriculture and the inefficiency of irrigation
systems. In a review of challenges and opportunities for water conservation in South
African irrigated agriculture, ref. [9] cited the impact of climate change as the major driver
of water scarcity.

South African irrigation schemes are under pressure to improve their water-use effi-
ciency [10]. Efficient use of irrigation water is crucial for regions where water resources are
diminishing [11]. Efficient water-dispensing irrigation systems and good water manage-
ment are important for high water-use efficiency (WUE) in irrigation schemes. All types of
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irrigation systems can potentially be managed to achieve high WUE, but pressurised piped
systems offer better prospects than surface flood irrigation methods. The main advantage
of the piped systems is their adaptability to almost all crop types, variable topographic
conditions, and soil types. However, the pressurized systems are more costly to install and
manage than the flood irrigation methods.

Modern low-pressure-requiring systems, such as drip, microjet, and micro-sprayer,
systems are more efficient than traditional systems, such as impact sprinklers and pivots,
in terms of water application [12]. For instance, the drip system, which applies water
slowly but steadily at frequent rates, can save large amounts of water because evaporative
losses are very low as the water is applied close to plants. A properly designed, installed,
and managed drip system can achieve high water application efficiency in the range of
90–95% [10,11] compared against other systems, such sprinkler systems, whose efficiency
is around 70% [13]. High water-application efficiency results in water savings [14] and
improves water productivity [15]. Another important aspect of drip irrigation is its ability
to combine water and chemical applications, which saves time and labour, and improves
the uniformity of chemical applications. The drip system is also compatible with almost
all crop types due to its flexibility on row spacing. However, the adoption rate of the drip
irrigation system is generally low [16] due to several challenges that include a high capital
cost to install the system and the proneness of the emitter to clogging by accumulated
salts and suspended materials in the water, which expose farmers to frequent cleaning
and replacement schedules. Farmers also perceive irrigation to be synonymous with the
wetting of the soil surface, which a drip system does not do appreciably.

The application efficiency of irrigation systems is evaluated during design and op-
eration of the systems [17]. System performance changes over time due to deterioration
of equipment. Hence, it is important to assess performance [18,19] to understand current
levels and factors of influence [6,20], which is crucial when trying to solve problems of
irrigation development and management [1]. Nevertheless, system performance also varies
across farms due to differences in management choices and practices. Smallholder irriga-
tors generally lack the means and incentives to know the amount of water they use, their
water application rates, and the responses of their crops to different water management
practices [10]. In addition, they also lack information on the condition and water delivery
performance of their irrigation infrastructure. A study was carried out at selected Agri-
Parks in Gauteng Province, South Africa. The aim was to evaluate the correlation between
condition of irrigation infrastructure and its performance in terms of water delivery.

2. Materials and Methods
2.1. Study Sites

The study was performed at four selected Agri-Parks in Gauteng province of South
Africa, namely Rooiwal, Soshanguve, Tarlton, and Westonaria (Figure 1). An Agri-Park
is a market-driven integration of agricultural activities to form a networked innovation
system of agro-production, processing, logistics, marketing, training, and extension services.
Agri-Parks contribute immensely to food security, economic development, and poverty
reduction, especially among women and youth. There are 44 Agri-Parks dotted across
South Africa, some of which have collapsed [21]. The four selected Agri-Parks in Gauteng
province were active at the time of the study and were easy to access.
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Figure 1. Map of Gauteng province showing locations of Soshanguve, Rooiwal, Tarlton, and 
Westonaria relative to the cities of Pretoria and Johannesburg. Insert is a map of South Africa 
showing the location of Gateng Province. 

According to the Weather Atlas (www.weather-atlas.com, accessed on 16 November 
2022), the climatic characteristics for the four study sites differed significantly. The aver-
age precipitation for Soshanguve and Rooiwal, which are in the northern zone of Gauteng, 
are 583 and 516 mm year−1, respectively. The average precipitation for Westonaria is 541 
mm year−1. Tarlton is the driest site with average precipitation of 441 mm year−1. Long-
term average temperature also varies greatly with Soshanguve and Rooiwal averaging 
18.5 and 18.8 °C, respectively. The respective average temperatures for Tarlton and Wes-
tonaria are 23.8 and 15.9 °C, respectively. Soil properties also show great variability with 
Rooiwal and Tarlton exhibiting loamy soils, while Soshanguve has gravelly soil and Wes-
tonaria sandy soil. 

The drip irrigation system was the irrigation technology used at the selected sites. It 
is the most efficient irrigation water application system with a capacity to deliver water 
and chemicals precisely and uniformly at a higher frequency of application than other 
systems [5]. It offers many advantages over other irrigation methods, such as reduced 
hazard of runoff and erosion on steep slopes; leaching of excessive salts and phytotoxins 
from the root zone; adaptability to remote areas without pressurized water systems; con-
servation of water where it is costly or scarce; and promotion of deep root growth and 
better plant development [22]. Conventional methods of irrigation have not been efficient 
in the use of water, thus, resulting in excessive wastage of water and creation of environ-
mental problems, such as waterlogging and salinity [4]. Tomato and green pepper were 
the dominant crops at the selected Agri-Parks. However, coriander was also an important 
crop at Rooiwal. 

  

Figure 1. Map of Gauteng province showing locations of Soshanguve, Rooiwal, Tarlton, and West-
onaria relative to the cities of Pretoria and Johannesburg. Insert is a map of South Africa showing the
location of Gateng Province.

According to the Weather Atlas (www.weather-atlas.com, accessed on 16 November
2022), the climatic characteristics for the four study sites differed significantly. The average
precipitation for Soshanguve and Rooiwal, which are in the northern zone of Gauteng,
are 583 and 516 mm year−1, respectively. The average precipitation for Westonaria is
541 mm year−1. Tarlton is the driest site with average precipitation of 441 mm year−1. Long-
term average temperature also varies greatly with Soshanguve and Rooiwal averaging 18.5
and 18.8 ◦C, respectively. The respective average temperatures for Tarlton and Westonaria
are 23.8 and 15.9 ◦C, respectively. Soil properties also show great variability with Rooiwal
and Tarlton exhibiting loamy soils, while Soshanguve has gravelly soil and Westonaria
sandy soil.

The drip irrigation system was the irrigation technology used at the selected sites. It
is the most efficient irrigation water application system with a capacity to deliver water
and chemicals precisely and uniformly at a higher frequency of application than other sys-
tems [5]. It offers many advantages over other irrigation methods, such as reduced hazard
of runoff and erosion on steep slopes; leaching of excessive salts and phytotoxins from the
root zone; adaptability to remote areas without pressurized water systems; conservation
of water where it is costly or scarce; and promotion of deep root growth and better plant
development [22]. Conventional methods of irrigation have not been efficient in the use of
water, thus, resulting in excessive wastage of water and creation of environmental problems,
such as waterlogging and salinity [4]. Tomato and green pepper were the dominant crops
at the selected Agri-Parks. However, coriander was also an important crop at Rooiwal.

www.weather-atlas.com
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2.2. Experimental Layout

Agri-Parks consist of several irrigation blocks that share water from boreholes at the
sites. A typical irrigation block layout consists of a borehole, mainline pipe, storage tank or
nest of storage tanks, booster pump, and several greenhouse/shade net tunnels serviced
by a sub mainline from the booster pump (Figure 2). The tunnels constitute the irrigation
units where water is applied through the drip systems. One irrigation unit at each of the
selected sites was randomly chosen for the current study. Figure 2 show a schematic layout
of an irrigation block as used in the study.
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emitter positions along the lateral lines.

2.3. Data Collection

Data collection was performed during the period February to March 2021. The ir-
rigation block selected at each site was divided into five components to facilitate data
collection and analysis, namely Pump–Tank, Tank–Booster pump, Booster pump–Filter
unit, Filter unit–Manifold, and Infield system. Analysis was performed at the level of
these components because remedial actions (maintenance, repair, and/or replacement)
were targeted at the level of system components. Nevertheless, each component had its
own subcomponents.

2.3.1. Condition Assessment

Data on the condition of the irrigation infrastructure at the selected Agri-Parks were
captured and processed using a Condition Assessment Model developed by ARC-NRE/AE
(funded by the Gauteng Department of Agriculture, Rural Development and Environment).
Data collection involved visual observations and scoring of the visual indicators. The data
collection was performed by ARC-NRE/AE engineers. Data collection involved scoring
of visual observations of the subcomponents; however, the analysis outcomes generated
automatically by the model were at the component level. The model was developed
following an Analytical Hierarchical Approach, where irrigators, irrigation equipment
suppliers, and experts from the irrigation field were interviewed to help with weighting of
factors and subfactors that affect the condition of the irrigation infrastructure. Therefore, the
resultant condition index for each component factored in the relative contribution of each
subfactor and factor to the condition of a subcomponent. The resultant condition indices
for the components were interpreted following Table 1, which was adopted from [23].
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Table 1. Condition scores used to rate the irrigation infrastructure at the Agri-Parks, Gauteng province
(adopted from [23]).

Scale Linguistic Scale Criteria Action Needed

9–10 Excellent Newly/recently installed. No action required.

8–9 Very good Like new with no signs of
corrosion or deterioration. Reassess in 15 years.

6–8 Good
Coatings, linings still intact.
Remaining wall thickness more
than 90% of original.

Reassess in 10 years.
Schedule for cathodic
protection within next
5–10 years.

4–6 Moderate

Some damage to coatings
and/or linings noted. Remaining
wall thickness 75% or more
of original.

Reassess in 3–5 years.
Schedule for lining and
rehabilitation within next
5–10 years.

3–4 Poor

Significant signs of
internal/external corrosion.
Collapse inevitable. No lining
or coatings. Leaking. Remaining
wall thickness 50–75%
of original.

Schedule for rehabilitation
or replacement within next
3–5 years.

<3 Critical

Severe internal or external
corrosion.
Collapse evident. Large
cracks/holes.
Remaining wall thickness less
than 50% of original. Breakage
rate > 3.

Immediate repair or
replacement required.

2.3.2. Performance Assessment

• Conveyance efficiency

Performance assessment was also for both the off-field and infield components. When
water passes through the system, every component of the system causes a head loss, which
in turn influences efficiency of delivery. In addition, water loss through leakages also
affects water delivery efficiency. The off-field components were assessed for water delivery.
Therefore, water flow (Q, m3/s) in pipes constituting the delivery systems between main
pumps at boreholes and manifolds at edges of the irrigated lands was measured using an
ultrasonic flow transducer (FLEXIM GmbH, Berlin, Germany). The measurements were
performed during normal irrigation operating periods when water was running in the
pipes. The transducer was calibrated for pipe size, material, fluid type, and temperature
before measurements could be performed. Flow measurement was performed at the inlet
(inflow) and outlet (outflow) of each component, and the difference between the inflow
and outflow constituted a water loss. Conveyance efficiency (CEi) was the preferred flow
performance index and was computed using the equation:

CEi = 100
Qin − Qout

Qin
(1)

where CEi = conveyance efficiency (%) for the ith component; Qin and Qout = inflow and
outflow rates (m3/s), respectively. The overall conveyance efficiency (CE) at each Agri-Park
was computed as the product of the conveyance efficiencies for the system components.

• Distribution uniformity

In addition to head losses, energy loss in the water flowing through pipes also influ-
ences the variation of discharge, for example, from the first to the last emitter of a system [3].
Head loss was not investigated in the current study. Drip emitter discharge (qe, L h−1) was
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measured at five positions on each of three selected drip lines (Figure 2). The qe values
were subsequently used to compute the Distribution Uniformities (DUs, %) for each system
using the following equation:

DU =
qe−1/4

qe
(2)

where DU = distribution uniformity (%); qe−1/4 = average emitter discharge rates for the
lower quarter of the discharge data set in terms of discharge rate, and qe = average emitter
discharge rate for all the measured values.

2.4. Statistical Analyses

Simple statistics were used to analyse and compare the condition and performance of
the system components at the selected Agri-Parks. Significancy of differences were tested
using the t-test at p < 0.05.

3. Results
3.1. State of Infrastructural Condition

Table 2 shows the condition indices (CIs) for different irrigation system components as
generated using the Condition Assessment Model. The CI values varied greatly among the
components at a selected Agri-Park and across the Agri-Parks. The CI values at Rooiwal,
varied from 4.71 for the Tank–Booster pump to 5.99 for the Pump–Tank. Therefore, the
irrigation infrastructural condition at this Agri-Park was interpreted to be in moderately
good condition. The Booster pump–Filter unit at Soshanguve was in the worst condition
(CI = 2.73), while the Pump–Tank was in the best condition (6.29). The other components at
this Agri-Park were in moderately good condition with CI values varying from 4.10 (Booster
pump–Filter unit) to 5.48 (Filter unit–Manifold). Similar to the situation at Soshanguve,
the Pump–Tank component at Tarlton was also in the best condition (6.25) amongst all the
system components at this Agri-Park. The other components were in moderately good
condition (4.90–5.65). Amongst the four Agri-Parks assessed, Westonaria had the worst
Pump–Tank (5.61) and Booster pump–Filter unit (2.12) conditions. Overall, the Pump–Tank
was in the best condition (5.61–6.29) at all Agri-Parks. The infield systems exhibited surpris-
ingly similar conditions with CI values varying marginally between 5.00 and 5.05. Neverthe-
less, the infield CIs decreased in the order Rooiwal > Tarlton > Westonaria > Soshanguve.

Table 2. Condition indices (CIs) for irrigation infrastructure components at the Agri-Parks, Gauteng
province (February–March 2021).

Irrigation System Component
CI

Rooiwal Soshanguve Tarlton Westonaria

Pump–Tank 5.99 6.29 6.25 5.61
Tank–Booster pump 4.71 4.10 4.90 4.43
Booster pump–Filter unit 4.90 2.73 5.54 2.12
Filter unit–Manifold 5.52 5.48 5.65 5.60
Infield 5.04 5.00 5.05 5.02

3.2. Water Conveyance Efficiency

Water conveyance efficiency (CE) varied greatly across the Agri-Parks with CE val-
ues hovering between 81 and 99% (Table 3). Rooiwal had CE values varying between
92 and 97% for the Filter unit–Manifold and Main pump–Tank, respectively. Soshanguve
values ranged from 81% for the Filter unit–Manifold to 99% for the Tank–Booster
pump. Tarlton Agri-Park exhibited the lowest CE value of 83% for the Main
pump–Tank and the highest value of 94% for the Booster pump–Filter unit. The Booster
pump–Filter unit performed the poorest at Westonaria with a CE value of 73%. However,
its Tank–Booster pump component performed impressively at 98% CE. Overall, the per-
formance of the Agri-Parks in terms of water conveyance efficiency declined in the order
Rooiwal > Soshanguve > Tarlton > Westonaria (Table 3).
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Table 3. Conveyance efficiency (CE) for irrigation infrastructure components at the Agri-Parks,
Gauteng province (February–March 2021).

Section
CE (%)

Rooiwal Soshanguve Tarlton Westonaria

Main pump–Tank 94 86 83 89
Tank–Booster pump 97 99 91 98
Booster pump–Filter unit 93 99 94 73
Filter unit–Manifold 92 81 93 96
Overall CE (%) 78 68 66 61

3.3. Emitter Discharges

Emitter discharge (qe) varied greatly across the Agri-Parks with Soshanguve showing
much lower values in comparison to the others (Figure 3). Performance in terms of the
overall average qe decreased in the order Tarlton > Westonaria > Rooiwal > Soshanguve
with respective qe values of 1.42 ± 0.02, 1.12 ± 0.07, 1.10 ± 0.01 and 0.51 ± 0.01 L h−1.
Therefore, the average qe for Tarlton was the most significant, while that for Soshanguve
was the least significant. There was no significant difference in the average qe between
Rooiwal and Westonaria.
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The qe also varied along the drip lines at each Agri-Park; however, the differences
were not always significant. The trend of qe along the drip lines varied from one Agri-Park
to the other. Rooiwal exhibited a general increase in qe along the drip lines culminating
in the highest qe at L3/4 (1.15 ± 0.03 L h−1) and L (1.15 ± 0.01 L h−1), which were not
significantly different (Figure 3A). The lowest qe occurred at L0 (1.06 ± 0.04 L h−1); however,
it was not significantly different from L1/4 (1.08 ± 0.00 L h−1) and L1/2 (1.08 ± 0.01 L h−1).
Soshanguve showed a general decrease in qe from the inlet to the middle of the drip
lines followed by an increase in the downstream direction (Figure 3B). However, the
differences of qe were not significant with values varying from 0.43 ± 0.11 L h−1for L1/2 to
0.59 ± 0.11 L h−1 for L0.
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In contrast, Tarlton’s qe increased from L0 to L1/4 and then decreased to L1/2 followed
by an increase (Figure 3C). The highest qe (1.59 ± 0.12 L h−1) occurred at L1/4 and the
lowest at L1/2 (1.27 ± 0.07 L h−1), which were significantly different. The qe for the other
measurement positions on the drip lines were not significantly different. Westonaria
exhibited a general decrease in qe in the downstream direction (Figure 3D); however, there
was no significant differences among the qe. Therefore, the highest qe (1.40 ± 0.31 L h−1)
occurred at L0 and the lowest at L (0.83 ± 0.34 L h−1).

3.4. Distribution Uniformity

The computed distribution uniformities (DUs) also showed big variations among the
Agri-Parks (Figure 4). Nevertheless, all the DUs were greater than 50%. The Agri-Park-level
DU performance decreased in the order Rooiwal > Tarlton > Westonaria > Soshanguve with
DU values of 95, 86, 67, and 60%, respectively. Nevertheless, these values were generally
lower than expected for pressure-compensated drip irrigation systems. Comparing these
values with the standard DU for drip irrigation of 85% [24], indicates that only Rooiwal
and Tarlton were performing at the acceptable level, while Westonaria and Soshanguve
performed poorly. Noteworthy is that the value of 86% for Tarlton can be a cause for
concern as it is just above the acceptable limit.
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4. Discussion

Evaluating the condition of irrigation infrastructure is essential because the condition
reflects on the level of management and maintenance on the systems. Moreover, the condi-
tion often correlates with the performance of the systems. Irrigation system performance
is generally evaluated using several parameters and/or indicators at a time [5,17,24,25]
because none of the performance parameters are individually conclusive. The authors [5]
used distribution uniformity (DU), coefficient of uniformity (CU), emission uniformity
(EU), application efficiency (AE), and potential application efficiency of the lower quar-
ter. The authors [24] used CU, delivery performance ratio, irrigation productivity, labour
requirement, and water quality. The authors [25] used CU, EU, and DU. The authors
of [17] used a mix of indicators from [5,24]. The choice of parameters depends on whether
the assessment is focusing on technical or physical characteristics of the system, aim of
assessment, components to be assessed, taste and experience of the evaluator(s), and many
other considerations.
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Despite no access to baseline data for all the four study sites, the condition assess-
ment results suggest the systems had deteriorated significantly [23]. The condition indices
(CIs) varied from 2.12 to 6.29 (Table 2). According to [23], the CIs of <3 for the Booster
pump–Manifold at Soshanguve and Westonaria (Table 1) implied a need for immediate
replacement because the components had deteriorated beyond meaningful repair. Most
of the irrigation system components at the Agri-Parks had CIs between 4 and 6, which
implied their use could only be allowed for the next 3–5 years with a reassessment to be
performed within the same period. In addition, there is need for the Agri-Parks to plan
for repairing the components in 5–10 years’ time from the date of the current assessment.
The components with CIs > 6, such as the Main pump–Tank components at Soshanguve
and Tarlton, were in good condition at the time of the current assessment with clear signs
of recent repair works. The recommendations on continued use with contingent plans
for repairs are only valid in the absence of a sudden and drastic deterioration during the
intervening period. For instance, thefts and vandalism of the system components can inval-
idate the recommendations. It is, therefore, important to note that the recommendations
presented [23] depend on component material responses to the vagaries of the natural
operating environments.

It was surprising to observe that some components performed well despite their very
poor condition as depicted by their CI values, and some performed not so well despite
their good condition (compare Tables 2 and 3). For example, the Booster pump–Filter
units at Soshanguve and Westonaria performed well with conveyance efficiencies (CEs)
of 99 and 73%, respectively, despite the very low respective CIs of 2.73 and 2.12. This
was indicative of the fact that sometimes patchwork repairs can be effective, especially in
the smallholder systems where resources are limited. Rubber and plastic were evidently
used to reduce water leaks from broken subcomponents at the Agri-Parks. However, the
success of patchworks cannot be guaranteed as evidenced by the poor performance of the
Booster pump–Filter unit at Westonaria. In contrast, the good condition of the Pump–Tank
components at Soshanguve and Tarlton did not result in impressive water CEs, where
the respective values were 86 and 83%. Nevertheless, Soshanguve still performed better
in terms of water conveyance than Tarlton despite the poorer condition, which brings to
fore the impact of good management skills and experience. Soshanguve is managed by an
individual farmer who has hired a skilled labour force to operate the system daily, while
the co-operative of more than five individuals at Tarlton is less-skilled.

Drip irrigation is one of the most efficient irrigation systems when it is managed and
maintained properly [26]. The distribution uniformity results show pristine performance at
Rooiwal, acceptable performance at Tarlton, and below-acceptable standard at Westonaria
and Soshanguve (Figure 4). The results of the study show a close link between the infield
infrastructural conditions and distribution uniformity, with both parameters decreasing in
the order Rooiwal > Tarlton > Westonaria > Soshanguve. This close relationship suggests
that the condition indices could be used as predictors of distribution uniformities in drip
irrigation systems at the Agri-Parks. However, there was no clear relationship between the
condition indices, on one hand, and conveyance efficiency and emitter discharge, on the
other. These Agri-Parks were characterised by rampant water leaks at pipe joints, broken
drip lines, suspended drip lines resulting in water drops migrating down the line before
they coalesce and fall to the ground, and poor sealing at end of the drip lines.

The current study did not have access to the design documents for the Agri-Parks,
which hampered the interpretation of the results because there was no background infor-
mation to compare against the study observations. The other limitation is that nonphysical
parameters that may have a significant influence on the performance of the Agri-Parks (such
as the type of land tenure in place and quality of training imparted on the farmers) were
not considered. There was also a lack of variety in the study as all the studied Agri-Parks
exhibited a close similarity in terms of the irrigation infrastructure and layout. Therefore,
there was no opportunity to test the Condition Assessment Model on different setups. It
is on the bases of these limitations that a longer-term study covering more and diverse
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smallholder irrigation systems is recommended. Testing the Condition Assessment Model
on a wider scale would help in improving its robustness and predictive capacity. The other
recommendation is for proper training of the extension officials responsible for Agri-Parks
and similar enterprisers and the farmers’ irrigation scheduling under drip systems for
better benefits. There is also a need for clear guidelines on cleaning and maintenance of the
drip systems and to ensure that the systems are operated within the design limits. Broken
drip lines causing leakages need to be replaced immediately.

5. Conclusions

The main conclusion from the study is that the condition of the infield drip irrigation
infrastructure has a positive correlation with its distribution uniformity. Therefore, it is
possible to use the Condition Assessment Model (developed by ARC-NRE/AE)-generated
condition indices to predict the distribution uniformity of a drip irrigation system. This
sets a firm foundation for developing a simple model/tool for motoring and evaluating
smallholder drip irrigation systems. The tool can be used by extension advisors and
local decision makers to guide necessary corrective strategies in the smallholder irrigation
sector. It is also clear from the study results that patchwork repairs affected the possible
relationships between condition indices and conveyance efficiency of the pipe networks at
the Agri-Parks.
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