
Citation: Du, S.; Zhu, H.; Zhan, Y.;

Wang, D.; Shi, J.; Xing, N.; Lin, G.;

Zhou, H. Controllable Image

Captioning with Feature Refinement

and Multilayer Fusion. Appl. Sci.

2023, 13, 5020. https://doi.org/

10.3390/app13085020

Academic Editor: Seokwon Yeom

Received: 7 March 2023

Revised: 10 April 2023

Accepted: 13 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Controllable Image Captioning with Feature Refinement and
Multilayer Fusion
Sen Du 1 , Hong Zhu 1,*, Yujia Zhang 1, Dong Wang 1, Jing Shi 1, Nan Xing 1, Guangfeng Lin 2 and Huiyu Zhou 3

1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
2 School of Printing, Packaging and Digital Media, Xi’an University of Technology, Xi’an 710054, China
3 School of Computing and Mathematical Sciences, University of Leicester, University Road,

Leicester LE1 7RH, UK
* Correspondence: zhuhong@xaut.edu.cn

Abstract: Image captioning is the task of automatically generating a description of an image. Tradi-
tional image captioning models tend to generate a sentence describing the most conspicuous objects,
but fail to describe a desired region or object as human. In order to generate sentences based on
a given target, understanding the relationships between particular objects and describing them
accurately is central to this task. In detail, information-augmented embedding is used to add prior
information to each object, and a new Multi-Relational Weighted Graph Convolutional Network
(MR-WGCN) is designed for fusing the information of adjacent objects. Then, a dynamic attention
decoder module selectively focuses on particular objects or semantic contents. Finally, the model is
optimized by similarity loss. The experiment on MSCOCO Entities demonstrates that IANR obtains,
to date, the best published CIDEr performance of 124.52% on the Karpathy test split. Extensive
experiments and ablations on both the MSCOCO Entities and the Flickr30k Entities demonstrate the
effectiveness of each module. Meanwhile, IANR achieves better accuracy and controllability than the
state-of-the-art models under the widely used evaluation metric.

Keywords: controllable image captioning; information-augmented embedding; MR-WGCN;
similarity loss

1. Introduction

Image captioning is a complex task of automatically producing natural language
sentences to describe the content of a given image. It requires not only understanding
the relationship between each object, but also generating sentences to describe the most
conspicuous objects.

In the early stages, the image captioning task is based on templates [1,2] or
retrieval [3,4]. In recent years, with the rapid development of deep learning [5,6], most
current image captioning methods have been based on deep learning and adopted an
encoder–decoder structure, in which the encoder extracts features to represent the content
of the image. The decoder uses the extracted features to generate a description. The lat-
est caption model even achieved better performance than humans in all accuracy-based
metrics. However, these established models tend to generate sentences by describing the
most conspicuous objects, but fail to describe a desired region or object as human. It is
essential for practical applications. For example, when assisting visually impaired people
to walk, the generated caption should describe what is on the road or the color of traffic
lights. Meanwhile, many studies have indicated that traditional models tend to produce
generic descriptions to capture frequent descriptive patterns, but fail to describe particular
objects. To endow captioning models with controllability, several models introduce extra
control signals to generate captions, called controllable image captions (CIC).

The CIC model can easily generate diverse captions for the same image by feeding
different control signals. One type of CIC [7–9] focuses on controlling describing styles,
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such as factual, sadly, and happy; the other type aims to control the content, such as
region [10], object [11,12], part-of-speech tags [13,14], and length level [15].

To produce controllable object image captioning, Marcella et al. [11] proposed a model
to control the content and the order of the image caption explicitly grounded on a sequence
of image regions. Chen et al. [16] proposed a control signal that represents a targeted
activity as a verb and some entities involved in this activity as semantic roles. Many
researchers [12,14,15] work in this direction.

In current models, the accuracy of the generated sentences depends on the accuracy of
the understanding of the object role. However, the object feature obtained by the detection
model lacks prior information. For example, given the features of a man and a baseball, it
would be difficult to infer their relationship and the concept of a player. Besides, most of the
models adopt cross-entropy loss, which leaves a lack of diversity in the generated sentences.

Based on the above problems, this paper introduces a framework based on the
information-augmented and node-relation estimation network (IANR) to improve the per-
formance of controllable image captioning. This method is an encoder–decoder structure.
The information-augmented graph encoder consists of an information-augmented embed-
ding module and a multi-relational weighted graph convolution network (MR-WGCN).
The information-augmented embedding module is designed to add prior information
for objects and relationships. The MR-WGCN emulates the message passing from one
node to others in different ways. In terms of the decoder, this paper designs a model
that dynamically pays attention to control signals or features with prior information. To
further increase the diversity of descriptions, an additional similarity loss is added to the
traditional cross-entropy loss.

The main contributions are summarized as follows:

• The proposed information-augmented embedding module adds prior information for
each object and relation node.

• A Multi-Relational Weighted Convolution Graph (MR-WGCN) is proposed to aggre-
gate messages from related nodes in different ways.

• A dynamic attention decoder is designed to fuse the result of control signals or node
features with prior information, which can address the need to generate sentences that
satisfy the control signal.

• The designed novel similarity loss cooperate with traditional cross-entropy loss to
utilize information effectively for generating diverse captions.

• This paper performs an extensive comparative study on two commonly used datasets,
et al., MSCOCO Entities and Flickr30k Entities, to evaluate designed IANR. The exper-
imental results show that the proposed method achieves significantly higher accuracy
and diversity in all evaluation metrics than the baseline method, ASG2Caption. In
addition, IANR achieves state-of-the-art controllability and accuracy on two datasets.

The rest of the paper is structured as follows. First, related work is briefly introduced
and discussed in Section 2. Section 3 introduces the proposed method for controllable image
captioning (CIC). Section 4 shows the experimental evaluation of the proposed method and
other methods. Finally, Section 5 discusses the conclusion and future research directions.

2. Related Work

At present, most image captioning models have achieved significant improvement
based on the encoder–decoder and reinforcement learning. Inspired by neural language
translation, the encoder–decoder structure learns image content with an encoder and
transforms the image content into sentences with a decoder. The NIC [17] exploits the
convolution neural network to obtain a fixed-length vector representing the content of the
whole image and recurrent neural networks to generate words sequentially. Traditional
image captioning methods are trained by maximizing the likelihood of ground truth
captions, which cannot optimize quality metrics, such as CIDEr. Self-critical Refs. [18–20]
optimized non-differentiable metrics using reinforcement learning. To reduce the impact
of redundant regions in the image, Refs. [21,22] encodes the features of detected object



Appl. Sci. 2023, 13, 5020 3 of 17

regions [23], and then ground words with relevant image regions dynamically in generation.
Except for the detected region, some researchers regard the sentences as the relationships
of the objects in the image. The Refs. [24–26] adopted the scene graph [27] to utilize the
detected objects and their relationships. The ASG2Caption [12] proposed an abstract scene
graph (ASG) instead of the detected scene graph to generate the desired caption. This
work proposes a novel module called the information-augmented graph encoder, which
is composed of an information-augmented embedding module and a multi-relational
weighted graph encoder to incorporate a priori information into objects or relation nodes,
improving the accuracy and diversity of the generated sentences.

Controllable Image Captioning

Controllable image captioning is a more challenging task that aims to generate sen-
tences according to extra control signals, such as style and semantic. The target of style
control research [7–9,28,29] is to restrain emotions or linguistic styles, such as factual, sad,
happy, or humorous. etc.Most of them [28,30–32] train on datasets with stylized labels. A
few studies [7,33] use a monolingual stylized language corpus without paired images to
disentangle style from factual items.

The target of semantic control aims to control the described contents or structures in
the image, such as region [10], object [11,12,34,35], part-of-speech tags [13,14], and length
level [15]. DenseCap [10] detects and describes diverse regions in the image. CGO [34]
combines two LSTMs in opposite directions for generating image captions with desired
objects. SCT [11] controls the described objects and the order of the generated sentences.
ASG2Caption [12] proposes an abstract scene graph to control the described objects and
relationships. Sub-GC [36] describes sub-graphs of image scene graphs. POS [13] uses the
Part-of-Speech tag sequence to guide caption generation. MTTSNet [14] generates sentences
with the assistance of POS information for each relationship between object combinations
in a scene graph. LaBERT [15] uses a length signal to control and describe the image, either
roughly or in detail. In addition to this, there are other semantic control methods, such as
DUDA [37] that describes semantic differences between two images. SCAN [38] introduces
a signal controlling the sentence quality, sentence length, and number of nouns.

All the above work mainly concentrates on the control process. They usually adopt
region features as one of the inputs, ignoring the prior information about the objects and
their relationships. This paper not only proposes an information-augmented graph encoder
to add prior information to each node, but also proposes an improved dynamic attention
decoder to selectively focus on the control signals or node features. Finally, the proposed
similarity loss facilitates IANR to learn more diverse information.

3. Proposed Model

Given an image I, the goal of IANR is to generate a fluent caption y = {y1, · · · , yT}
based on the control signal of the Abstract Scene Graph (ASG) [12]. The ASG reflects the
user’s intention through nodes and their relationships. Humans can describe the given
image through multiple sentences. Meanwhile, the image has multiple ASGs. According to
different ASGs, IANR can generate different sentences. The structure of IANR is shown in
Figure 1. The structure includes an information-augmented graph encoder and a dynamic
attention decoder. Section 3.1 describes how the proposed information-augmented graph
encoder adds prior information and uses the proposed MR-WGCN to enhance features
with surrounding node information. Section 3.2 describes how to generate sentences and
update all node information. Finally, we train the IANR through cross-entropy loss and the
similarity loss.
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Figure 1. The IANR includes an Information-Augmented Graph Encoder and a Dynamic Attention
Decoder. Given an image I and a control signal ASG G = (X, E), X and E are the sets of nodes and
edges. The information-augmented embedding adds a priori information to all nodes. The proposed
MR-WGCN enhances node features through surrounding information. Then the Dynamic Attention
Decoder incorporates the result of Semantic Content Attention and Graph Structure Attention to
select node information. Finally, this paper generates sentences through language LSTM and the
proposed Fusion Constraint Decode module. After generating a word, we updated the node feature
of graph Xt−1 to Xt.

3.1. Information-Augmented Graph Encoder

The encoder was proposed to encode ASG as a set of node features X = {x1, · · · , xN},
where N is the number of nodes in ASG. The ASG for image I was denoted as G = (X, E),
where X and E are the sets of nodes and edges, respectively. The types of nodes X are object
node o, attribute node a, and relationship node r. The six types of edges E are bidirectional
connections between the subject node o and relationship node r, object node o and attribute
node a, and relationship node r to object o, respectively. The feature of nodes in ASG was
extracted from the grounded box in the image. The box of the relationship node was the
union bounding box of the two involved objects.

ASG contains information about each node region, while the region features extracted
from the detection network do not contain prior knowledge. For example, given the
features of a man and a baseball, it would be difficult to infer their relationship and the
concept of a player. To overcome this problem, the proposed information-augmented graph
encoder consists of information-augmented embedding and a multi-relational weighted
convolution graph to add prior information.

Information-Augmented Embedding. In this encoder, the memory-augmented atten-
tion operator (MA) [39] adds prior information for each node. The operator is defined as:

X̃ = softmax

(
WqXKT
√

d

)
V

K = [WkX; Mk] (1)

V = [WvX; Mv]

where Wq, Wk, Wv ∈ RC1×C2 are embedding matrices, Mk, Mv ∈ RC2 are learnable matrices
for a priori information, d is a scaling factor, and [·; ·] indicates concatenation.

The MA adds prior information to nodes and enables higher attention to the focal
node based on the interrelationship of each node. However, is it possible that a node does
not contain any relationships or priors? The last step of memory-augmented attention
is a weighted summation of node features, which may lead to some misinterpretation.
Therefore, the relational discriminator was designed to remove or modify some incorrect
and unnecessary features.
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In this discriminator, the sentinel value is first calculated:

S = σ
(

Wi,gX̄ + Wh,gX + Bs

)
, (2)

where Wi,g ∈ RC2×C3 , Wh,g ∈ RC1×C3 and Bs ∈ RC3 are learnable weights. σ is the sigmoid
logistic function. For the sentinel value S ∈ RN×C3 , a higher Si,j means that the feature
needs to be saved.

After that, we mixed the original node feature X with the memory-augmented feature
X̄ as follows:

Xv = σ(W1X̄ + W2X + Bv), (3)

where W1 ∈ RC2×C3 , W2 ∈ RC1×C3 and B ∈ RC3 are learnable weights.
Finally, the proposed information-augmented embedding module produces the feature

X̄v by rescaling Xv with the sentinel value S:

X̄v = Xv � S (4)

where � represents element-wise multiplication. The node features are X̄v ∈ RN×C3 . The
effectiveness and accuracy of the region feature with prior information were improved by
using the proposed relational discriminator structure.

Multi-Relational Weighted Convolution Graph.The types of nodes in ASG are object,
attribute, and relationship. Since the types of nodes cannot be distinguished by their visual
appearance alone, the node features were enhanced by the type embedding as follows[12]:

x(0)rn,i =


x̄v,i �Wr,0, if i ∈ o;

x̄v,i � (Wr,1 + pos[i]), if i ∈ a;
x̄v,i �Wr,2, if i ∈ r.

(5)

where x̄v,i is one node in X̄v. Wr,n ∈ RC3(n = 0, 1, 2) is the embedding for three types of
nodes, and pos[i] is a positional embedding matrix to distinguish the different attribute
nodes connected to the same object.

With the above formula, attribute information was added to the node feature. Further-
more, there were six types of edges and three types of nodes in ASG. Since nodes and edges
are of different types, how does the message pass from one type of node to another along
different edges? Therefore, the designed multi-relational weighted convolution graph
(MR-WGCN) extends the MR-GCN [40] with different weights of edges as follows:

x(l+1)
rn,i = σ

W (l)
s x(l)rn,i + ∑

r̃∈R
∑

j∈N r̃
i

1

w(l)
i,j

W (l)
r̃ x(l)rn,j

, (6)

where N r̃
i denotes the neighbours of i-th node under the edge r̃ ∈ R, w(l)

i,j is the weight of

the edge from x(l)rn,i to x(l)rn,j. σ is the ReLU function, and W (l)
s , W (l)

r̃ ∈ RC3×C3 are learnable

matrices of l-th for self-loop. The formula of w(l)
i,j is:

w(l)
i,j = sigmoid

(
Wix

(l)
rn,i

(
Wjx

(l)
rn,j

)T
)

(7)

Exploiting this layer brings context information from neighborhood nodes to the
center node. Stacking multiple MR-GCN layers enabled us to obtain contextual context
information. After that, calculating the average of Xrn = {xrn,0, · · · , xrn,N} as the global
graph representation g = 1

N ∑N
i=0 Xrn,i.
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3.2. Dynamic Attention Decoder

The language decoder employs a two-layer LSTM structure [21], Semantic Content
Attention, Graph Structure attention, and a Fusion Constraint Decoder. The two-layer
LSTM includes an attention LSTMa and a language LSTMl . The attention LSTMa computes
the ha

t as follows:

ha
t = LSTMa

([
Wv[g; v]; wt−1; hl

t−1

]
, ha

t−1; θa
)

, (8)

where v ∈ RCg is a global image representation extracted from ResNet152, wt−1 is the previ-
ous word embedding, hl

t−1 is the previous hidden state from language LSTMa, [·; ·] indicates
concatenation, and Wv ∈ R(C3+Cg)×C3 is a learnable matrix for dimension reduction.

Considering that ASG is a graph-based structure, there are two types of attention
based on semantic content and graph structure.

Semantic Content Attention. Semantic Content Attention mainly takes the semantic
content into account. In the following formula, xt=0,i is initialized to xrn,i. Then we adjust
feature ha

t through Formula (9), which is similar to the shortcut connection. Finally, the
importance of each node is normalized by a softmax function.

h̄a
t = Wxcha

t � ha
t + ha

t (9)

ᾱc
t,i = Wc tanh

(
h̄a

t + xt,i
)

(10)

αc
t = softmax(ᾱc

t ) (11)

where Wxc ∈ RC3×C3 and Wc ∈ RC3×1 are learnable parameters in semantic content
attention.

Graph Structure Attention. The Graph Structure Attention takes into account the
graph structure of each node. ASG reflects the user’s intended order. According to the
structure of ASG, if the current node is an object node, the next node to be described will be
a relation node or an attribute node close to the object node. The next node still has a lower
probability of being another object node that has a common relationship with the current
object node. Thus, there are three types of attention transfer: (1). Stay at the same node to
describe the object with several words; (2). move to the next node to describe the relation
or attribute; and (3). move to another object node that is related to the same relation node.

Hence, α
f
t,i =

(
M f

)i
αt−1 represents the attention transfer from the original node.

To calculate the probability of each attention transfer, ha
t was combined with the

previous attention feature zt−1 as the state feature st.

st = [ha
t , zt−1] (12)

Then, we calculated the weight of three attention transfers through the state feature st
as follows:

wg = softmax
(

ReLU
(

Wg f

(
Wglst ∗Wgrst

)))
(13)

α
f
t =

2

∑
k=0

wg,kα
f
t,k (14)

where Wgl , Wgr ∈ R2C3×C3 and Wg f ∈ RC3×3 are learnable parameters, and wg indicates
the weight of each attention transfer.

The final step is to fuse the results of semantic content attention and graph structure
attention, as follows:

gt = sigmoid
(

ReLU
(

W f (Wlst ∗Wrst)
))

(15)

αt = gtα
c
t + (1− gt)α

f
t , (16)
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where Wl , Wr ∈ R2C3×C3 and W f ∈ RC3×1 are learnable parameters, gt is a sentinel value to
decide whether to pay more attention to the result of semantic content attention or graph
structure attention.

Based on the nodes that should be focused on to obtain the current attention feature
zt = ∑

|N |
i=1 αt,ixt,i was used to generate the next word.

Fusion Constraint Decoder. The fusion constraint decoder generates the next word
with the current attention feature zt, the hidden state of attention LSTMa, ha

t , and the
previous word hl

t−1. Firstly, the hidden feature hl
t is generated by the language LSTMl of

the two-layer LSTM structure [21].

hl
t = LSTMl

(
[zt; ha

t ], hl
t−1; θl

)
(17)

In the standard method, the next word was generated as follows:

p(yt | y < t) = softmax
(

Wphl
t + bp

)
(18)

To generate more accurate sentences, the following formula was used instead of the
standard method.

wt1 = Wp,1hl
t (19)

wt2 = Wp,2hl
t (20)

p(yt | y<t) = softmax(wt1 ∗wt2) (21)

where Wp,1, Wp,2 ∈ RC3×Cw , Cw is the number of total words. Formula (19) generates two
word probabilities wt1, wt2 through hl

t. The output word is the one with the highest proba-
bility according to wt1 and wt2. This design enabled us to obtain a more accurate result.

Meanwhile, in order for the two fully connected layers to learn different emphases of
ht, we generated different vectors through the similarity loss.

Lcosine,t = max(0, cos(wt1, wt2)− thr2) (22)

A smaller cos() indicates that they are less similar. thr2 is a similarity threshold. If
cos(wt1, wt2) is less than thr2, the two vectors are sufficiently dissimilar to be excluded
from the loss. Through this loss, the probability of non-correct words is as orthogonal
as possible.

Hence, using the standard cross-entropy loss and similarity loss to train IANR:

L = − log
T

∑
t=1

p(yt | y<t,G, I) + γ
T

∑
t=1

Lcosine,t (23)

where γ is a weight to balance the cross-entropy loss and similarity loss.
Graph Updating. A sentence contains not only visual words, but also some non-visual

words, such as “a”, “the” and “some”. When having non-visual words, the generated
words do not express the accessed graph nodes, and thus the graph should not be updated.
Therefore, a sentinel gate is proposed to dynamically adjust the attention weight through
the output of language LSTMl , hl

t, and currently accessed node vector zt as follows:

ut = Wu

(
Wuhhl

t ∗Wuzzt

)
, (24)

where Wuh, Wuz, Wu ∈ RC3×C3 . ut is a vector to indicate whether or not the generated word
expresses the meaning of the accessed node.
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As with NMT [6], the node update by using the add operation after an erase operation
is as follows:

et,i = sigmoid(We(Weuut ∗Wexxt,i)) (25)

at,i = Wa(Wauut ∗Waxxt,i) (26)

xt+1,i = xt,i ∗ et,i + at,i (27)

Therefore, a node can be set to 0 if it is no longer being accessed. Meanwhile, a node
can be updated through at,i if it needs to be described in more than one word. In this way,
we updated the node features from Xt to Xt+1 to generate the next word.

4. Experiments
4.1. Experimental Datasets

An extensive set of experiments was performed on two widely used datasets: MSCOCO
Entities [11] and Flickr30k Entities [41] to evaluate the effectiveness of the proposed model.
Both datasets contained images with corresponding descriptions in English and a corre-
spondence between nouns and image regions. The control signal of ASG was automatically
constructed based on the annotations of two datasets, as in Ref. [12]. In order to have a
fair comparison with other methods, we followed “Karpathy” splits for MSCOCO Entities,
using 112,742 images for training, 4790 images for validation, and 4979 images for testing.
Each image has almost five sentences, as well as a corresponding ASG control signal. As for
the Flickr30k Entities, which are smaller than MSCOCO Entities, they have 29,000 images
for training, 1014 images for validation, and 1000 images for testing. Each image has almost
five sentences, and the corresponding ASG control signal does as well.

4.2. Experimental Evaluation Metrics

We evaluated the quality of the generated sentences through two aspects: accu-
racy and diversity. For accuracy, this paper employed six evaluation metrics, including
BLEU@4(b@4) [42], METEOR (M) [43], ROUGE (R) [44], CIDEr (C) [45], SPICE (S) [46], and
alignment score (NW) [11], where B@4 computes the precision of the generated words.
However, BLEU@4 does not consider synonyms and part-of-speech information. The ME-
TEOR considers this information through WordNet and calculates the average of accuracy
and recall. ROUGE is a similarity metric to computes the recall on the longest common
subsequence. CIDEr assigns a lower weight to common words and a higher weight to novel
words. This metric better reflects the matching level of novel words. Most of the novel
words are objects, attributes, and relations, which would not be prepositions or adverbs.
Hence, The CIDEr better reflects the matching level of the novel words. SPICE evaluates
the semantic similarity of the generated sentences and ground truth. The alignment score
(NW) evaluates the consistency between the generated caption and the regional sequence.
For diversity, we followed Ref. [12] using two metrics: n-gram diversity (D-n) [13,47] and
Self-CIDEr (s-C) [48]. The D-n is the ratio of the different n-grams to total number of words
in the best five captions. The Self-Cider is a recent metric which uses the CIDEr score as the
kernel matrix K in the LSA to evaluate semantic diversity. The range of BLEU@4, METEOR,
ROUGE, SPICE, NW, D-n, and s-C is [0, 1]. The range of CIDEr is [0, 10]. Note that all
the scores have been reported in percentages. The higher the score, the more accurate or
diverse it is.

4.3. Experimental Details

This paper extracts visual features for grounded regions by standard Faster-RCNN [23]
pretrained on VisualGenome, and we also extract global image features by ResNet152 [5]
pertained on ImageNet. For the information-augmented graph encoder, the dimension of
C1 = 2048, C2 = 4096, and C3 = 512, using two layers of MR-WGCN. For the language
decoder, the global feature dimension Cg = 2048, the word embedding and the hidden
size of two LSTM were set to be 512. During training, we trained the network through



Appl. Sci. 2023, 13, 5020 9 of 17

cross-entropy loss and the designed similarity loss over 25 epochs. For the Adam optimizer,
the learning rate was set to 0.0002 and the batch size set to 128. For language decoding, we
exploited the beam search strategy with a beam size of 5 for all experiments. All experiments
were conducted on NVIDIA GPU GTX-1080Ti. IANR was based on ASG2Caption [12].

4.4. Ablation Experiment

To quantify the impact of each proposed module, we compared it with a list of ablation
models on various settings. To ensure fairness, in the following experiments, we fix the
initialization parameters of the network.

4.4.1. Impact of Each Module on Encoder

To study the effects of the proposed information-augmented graph modules (memory-
augmented attention (MA) [39], relational discriminator (RD), and multi-relational weighted
graph encoder (MR-WGCN)) on the encoder, we started from a baseline model [12] that
has a multi-relational graph encoder (MR-GCN) [40]. Then, we replaced MR-GCN in the
baseline model with the proposed MR-WGCN, which takes into account how the message
passes from one type of node to another along different edges. After that, we added MA
and RD to the new model, respectively. Table 1 shows the results of each model on the
two datasets.

Table 1. Settings and results of ablation studies. (Baseline: ASG2Caption [12]; MR-WGCN: replace
MR-GCN in baseline model with the proposed MR-WGCN; MR-WGCN+MA: replace MR-GCN and
insert memory-augmented attention(MA); MR-WGCN+MA+RD: replace MR-GCN with MR-WGCN,
insert memory-augmented attention (MA) and relational discriminator (RD) into the baseline model).
Bold for the best.

Dataset Model B@4 M R C S NW D-1 D-2 s-C

MSCOCO
Entities

baseline [12] 23.06 24.63 50.31 204.36 42.39 70.46 47.63 73.51 69.95
MR-WGCN 23.04 24.78 50.41 206.22 42.72 70.54 48.13 74.26 70.23
MR-WGCN+MA 24.11 25.31 51.29 216.32 43.78 71.35 48.34 74.45 70.37
MR-WGCN+MA+RD 24.39 25.48 51.54 218.12 44.16 71.62 48.51 74.66 70.33

Flickr30k
Entities

baseline [12] 13.73 18.12 39.27 108.67 29.43 62.23 41.71 68.11 85.72
MR-WGCN 13.83 18.45 39.57 111.58 29.45 62.92 40.33 66.06 85.08
MR-WGCN+MA 13.85 18.36 39.52 112.71 29.74 62.75 42.37 69.06 86.82
MR-WGCN+MA+RD 14.30 18.65 39.99 114.8 30.15 62.86 41.83 68.57 86.03

It is obvious that the model with MR-WGCN outperforms the baseline model on five
types of accuracy metrics, except B@4. The score for B@4 on MSCOCO Entities is slightly
lower than the baseline model by 0.02. In terms of diversity, the results on the MSCOCO
Entities dataset are better than the baseline model, but worse on the Flickr30k Entities.
This means the MR-WGCN can improve the accuracy of visual words significantly. The
reason for MR-WGCN tending to generate similar sentences on small data sets may be
the insufficient training data, which makes the MR-WGCN unable to learn the difference
between each sentence. Then, we applied the MA module to add the prior information
to the “MR-WGCN+MA” model. All evaluation metrics were improved. This means the
MA module can steadily improve the accuracy and diversity of the generated sentences.
The final model, which adopts the proposed RD module to evaluate the prior information,
outperforms the “MR-WGCN+MA” model in all accuracy metrics. For the diversity, the
results of the larger dataset are better than “MR-WGCN”, but poor on the smaller one.
Compared to the baseline model, better results are achieved for all metrics.

Figure 2 shows a few examples with images and captions generated by the ablated
models with various settings and human-annotated ground truth sentences (GT). From
these examples, the baseline model generates captions that are logical but inaccurate,
while the proposed module generates more accurate captions. More specifically, the
designed modules have advantages in the following three aspects: (1) IANR figures out the
relationship between objects. There is a boat on the water with flags/motorcycle sitting
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on a fencelaptop computer on the table in the first/second/third examples. However, the
baseline model presents the flag as parked on a river/a bike sitting on a bridge/laptop
computer in a room, while IANR describes it correctly; (2) IANR describes the objects in the
control signals more accurately. For example, IANR describes the motorcycle and fence, not
the bike and bridge, in the second example; the object is a laptop computer, not a desktop
computer, in the third example; people are sitting in a park, not in a courtyard, in the fourth
example; and (3) IANR counts objects more accurately. In the image of the five examples,
there is one truck, not a couple of trucks. IANR has these advantages because it can add a
priori information of objects and remove useless information.

GT: a boat that is decorated with flags on the water.
baseline: a boat and flag is parked on a river.
MR-WGCN: a boat in a lake that is next to a flag.
MR-WGCN+MA: a boat that is in front of a lake and a flag.
MR-WGCN+MA+RD: a boat that is on the water with flags.
GT: a motorcycle sitting on top of a fence as decor.
baseline: a bike sitting on a bridge in front of a field.
MR-WGCN: a bike sitting on top of a wall next to a tree.
MR-WGCN+MA: a motorcycle is parked on a fence in front of a field.
MR-WGCN+MA+RD: a motorcycle sitting on a fence in front of a boat.
GT: a desk that has a laptop computer on it.
baseline: a room that has a computer computer on it.
MR-WGCN: a room that has a laptop computer in it.
MR-WGCN+MA: a room that has a laptop computer on it.
MR-WGCN+MA+RD: a table that has a laptop computer on it.
GT: a group of people outdoors at a park.
baseline: a group of people are sitting outside in a courtyard.
MR-WGCN: a group of people are sitting on a path.
MR-WGCN+MA: a group of people are sitting on a bench.
MR-WGCN+MA+RD: a group of people are sitting in a park.
GT: a red truck parked on top of a dirty ground.
baseline: a couple of trucks parked on a dirt field.
MR-WGCN: a very old truck parked on a dirt road.
MR-WGCN+MA: a large truck parked on top of a dirt field.
MR-WGCN+MA+RD: a red truck parked on top of a dirt field.

Figure 2. Examples of captions generated by the baseline model, various ablation models mentioned
in the Section 4.4.1, as well as the corresponding ground truths (GT).

4.4.2. Impact of Each Module on Decoder

To quantify the impact of each proposed module in the decoder, the ablation exper-
iment is shown in Table 2. All models have MR-WGCN, MA, and RD modules in the
encoder. The base model (Row 1 and 5) beginning with the decoder only has semantic
content attention (SCA). Then, in Rows 2 and 6, we added a fusion constraint decode
(FCD) to the decoder and the performance improved in the accuracy and diversity metrics,
except for a b@4 drop of 0.01 in Flickr30k Entities. In particular, CIDEr/Spice/Self-CIDEr
improved by 2.1/0.31/0.11 and 2.57/0.04/1.13, respectively. When comparing Row 2 with
Row 3, in which a graph update (gupda) was employed for updating node features based
on the generated words and currently accessed nodes, there was an improvement in all
metrics except s-C. For the performance of Flickr30k Entities, the metrics of B@4, R, NW, s-C
slightly decreased, while C, S, and M significantly increased. It shows the networks with
gupda tended to generate similar prepositions when the training data were insufficient,
and the increased M, R, C, S indicate that the nouns, relations, and so forth were described
correctly. Rows 4 and 8 enhance the decoder with graph structure attention (GSA). The
graph structure attention captures the structure information in the graph to supplement
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semantic content attention. Hence, It outperforms other models in most metrics on two
datasets. The metrics of METEOR/CIDEr/Spice/NW/D-1/D-2/Self-CIDEr improved by
0.1/0.98/0.27/0.03/0.52/0.51/2.54 and 0.04/0.42/2.78/0.7/0.63/0.55/0.63/0.11, respec-
tively. The improvement on the small dataset was greater than that on a large dataset. The
improvement for visual words was more obvious. Hence, the designed GSA is useful for
generating more diverse and accurate sentences.

Table 2. Comparison of variants for proposed modules in decoder on MSCOCO Entities. (X) indicates
“used” (SCA:semantic content attention; GSA:graph structure attention; gupda:graph updating; FCD:
Fusion Constraint Decode). Bold for the best.

Dataset # SCA GSA Gupda FCD B@4 M R C S NW D-1 D-2 s-C

MSCOCO
Entities

1 X 24.17 25.27 51.39 215.69 43.77 71.07 48.10 74.24 70.44
2 X X 24.35 25.45 51.52 217.79 44.08 71.16 48.38 74.53 70.55
3 X X X 24.81 25.61 51.80 221.32 44.14 71.48 48.43 74.55 68.03
4 X X X X 24.67 25.71 51.73 222.3 44.41 71.51 48.95 75.06 70.57

Flickr30k
Entities

5 X 14.11 18.29 39.70 110.15 29.72 61.90 41.64 68.33 86.12
6 X X 14.10 18.43 39.73 112.72 29.76 62.36 43.40 70.39 87.25
7 X X X 13.98 18.59 39.70 114.50 29.99 62.31 43.47 70.59 87.10
8 X X X X 14.48 18.63 40.12 117.28 30.69 62.93 44.02 71.22 87.21

Figure 3 shows a few examples of images and the generated captions. From these
examples, the proposed modules have advantages in the following two aspects: (1). IANR
counts objects more accurately. There are two men/an elephant, not a young boy/some
giraffes in the first and second examples. (2). IANR describes the objects more accurately.
For example, an elephant, not some giraffes standing in the grass in the second example;
a glass and a vase, not a glass and glass on a table in the third example; a teddy bear
in front of a car dashboard, not on top of a black car in the fourth example. IANR has
these advantages because it makes fuller use of the control signal to generate the correct
sentences.

GT: two men on skateboards standing on the top of a ramp.
SCA: a young boy on a skateboard on the edge of a ramp.
SCA+FCD: two boys on skateboards riding on the edge of a ramp.
SCA+FCD+gupda: two boys on skateboards at the top of a ramp.
SCA+FCD+gupda+GSA: two men with skateboards standing at the top of a ramp.
GT: an elephant standing in the grass on the plains.
SCA: some giraffes standing in a field of grass.
SCA+FCD:a zebra standing in the grass in a field.
SCA+FCD+gupda: an elephant standing in the grass in the grass.
SCA+FCD+gupda+GSA: an elephant standing in the grass in the sun.
GT: a glass and vase sit on a table overlooking the ocean.
SCA: a glass and glass are on a table in front of a boat.
SCA+FCD: a glass and a glass are on a table in a city.
SCA+FCD+gupda: a glass and a vase are on a table with a drink.
SCA+FCD+gupda+GSA: a glass and a vase sit on a table near a pier.
GT: the small stuffed bear is propped into the car dashboard.
SCA: a stuffed teddy bear sitting on top of a black car.
SCA+FCD: a stuffed teddy bear sitting on a computer dashboard.
SCA+FCD+gupda: a brown teddy bear sitting on top of a car dashboard.
SCA+FCD+gupda+GSA: a stuffed teddy bear sitting in front of a car dashboard.

Figure 3. Examples of captions generated by various ablation models. GT represents one of the
corresponding ground truth sentences. SCA denotes the model has MR-WGCN, MA, and RD
modules, but the decoder only has semantic content attention (SCA). SCA+FCD, SCA+FCD+gupda,
and SCA+FCD+gupda+GSA is to add FCD, gupda, GSA modules into SCA step by step.

4.5. Comparative Experiment

Table 3 shows the performance comparison between the current state-of-the-art con-
trollable and uncontrollable models with the proposed method. In this comparison, we use



Appl. Sci. 2023, 13, 5020 12 of 17

the same MSCOCO Entities dataset set as Refs. [11,16,35]. Compared with other control-
lable image caption models, IANR was higher than SOAT in METEOR, CIDEr, and SPICE
by 0.64, 50.58, and 4.91. All these enhancements show that IANR can significantly improve
the ability to describe objects and relationships.

Table 3. Comparisons with the state-of-the-art on the MSCOCO Entities dataset. B@4, M, R, C, and S
stand for BLUE@4, METEOR, ROUGE-L, CIDEr, and SPICE, respectively. Bold for the best.

Model B@4 M R C S

State-Of-The-Art Controllable Models
MC [38] 37.1 27.7 56.1 126.4 21.5
ASG2Caption [12] 23 24.5 50.1 204.2 42.1
SCT [11] 20.9 24.4 52.5 193 45.3
VSR [16] 23.1 28.0 55.6 235.1 48.9
LCIC [15] 35 27.9 57 116.8 21.7
PC [32] 36.4 – 57.5 124 21.2
Sub-GC [36] 36.2 27.7 56.6 115.3 20.7
POS [13] 31.1 25.3 53 103.6 18.8
ConCap [49] 40.5 30.9 - 133.7 23.8
TSG [50] 38.2 28.2 59.1 132.8 22.0
ASA [51] 44.0 32.0 - 140.4 23.8
FVC-MT [35] 22.4 25.8 55 206.3 47.6

State-Of-The-Art Uncontrollable Models
CPTR [52] 40 29.1 59.4 129.4 –
CGVRG [53] 38.9 28.8 58.7 129.6 22.3
AoANet [22] 38.9 29.2 58.8 129.8 22.4
BUTD [21] 36.3 27.7 56.9 120.1 21.4
SCA-CNN [54] 30.2 24.4 52.4 91.2 –
SCST [18] 31.9 25.5 54.3 106.3 –

IANR 27.57 28.54 55.59 256.88 52.51

4.5.1. Comparison on the Same Test Data

A well-known advantage of controllable image captioning is the ability to generate
diverse image captions through different control signals. Each control signal is produced in
different ways, so some images or sentences will be removed. Hence, we compared IANR
with the two latest controllable models, VSR [16] and SCT [11], which release codes, extract
features, and pretrained models.

For fair comparison, those models were compared on the common parts of the VSR
and SCT test datasets. The common part of the MSCOCO Entities has 4678 images
and 14,179 sentences. The common part of the Flickr30k Entities has 1000 images and
4982 sentences. The input feature sequence of “SCT” is the region feature corresponding
to the words in the sentence. The “SCT w/o sequence” generates sentences by predicting
the sequence of the selected regions. “VSR” achieves a better score by specifying the
ground verb and associated object node features. “VSR w/o verb” removes the ground verb
information and only uses the features of the ground truth region and relations.

The quantitative results are shown in Table 4. It is obvious that the captions generated
by IANR in two datasets have much higher accuracy and diversity (CIDEr 224 VS 165.66
in VSR, Self-CIDEr 50.05 VS 46.29 in VSR). “SCT w/o sequence” obtained the worst results
because it lacked the ground region sequences. Compared with VSR, IANR does not only
need to know what the relationship is. This is more consistent with the application of image
captioning. Even though there is less information in control signals, the metrics of accuracy
and diversity are still higher than VSR.
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Table 4. The performance comparisons on MSCOCO Entities and Flickr30k Entities datasets. All tests
were performed in the common part of the datasets, but each model had region features. Bold for
the best.

Dataset Model B@4 M R C S NW D-1 D-2 s-C

MSCOCO
Entities

SCT 18.27 26.20 50.44 151.62 40.27 71.57 48.99 67.26 39.85
SCT w/o sequence 12.22 23.88 44.33 111.10 36.33 65.16 42.59 57.22 30.88
VSR 16.00 28.91 49.24 165.66 38.62 65.67 52.34 70.93 46.29
VSR w/o verb 14.98 27.91 47.73 146.95 38.60 65.15 51.64 70.20 45.28
IANR 25.50 26.62 52.21 224.02 45.63 72.5 58.68 81.66 50.05

Flickr30k
Entities

SCT 11.29 19.33 38.56 71.79 24.72 59.00 32.34 47.10 50.72
SCT w/o sequence 9.79 17.99 35.81 60.57 23.18 56.54 29.60 42.62 42.76
VSR 12.41 22.87 42.06 115.54 22.71 56.53 37.53 59.04 68.16
VSR w/o verb 10.76 20.85 38.19 83.07 22.16 55.16 36.47 57.29 65.51
IANR 14.60 19.01 40.58 116.98 31.27 63.53 48.14 74.40 73.72

4.5.2. Comparison on Same Training Data

We compared the latest model with the same test data in Section 4.5.1, but those
models had different control signals and feature sequences. Hence, the proposed model
is compared with several carefully designed baselines that use the same training data.
Those baselines include: (1). AoANet, which employs self-attention as an encoder and
decoder; (2). the BUTD model, which dynamically attends over relevant object regions
when generating different words; (3). SCT, which regards the set of visual regions as a
control signal; and (4) ASG2Caption, which proposes the ASG as a control signal.

Table 5 shows comparison results with the aforementioned models on MSCOCO Enti-
ties. IANR achieves state-of-the-art results on automatic evaluation metrics, outperforming
all baselines in terms of alignment with the control signal through NW. IANR outperforms
the controllable AoANet and controllable BUTD by 46.72 on CIDEr, 2.24 on NW, and
7.98 on Self-CIDEr. Compared with SCT trained with the same visual feature, our model
improves by 93.48 on CIDER, 9.42 on NW and 17.17 on self-CIDEr. Finally, compared with
the ASG2Caption model, IANR still outperforms it in all metrics, such as by being higher
by 17.7 on CIDER, 0.91 on NW, and 0.62 on self-CIDEr.

Table 5. The performance comparisons on the MSCOCO Entities dataset for controllable image
captioning. All models were re-implemented and trained on the same region feature. Bold for
the best.

Model B@4 M R C S NW D-1 D-2 s-C

AoANet [22] 18.57 22.70 46.09 175.58 40.18 69.09 45.58 66.74 60.25
BUTD [21] 16.00 21.29 43.61 149.50 36.13 66.34 39.58 57.64 53.19
SCT [11] 14.29 22.51 44.49 128.82 34.99 63.61 40.80 58.41 51.06
ASG2Caption [12] 23.06 24.63 50.31 204.36 42.39 70.46 47.63 73.51 69.95
IANR 24.67 25.71 51.73 222.30 44.41 71.51 48.95 75.06 70.57

4.6. Result and Discussion

In the experiment, the results of some of the images were not correct. This section
visualizes some failure results in Flickr30k Entities, as shown in Figure 4. On the left of the
first line, there are too many boxes, resulting in captioning model failure to describe the
relationships between them. On the right of the first line, according to the control signal,
the model needs to describe populations and umbrellas that do not have relationships.
Hence, IANR generates an incorrect description. The left side of the last two lines is the
correct sentence and control signal, and the right side is incorrect. In the second line, it is
difficult to describe the relationship between the child and the ocean. On the right side of
the third row, the red box contains two boxes indicating a semicircle and the same direction,
respectively, which is too close and makes the model difficult to describe.
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GT: an elderly man dressed in
a red and blue plaid shirt and
brown camouflage cap is watching
an event while eating a snack
from a plastic bag on his lap

GT: three people stand underneath
and umbrella in front of a crowd
of people

IANR:an older man with a brown
and white plaid shirt and a
brown baseball cap is sitting
on a stool with a blue hammer

IANR:a couple standing in the
middle of a group of people
are wearing an umbrella

GT: two boys wearing red jackets
are digging shovels into the dirt
the smaller boy in the yellow
boots has a Mohawk

GT: two people dig with shovels
at a playground by the ocean

IANR: a young blond haired child
wearing a red sweatshirt and
boots is playing on the dirt
ground with a red toy in the
background

IANR: a child rides a swing on
a slide at the ocean

GT: some of the people in the
crowd are having a drink

GT: people sitting around in a
semi-circle all looking in the same
direction

IANR: many people are sitting
in a circle and drinking beer

IANR: people sitting on a city
street eating a busy street

Figure 4. Examples of ground truth and a failed case generated by the proposed model.

As can be seen from Figure 4, a proper control signal is the key issue. In the future,
we propose to design an appropriate control signal and corresponding captioning model
according to the actual application.

5. Conclusions

Consider that all currently available object-controllable image captioning methods
have overlooked the prior information of detected objects and relationships. To this end,
this paper proposed a novel module called the information-augmented graph encoder,
which is composed of an information-augmented embedding module and a multi-relational
weighted graph encoder. The dynamic attention model was designed to fuse the result
of a control signal and node features with prior information. In addition, we designed a
similarity loss for generating diverse captioning. Extensive experiments on the MSCOCO
Entities and Flickr30k Entities achieved state-of-the-art performance in terms of controllable
image captioning models. More remarkably, IANR exceeded the best-published CIDEr
score to date by 6.7%/5.6% on the MSCOCO Entities/Flickr Entities test split. It also
significantly improved the diversity of captions.

The main limitation of this study is the difficulty in constructing the control signal to
determine what is needed to be described in the given image. However, in some specific
applications, it is possible to know approximately what needs to be described, for example,
describing the road or the surrounding items when assisting a visually impaired person to
walk; and constructing a control signal through some models [55] to detect the salient object
in remote sensing images. Compared to other image captioning models, IANR is able to run
in real-time up to 1.15 ms per image on a GPU-enabled device, which is significantly faster.
Hence, IANR is more suitable for combining with some detection models [55] to describe
salient objects. In the future, it is proposed to simplify the control signals, compress the
model, or combine it with some detection methods to make IANR available for mobile
devices or real-time tasks.
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