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Abstract: The proton conductivity and structural properties of (1–x)CsH2PO4–xZnSnO3 composites
with compositions of x = 0.2–0.8 were studied. Zinc stannate ZnSnO3 was prepared by the thermal
decomposition of zinc hydroxostannate ZnSn(OH)6, which was synthesized by hydrolytic codeposi-
tion. To optimize the microstructure of ZnSnO3, thermal decomposition products of ZnSn(OH)6 were
characterized by thermal analysis and X-ray diffraction, Fourier transform infrared spectroscopy,
low-temperature nitrogen adsorption, and electron microscopy. The study reveals that the thermol-
ysis of ZnSn(OH)6 at temperatures of 300–520 ◦C formed an X-ray amorphous zinc stannate with
a high surface area of 85 m2/g possessing increased water retention, which was used as a matrix
for the formation of the composite electrolytes CsH2PO4–ZnSnO3. The CsH2PO4 crystal structure
remained in the composite systems, but dispersion and partial salt amorphization were observed due
to the interface interaction with the ZnSnO3 matrix. It was shown that the proton conductivity of
composites in the low-temperature region increased up to 2.5 orders of magnitude, went through a
smooth maximum at x = 0.2, and then decreased due to the percolation effect. The measurement of
the proton conductivity of the ZnSnO3–CsH2PO4 composites revealed that zinc stannate can be used
as a heterogeneous additive in other composite solid electrolytes. Therefore, such materials can be
applied in hydrogen production membrane reactors.

Keywords: thermolysis of ZnSn(OH)6; zinc stannate; composites; composite solid electrolytes; cesium
dihydrogen phosphate

1. Introduction

Materials based on the oxide systems Zn–Sn–O possess numerous functional prop-
erties and are thus of growing interest to researchers. For instance, zinc stannate has
recently been utilized as anode material for sodium-ion and lithium-ion batteries [1–3].
Additionally, several works [4–6] have highlighted the potential for stannates as materials
for supercapacitors and solar cell electrodes. Because of its chemical reactivity, excellent
electronic properties, and perovskite structure, ZnSnO3 is widely used for gas and organic
compound sensors [7–20]. Zinc stannates also have numerous applications in electronics,
catalysis, and photocatalysis [21–27].

In the Zn–Sn–O system, zinc metastannate ZnSnO3 and zinc orthostannate Zn2SnO4
are present. Zinc metastannate ZnSnO3 has an orthorhombic elementary lattice with a
perovskite-like crystal structure, while zinc orthostannate Zn2SnO4 has a cubic lattice with
a spinel-type structure. Various methods are used to obtain these compounds, including
low-temperature ion exchange, sol–gel technology, and coprecipitation followed by thermal
treatment [4,28–32]. Among them, the sol–gel method is the most commonly used approach
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due to its ease of control, low-temperature, and high efficiency for obtaining various homo-
geneous nanostructures. However, for practical applications, coprecipitation is typically
used as it is a more readily available and easy-to-implement method. Previously, it was
demonstrated that hydroxostannates MSn(OH)6 of alkali-earth metals MSnO3 and M2SnO4
(M = Mg, Ca, Sr, Ba) can be obtained by thermal decomposition [33–36]. Notably, the stan-
nates obtained by thermolysis possess a relatively high specific surface area (10–100 m2/g)
and can be utilized as functional additives to obtain composite solid electrolytes [34]. Ac-
cording to the literature data [5,37–39], zinc stannates are mostly synthesized through the
thermal decomposition of the hydroxostannate ZnSn(OH)6. This process results in the
formation of highly dispersed products, which can be utilized to obtain the composite
materials. However, zinc stannates are characterized by higher chemical resistance to acids
compared with alkaline earth metal stannates.

This makes them a promising heterogeneous additive for creating composite proton
solid electrolytes with acidic alkali metal salts, such as CsH2PO4, which have a high
conductivity up to 6 × 10−2 S/cm at 230 ◦C [40–42]. Cesium dihydrogen phosphate
undergoes a superprotonic phase transition at 230 ◦C, which results in a significant increase
in its conductivity to 6 × 10−2 S/cm. At low temperatures (20–230 ◦C), the conductivity
dependence has an Arrhenius form with an activation energy of 0.9 eV, while at high
temperatures (230–260 ◦C), the superionic conductivity activation energy is 0.42 eV. An
abrupt increase in conductivity during the superionic phase transition is observed, from
10−7 S/cm to 6 × 10−2 S/cm (at T > 230 ◦C). To suppress the dehydration and increase
the stability range of the high-temperature phase, the formation of an increased partial
pressure of water vapor is necessary [43]. CsH2PO4 is a promising proton membrane for
medium-temperature fuel cells [44,45]. Currently, investigations are focused on creating
highly conductive composite and polymer electrolytes with modified salts in a larger
temperature range, as well as searching for electrochemically active electrode compositions
for medium temperature fuel cells based on cesium dihydrogen phosphate [46–58].

Earlier, it was demonstrated that the modification of CsH2PO4 with such highly dis-
persed complex oxides, such as SrZrO3 [48] or NdPO4 [52], resulted in the formation
of composite solid electrolytes with a high proton conductivity. Similarly, highly dis-
persed zinc stannate, ZnSnO3, may also be regarded as a promising additive to create
proton-conducting composite electrolytes. The present study is focused on studying the
decomposition products of the zinc hexahydroxostannate precursor, which are suitable for
use as a matrix for the creation of CsH2PO4–ZnSnO3 composite proton solid electrolytes,
as well as investigating their transport properties. The synthesis of nanosized particles of
ZnSnO3 was carried out by the thermal decomposition of the zinc hexahydroxostannate
precursor ZnSn(OH)6. The obtained highly dispersed ZnSnO3 was used as a disperse
additive for the preparation of the CsH2PO4–ZnSnO3 composites, and the transport prop-
erties of these proton solid electrolytes were investigated as a function of composition
and temperature.

2. Materials and Methods
2.1. Materials

The starting reagents used included zinc powder (98% pure, MGP Metall, Russia),
sodium stannate trihydrate (97% pure, Profsnab LLC, Moscow, Russia), hydrochloric
acid (37% water solution, 99% pure, Khimprom LLC, Perm region, Russia), and sodium
hydroxide (99% pure, Khimprom LLC, Perm region, Russia). Solutions of HCl, NaOH, and
ZnCl2 were prepared in double distilled water obtained using a laboratory BE-2 purification
system. All of the chemicals were used as received, without further purification. The
crystals of CsH2PO4 were grown through isothermal evaporation from an aqueous solution
of cesium carbonate (99% pure, Rare Metals Plant, Novosibirsk, Russia) and phosphoric
acid (98% pure, Vekton LLC, Saint-Petersburg, Russia) in the stoichiometric ratio.
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2.2. Synthesis of the Precursor ZnSn(OH)6

Zinc hydroxostannate ZnSn(OH)6 was synthesized by hydrolytic co-precipitation as
follows: First, 0.0375 mol of metallic zinc Zn was dissolved in 25 mL of a 4 M hydrochloric
acid solution. In this solution, 10 g (0.0375 mol) of Na2SnO3 × 3H2O was dissolved to
achieve an atomic ratio of Zn:Sn = 1:1. Then, 100 mL of 1 M NaOH solution was gradually
added to the resulting solution, while maintaining the acidity of the medium within a
pH = 8–9. The pH value was monitored using an HI 2221 Laboratory pH Meter. The
mixture was continuously stirred for 24 h to provide complete quantitative co-precipitation
of zinc and tin (IV). The resulting white precipitate was filtered off from the mother liquor,
washed with distilled water until a negative qualitative reaction to the presence of Cl− ions
in the solution was achieved, and dried in an oven at 105–110 ◦C for 4 h (Figure 1).
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2.3. Characterization

The microstructure and phase composition of the samples were determined by X-ray
diffraction (XRD). X-ray diffraction patterns were recorded at room temperature using a
Bruker D8 Advance diffractometer with CuKα radiation in the 2θ range from 10 to 70◦.
The phases formed in the system were identified using the Crystallographica Search-Match,
Version 2.1 program and the PDF4 database. The average crystallite size was estimated
from diffraction line broadening in X-ray diffraction patterns using the Scherer formula

d =
kλ

βcosθ
(1)

where d is the average crystallite size, λ is the X-ray wavelength (1.54051 Å), β is the
full width at half maximum of the diffraction peak, θ is the diffraction angle, and k = 0.9.
Thermal analysis (TA) of the dried powders was performed on a NETZSCH Jupiter 449C
STA synchronous thermal analyzer coupled to QMS 403C Aëolos (TG-QMS) mass spec-
trometer in an argon flow at temperatures in the range of 20–700 ◦C at a heating rate of
10 ◦C/min. The microstructure of the samples was studied by field emission scanning
electron microscopy (SEM) using Hitachi SU8000 electron microscope (Tokyo, Japan). The
images were taken in the secondary electron recording mode at an accelerating voltage of
2–30 kV and a working distance of 8–10 mm. The sample’s X-ray energy dispersive spectra
(EDS) were measured with the use of an Oxford Instruments add-on for electron micro-
scope. Analytical measurements of the EDS were optimized using a previously established
method, as outlined in the references [52,59]. Prior to the measurements, the samples were
affixed to an aluminum mount with a 25 mm diameter and secured firmly with conductive
graphite adhesive tape. Additionally, the morphology of the unmodified samples was
studied to preclude any surface effects due to the application of the conductive layer, as
noted in [60]. The specific surface area was determined by analyzing the BET isotherms
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of low-temperature nitrogen adsorption at 77 K using a Quantachrome Nova 1000e static
instrument. The pore size distribution was calculated using the Barrett–Joyner–Halenda
(BJH) method. The proton conductivity of the composites in the (1–x)CsH2PO4–xZnSnO3
(x = 0.2, 0.4, 0.6, 0.8) system was measured using a two-electrode circuit on alternating
current with an Instek LCR-821 impedance meter (12–200 kHz frequency range) and an
IPU-1RLC-1/2008 precision electrochemical meter (1 Hz–3.3 MHz frequency range). The
composites of the specific compositions were synthesized by thoroughly mixing the compo-
nents in an agate mortar and heating the pelletized samples at 230–240 ◦C. Pellets of 6 mm
in diameter and 1–1.5 mm thick were pressed from the samples to measure the electrical
conductivity, using a pressure of 30–50 MPa. The electrical conductivity of the samples with
deposited silver electrodes was measured under cooling conditions at a rate of 1–2 ◦C/min
in an atmosphere with a high water vapor content (10%, 20%, and 30% molar ratio) in the
temperature range of 170–250 ◦C, followed by cooling in air with a relative humidity of
40% [48,52].

3. Results and Discussion

The results from the atomic emission spectrometry analysis showed the minimal
residual content of zinc (less 0.1 µg/mL) and tin (less than 0.2 µg/mL) in the mother
solution. This indicates that the reaction (2) went to completion, yielding a precipitate with
a stoichiometric ratio of Zn:Sn = 1:1. XRD data revealed that the chemical co-precipitation
resulted in the formation of zinc hexahydroxostannate ZnSn(OH)6, which possesses a
vismirnovite structure with a cubic unit cell and symmetry, space group Pn3m, similar to
schoenfliesite [61,62]. The diffraction pattern of the sample is shown in Figure 2 (curve 1).
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Figure 2. X-ray diffraction patterns of initial ZnSn(OH)6 (1) and thermolysis products obtained at
temperatures of 300–520 ◦C (2), 600 ◦C (3), and 700 ◦C (4).

The value of the lattice parameter, determined using the Rietveld method with Powder
Cell 2.4 software, was a = 0.77647 ± 0.00084 nm, and was in good agreement with literature
data (a = 0.78 nm [39,62], PDF4, card no. 73-2384). The following reaction results in the
formation of ZnSn(OH)6:

ZnCl2 + Na2Sn(OH)6 → ZnSn(OH)6 + 2 NaCl (2)

According to scanning electron microscopy data (Figure 3a), the freshly deposited
ZnSn(OH)6 samples were cubic well-grained single crystals of 150–250 nm in size. Ac-
cording to the results of the chemical microanalysis carried out by the EDS method, the
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Zn:Sn:O atomic ratio fell within the range of (10 ± 1):(10 ± 1):(63 ± 3), which was close to
the stoichiometric ratio for ZnSn(OH)6.
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700 ◦C (c).

According to the thermal analysis data (Figure 4), when ZnSn(OH)6 is heated, succes-
sive processes occur, accompanied by changes in the mass, structure, and phase composi-
tion, which are consistent with the XRD results. A weight loss of about 18.7% was observed
when the sample was heated to a temperature between 50–520 ◦C, which quantitatively
agreed with the calculated value (18.87%) for the reaction:

ZnSn(OH)6 → ZnSnO3 + 3 H2O (3)
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Figure 4. Synchronous thermal analysis curves obtained during the thermal decomposition of a
ZnSn(OH)6 sample: mass change (TG), thermal effects (DSC), and the ionic current of the mass
spectrometer measured for the atomic mass number m/z of 18 amu corresponding to water molecules
evolving from the sample.

The reaction was accompanied by an endothermic effect with a maximum at
Tmax = 268 ◦C.

According to XRD data, heating ZnSn(OH)6 at 300–520 ◦C for 4 h produced X-ray
amorphous zinc stannate (Figure 2, curve 2). Scanning electron microscopy showed that
the dehydrated product was a pseudomorphosis made of nanoparticles of the amorphous
phase, retaining the shape and size of the original particles (Figure 3b). At 540–600 ◦C, an
exothermic effect was observed, likely indicating the formation of a weakly crystallized
ZnSnO3 phase with a perovskite structure (card 28–1486, PDF4), with the particle size
estimated at being 15–20 nm using the Scherrer equation (Figure 2, curve 3). Zinc metastan-
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nate is metastable, and the transition to the stable phase Zn2SnO4 with a spinel structure
occurred at temperatures above 700 ◦C, in accordance with the reaction:

2 ZnSnO3 → Zn2SnO4 + SnO2 (4)

The annealing at 700 ◦C resulted in the decomposition of the ZnSnO3 phase into a
mixture of the nanocrystalline SnO2 phase with the cassiterite structure (card 71-652, PDF4)
and the Zn2SnO4 phase with the spinel structure (card 74–2184, PDF4) (Figure 2, curve 4).
Using the Scherrer equation, the estimated size of the nanocomposite particles was less
than 60–70 nm for zinc stannate Zn2SnO4 and 20–40 nm for tin dioxide. Scanning electron
microscopy showed that the pseudomorphosis of the nanoparticle aggregate was preserved
(Figure 3c). However, the large cubic aggregates consisted of the weakly aggregated
Zn2SnO4 nanoparticles surrounded by the smaller particles of tin dioxide visible on the
surface of the cubic aggregates.

The FTIR spectra analysis of ZnSn(OH)6 and its synthesized compounds showed
the structural features and composition, with the characteristic bands assigned based on
published data [63,64]. The FTIR spectra of the obtained zinc hydroxtannate ZnSn(OH)6
and zinc stannate ZnSnO3 samples (Figure 5a) matched previous studies [29,49,65].
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(2) and kept in air for some time (3). (b) Dependence of mass change (TG) of a ZnSnO3 sample after
storage in an air atmosphere of a desiccator.

In the spectra, a wide band of ν(OH) stretching vibrations in the 3100–3300 cm−1

region indicated the presence of hydroxyl groups in the precursor and a system of hydrogen
bonds in the compound structure. The absorption band at 1180 cm−1 was due to bending
vibrations of the Sn–OH bonds, and the moisture deformation vibrations were recorded
above 1630 cm−1. These bands decreased with the sample’s dehydration during the heat
treatment at 600 ◦C, which was consistent with the weight loss according to the TG results.
In the region of the metal–oxygen bonds (900–400 cm−1) of ZnSnO3, the FTIR spectra
showed a strong band at 615 cm−1, corresponding to the symmetric stretching vibrations
of the Sn–O bonds (Figure 4a). After holding ZnSnO3 in the air, a broad diffuse absorption
band between 3250–3650 cm−1, corresponding to hydrogen bonds and associated with
the stretching vibrations ν(Н2О), confirmed the sorption of water vapor. The data of
the thermal analysis (Figure 5b) for the sample after storage suggested the absorption
of water, approximately up to 0.2 mole of H2O, per mole of zinc stannate. The results
indicate the reversible sorption of ZnSnO3 water vapor in air and its desorption at elevated
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temperatures. Similar to ZnSn(OH)6, ZnSnO3 was characterized by the presence of strongly
bound adsorbed water molecules.

Table 1 presents the textural properties, specific surface area, and mean pore size of the
initial samples and samples calcined at different temperatures for 4 h. High specific surface
area values and the presence of mesopores with sizes around 6 nm were characteristics
of the samples created during the thermolysis of ZnSn(OH)6. As the heating tempera-
ture increased, the specific surface area values monotonically decreased while the pore
sizes increased.

Table 1. Results from the textural study of the initial ZnSn(OH)6 and the products of its thermal
decomposition obtained at different temperatures.

Heating Temperature, ◦C 110 300 520 600 700

Phase composition ZnSn(OH)6 amorphous ZnSnO3 Zn2SnO4–SnO2

Specific surface area, m2·g−1 18 80 85 36 15

Pore size, nm ~1 3 6 4 10

As seen from Table 1, the amorphous zinc stannate, obtained by heating at 520 ◦C, had
a higher specific surface area. This high-surface-area zinc stannate, with increased water
retention, was used as a heterogeneous additive for CsH2PO4. The proton conductivity
and structural properties of the (1–x)CsH2PO4–xZnSnO3 composite system were studied
across a range of compositions (x = 0.2–0.8). The XRD patterns indicated no chemical
interaction between the components, and the crystalline structure of CsH2PO4 was pre-
served. The intensity of the reflections corresponding to the LT phase of CsH2PO4 (P2/1m)
decreased significantly more than the salt content in the composite (Figure 6a), resulting in
a disordered state of CsH2PO4.
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Figure 6. (a) X-ray diffraction patterns of (1–x)CsH2PO4–xZnSnO3 composites of various composi-
tions in the comparison with the starting compounds: CsH2PO4 (1); x = 0.2 (2); 0.4 (3); 0.8 (4); ZnSnO3

(5). (b) Electrochemical impedance spectra for 0.8CsH2PO4–0.2ZnSnO3 sample obtained at 230 ◦C
(black symbols) and 190 ◦C (empty symbols). Points are experimental data; lines are theoretical
curves obtained for the equivalent circuit, with the parameters listed in Table 2. The parameters of
the equivalent scheme are described in detail the texts and Equations (5)–(7).
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As the molar percentage of ZnSnO3 increased, an amorphous halo characteristic of
zinc stannate appeared in the composite (such as at x = 0.8), and the salt was mostly in an
amorphous state.

Figure 6b shows the impedance plots of the composites at different temperatures.
The impedance hodograph included an arc that represented the electrode processes in the
lower frequency region, and a single semicircle that was due to the electrolyte transfer in
the higher frequency region. The proton conductivity was calculated from the resistance
values with the minimum capacitive component. As the temperature increased, the radius
of the single semicircles significantly decreased, indicating greater proton conductivity
due to an increase in the number and mobility of the current carriers. For interpretation
of the experimental impedance data, the equivalent circuit presented in Figure 6b was
used. The circuit includes three impedances, Z1, Z2, and Z3, connected in series. The first
impedance includes the active resistance R1 connected in parallel to the constant phase
element (CPE) Q1. The second and third impedances are related to the electrode: R2 and
Q2 are charge transfer resistance and CPE taking into account the electrode polarization
effects, respectively, and Q3 is the diffusion impedance contribution. As a result, the total
impedance of the sample is equal to Z = Z1 + Z2 + Z3, where

Z1 =
[

R−1
1 + Y1(iω)n1

]−1
(5)

Z2 =
[

R−1
2 + Y2(iω)n2

]−1
(6)

Z3 = Y−1
3 (iω)−n3 (7)

As seen from Figure 6b, the theoretical curves obtained for this equivalent circuit fairly
fit the experimental data. Results of the fitting are presented in Table 2.

Table 2. Parameters of the equivalent circuit, R1, Y1
0, n1, R2, Y2

0, n2, Y3, and n3, determined by
fitting the impedance data.

Parameter 190 ◦C 230 ◦C

R1, kΩ 1.97 ± 0.09 0.176 ± 0.004

Y1, S1−n1 7.0 × 10−10 ± 0.8 × 10−10 -

n1 0.882 ± 0.013 -

R2, kΩ 0.96 ± 0.02 0.360 ± 0.005

Y2, S1−n2 4.0 × 10−4 ± 0.6 × 10−4 1.6 × 10−4 ± 0.1 × 10−4

n2 0.335 ± 0.008 0.669 ± 0.012

Y3, S1−n3 4.2 × 10−4 ± 0.9 × 10−4 5.11 × 10−4 ± 0.07 × 10−4

n3 0.546 ± 0.011 0.594 ± 0.005

Figure 7 shows a comparison of the proton conductivity of the samples with the initial
salts. The ZnSnO3 matrix initially exhibited a low proton conductivity, not exceeding
2 × 10−8 S/cm in the temperature range below 250 ◦C. This conductivity was consistent
with literature data [40–42]. The temperature dependence of the conductivity revealed two
regions related to the superprotonic and low temperature phases of CsH2PO4.

The proton conductivity of the low temperature phase follows the Arrhenius law, with
an activation energy of ~0.9 eV, and does not exceed 3 × 10−7 S/cm at T < 200 ◦C due
to the strong hydrogen bond network that impedes the proton transfer due to the high
energy of defect formation. In the CsH2PO4–ZnSnO3 composites, the conductivity can
also be distinguished into two temperature ranges. The introduction of small amounts of
additives significantly increased the conductivity of the composites in the low-temperature
region, with specific conductivity values depending on composition. At x = 0.2, the low-
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temperature conductivity reached a maximum, increasing by 2.5 orders of magnitude.
Consequently, the conductivity jump during the superionic phase transition decreased
significantly at x = 0.2. The increase in the conductivity was due to the disordering and
partial amorphization of the salt at the interface between the two phases, which occurred as
the fraction of additive increased. However, as x further increased to 0.4, the conductivity
began to decrease (Figure 8a), despite the volume fraction of the heterogeneous component
not exceeding 30%. In the case of x = 0.6, the conductivity in the low-temperature region
sharply decreased to values lower than the initial salt due to the percolation effect. The
high-temperature region conductivity decreased almost linearly with an increase in the
proportion of additive compared with pure CsH2PO4, due to the “conductor–insulator”
percolation effect (Figure 8a,b).

Appl. Sci. 2023, 13, 5038 9 of 14 
 

 
Figure 7. Temperature dependence of conductivity for composite systems (1–x)CsH2PO4–xZnSnO3 
(x = 0.2–0.8) in comparison with CsH2PO4 and ZnSnO3. The conductivity measurement was carried 
out on two to three pellets with the same composition, but the different size. The relative error in 
the determining the conductivity is 2–5%. 

The proton conductivity of the low temperature phase follows the Arrhenius law, 
with an activation energy of ~0.9 eV, and does not exceed 3 × 10−7 S/cm at T < 200 °С due 
to the strong hydrogen bond network that impedes the proton transfer due to the high 
energy of defect formation. In the CsH2PO4–ZnSnO3 composites, the conductivity can also 
be distinguished into two temperature ranges. The introduction of small amounts of ad-
ditives significantly increased the conductivity of the composites in the low-temperature 
region, with specific conductivity values depending on composition. At x = 0.2, the low-
temperature conductivity reached a maximum, increasing by 2.5 orders of magnitude. 
Consequently, the conductivity jump during the superionic phase transition decreased 
significantly at x = 0.2. The increase in the conductivity was due to the disordering and 
partial amorphization of the salt at the interface between the two phases, which occurred 
as the fraction of additive increased. However, as x further increased to 0.4, the conduc-
tivity began to decrease (Figure 8a), despite the volume fraction of the heterogeneous com-
ponent not exceeding 30%. In the case of x = 0.6, the conductivity in the low-temperature 
region sharply decreased to values lower than the initial salt due to the percolation effect. 
The high-temperature region conductivity decreased almost linearly with an increase in 
the proportion of additive compared with pure CsH2PO4, due to the “conductor–insula-
tor” percolation effect (Figure 8a,b). 

Figure 7. Temperature dependence of conductivity for composite systems (1–x)CsH2PO4–xZnSnO3

(x = 0.2–0.8) in comparison with CsH2PO4 and ZnSnO3. The conductivity measurement was carried
out on two to three pellets with the same composition, but the different size. The relative error in the
determining the conductivity is 2–5%.

Appl. Sci. 2023, 13, 5038 10 of 14 
 

  
(a) (b) 

Figure 8. Isotherms of the proton conductivity for the composite systems (1–x)CsH2PO4–xZnSnO3 
at different temperatures: 138 °C (a) and 227 °C (b). 

Nevertheless, with the addition of small amounts of ZnSnO3, the proton conductivity 
at high temperatures remained close to the values of the initial salt. In addition, the intro-
duction of a non-conducting matrix led to an increase in the low-temperature conductivity 
within a specific range of compositions, but reduced the superprotonic conductivity. The 
composite effects observed in this system were comparable to the conductivity values seen 
in the CsH2PO4–SrZrO3 and CsH2PO4–NdPO4 systems [48,52], but somewhat lower than 
for a number of the studied composite systems based on CsH2PO4 [50,51,55,58]. This may 
be due to an insufficiently high specific surface area and the adhesion energy that deter-
mine the interface interaction. Nonetheless, for the samples with the highest proton con-
ductivity values at x = 0.2, the stability of high conductivity values in the superionic region 
was maintained even with long-term, isothermal exposure at lower partial pressures of 
water vapor (10% and 20%) due to the higher water retention of the ZnSnO3 matrix. Figure 
9 shows the stable conductivity values during the long-term isothermal exposure at the 
partial water vapor concentration of 10% and 20%, which were lower than those used, in 
accordance with the phase diagram [43]. The proton conductivity retained unchanged val-
ues of 8 × 10–3 S/cm at significantly lower partial pressures of water vapor during 150 min 
at 230 °C (Figure 9). This was likely due to the presence of adsorbed water in the ZnSnO3 
matrix, which was removed at elevated temperatures and prevented dehydration of the 
CsH2PO4 salt within the composite. 

 
Figure 9. Dependence of conductivity of (1–x)CsH2PO4–xZnSnO3 (x = 0.2) system on the time of 
long-term storage at 230 °C (water vapor content was 20 mol%). 

Figure 8. Isotherms of the proton conductivity for the composite systems (1–x)CsH2PO4–xZnSnO3 at
different temperatures: 138 ◦C (a) and 227 ◦C (b).

Nevertheless, with the addition of small amounts of ZnSnO3, the proton conductivity
at high temperatures remained close to the values of the initial salt. In addition, the intro-
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duction of a non-conducting matrix led to an increase in the low-temperature conductivity
within a specific range of compositions, but reduced the superprotonic conductivity. The
composite effects observed in this system were comparable to the conductivity values
seen in the CsH2PO4–SrZrO3 and CsH2PO4–NdPO4 systems [48,52], but somewhat lower
than for a number of the studied composite systems based on CsH2PO4 [50,51,55,58]. This
may be due to an insufficiently high specific surface area and the adhesion energy that
determine the interface interaction. Nonetheless, for the samples with the highest proton
conductivity values at x = 0.2, the stability of high conductivity values in the superionic
region was maintained even with long-term, isothermal exposure at lower partial pressures
of water vapor (10% and 20%) due to the higher water retention of the ZnSnO3 matrix.
Figure 9 shows the stable conductivity values during the long-term isothermal exposure at
the partial water vapor concentration of 10% and 20%, which were lower than those used,
in accordance with the phase diagram [43]. The proton conductivity retained unchanged
values of 8 × 10−3 S/cm at significantly lower partial pressures of water vapor during
150 min at 230 ◦C (Figure 9). This was likely due to the presence of adsorbed water in the
ZnSnO3 matrix, which was removed at elevated temperatures and prevented dehydration
of the CsH2PO4 salt within the composite.
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4. Conclusions

In this work, the synthesis and the thermal decomposition of zinc hydroxostannate
were studied in detail. ZnSn(OH)6 with the cubic crystals of 150–250 nm in size was
synthesized by hydrolytic precipitation from the solutions of ZnCl2 and Na2SnO3. Zinc
stannate with a high specific surface area (85 m2/g) was formed through the thermolysis
of ZnSn(OH)6 in the temperature range of 300–520 ◦C. A weakly crystallized ZnSnO3
phase with a particle size of 15–20 nm was formed at 540–600 ◦C, while at an annealing
temperature of 700 ◦C, a mixture of nanocrystalline SnO2 with the cassiterite structure
(20–40 nm) and Zn2SnO4 (less than 60–70 nm) with the spinel structure was formed. As a
result of the thermolysis study, optimal conditions for the formation of highly-dispersed
zinc stannate were found, and the obtained materials were further used for the creation of
the composite solid electrolytes.

The proton conductivity of the composite systems with the compositions of
(1–x)CsH2PO4–xZnSnO3 (x = 0.2–0.8) was studied. The CsH2PO4 crystal structure re-
mained in the composite systems, but dispersion and partial salt amorphization were
observed due to the interface interaction with the ZnSnO3 matrix. As a result, the conduc-
tivity in the low-temperature region increased up to 2.5 orders of magnitude, went through
a smooth maximum at x = 0.2, and then decreased due to the percolation “conductor–
isolator” effect. The samples with the highest proton conductivity at x = 0.2 demonstrated
stable high conductivity values (8 × 10−3 S/cm) under long-term isothermal exposure
(150 min at 230 ◦C) at lower partial pressures of water vapor. This will allow this material
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to be used in electrochemical applications. Thus, it has been demonstrated that X-ray
amorphous zinc stannate ZnSnO3 is a suitable heterogeneous additive in other composite
solid electrolytes. The composite solid electrolytes CsH2PO4–ZnSnO3 may be used as solid
electrolyte membrane materials in intermediate temperature electrochemical resistors for
hydrogen production. Such an approach might be competitive compared with alternative
hydrogen production techniques [66–70].
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