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Abstract: Diffuse optical tomography (DOT) is a biomedical imaging modality that can reconstruct
hemoglobin concentration and associated oxygen saturation by using detected light passing through
a biological medium. Various clinical applications of DOT such as the diagnosis of breast cancer and
functional brain imaging are expected. However, it has been difficult to obtain high spatial resolution
and quantification accuracy with DOT because of diffusive light propagation in biological tissues
with strong scattering and absorption. In recent years, various image reconstruction algorithms
have been proposed to overcome these technical problems. Moreover, with progress in related
technologies, such as artificial intelligence and supercomputers, the circumstances surrounding
DOT image reconstruction have changed. To support the applications of DOT image reconstruction
in clinics and new entries of related technologies in DOT, we review the recent efforts in image
reconstruction of DOT from the viewpoint of (i) the forward calculation process, including the
radiative transfer equation and its approximations to simulate light propagation with high precision,
and (ii) the optimization process, including the use of sparsity regularization and prior information
to improve the spatial resolution and quantification.

Keywords: diffuse optical tomography; image reconstruction; inverse problem

1. Introduction

Diffuse optical tomography (DOT) is a biomedical imaging modality that reconstructs
the distribution of the optical properties of scattering and absorption coefficients as tomo-
graphic images by employing light illumination and detection at the surface of a measured
object [1–7]. Near-infrared (NIR) light propagates deep into tissues and is mainly absorbed
by oxy-/deoxyhemoglobin. Therefore, by acquiring DOT with NIR light images, the con-
centrations of oxy-/deoxyhemoglobin and related oxygen saturation can be determined.
This permits diagnosis of diseases such as breast cancer [8–12] and those involving an-
giogenesis, and can be used to monitor activities in the human brain [13] and to observe
the oxygen supply to the neonatal brain in the intensive care unit [14], both of which are
reflected by changes in regional blood flow in the brain. The scattering coefficient can be an
indicator of changes in the tissue conditions.

Although DOT appears to be a promising novel biomedical imaging technology, it
involves technical problems attributed to light propagation accompanied by scattering
and absorption. Unlike X-ray computed tomography (CT), image reconstruction employ-
ing backprojection does not function well for DOT because of diffusive light propaga-
tion. Therefore, DOT requires image reconstruction consisting of two processes. The first
is the forward process, which calculates light propagation and predicts measurements.
The second is an optimization process that minimizes the error between the actual and
predicted measurements.

In the forward process, light propagation can be calculated with a given set of absorp-
tion and scattering coefficients by employing the radiative transfer equation (RTE) and
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various approximations of the RTE, including the photon diffusion equation (PDE), PN
approximation, and Monte Carlo method. The predicted measurements at the surface of
the object are obtained by solving these equations. In the optimization process, a given set
of optical properties used in the forward process is updated to minimize the error between
the predicted and actual measurements by employing various optimization methods such
as the Newton–Raphson method, which minimizes the squared error. The use of regular-
ization techniques and prior information is a good option in the optimization process for
some applications. Various image reconstructions can be composed to solve the inverse
problem by selecting and combining adequate methods for the forward and optimization
processes. Because a strong scattering effect in biological tissues is essentially unavoidable,
image reconstruction is crucial for realizing DOT in practical clinical use.

Studies on image reconstruction have attempted to resolve the technical problems of
spatial resolution and quantification accuracy in DOT images of highly heterogeneous mea-
sured objects. Image reconstruction has been improved by the recent studies mentioned in
this review, although these efforts have not been reflected in clinical applications. To over-
come this low spatial resolution, sparsity regularization techniques related to compressed
sensing technology have been introduced. The use of prior information about the structure
inside the body obtained from other imaging modalities, such as X-ray CT and magnetic
resonance imaging (MRI), has been proposed to improve spatial resolution. Spectral prior
information improves the quantification of chromophore concentrations in multispectral
DOT imaging. Moreover, changes in the circumstances surrounding DOT in the past two
decades affect image reconstruction algorithms. Recent progress in computational technol-
ogy, including artificial intelligence (AI) and high-performance supercomputers, may have
altered image reconstruction of DOT. Image reconstruction schemes employing AI with
deep learning in diffuse optical imaging [15–19] and the simulation of light propagation
using supercomputers [20] have also been attempted in recent years. Progress in diffuse op-
tics and related imaging technologies, including photoacoustic (PA) imaging, which allows
high-resolution imaging of blood vessels deep inside the body [21,22], may promote recon-
sideration of the role of DOT and its image reconstruction. In such a changing situation,
it is worth reviewing what has been achieved in DOT image reconstruction for research
in diffuse optical imaging and related fields. This review provides useful information to
select algorithms for clinical applications of DOT and will assist researchers working in
emerging DOT-related research fields, including AI, high-performance computation, and
different optical imaging technologies, to expand their research into DOT.

The general framework and theoretical aspects of DOT image reconstruction are
described in detail in the literature [23,24]. Previous review articles [2,25–27] have provided
highly informative guides for implementing DOT image reconstruction. Here, we review
the methods for the forward and optimization processes with some studies on DOT image
reconstruction, including some recent reports that were not included in previous reviews.
The authors tried to cover as wide a range of topics and studies in this review as possible,
although this may have inflated rather than simply fledged this review. Figure 1 illustrates
the flow of image reconstruction for DOT and related topics for each of the processes
mentioned in this review.
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Figure 1. Flow of DOT image reconstruction and topics related to the processes in image reconstruc-
tion mentioned in this review together with corresponding section numbers.

2. Outline of DOT Image Reconstruction
2.1. Measurement

For image reconstruction of DOT, the distribution of optical properties, such as the
absorption coefficient µa(r) and the scattering coefficient µs(r)/the reduced scattering co-
efficient µs

′(r) at position r in the images, must be calculated. The images of the optical
properties can be translated into images of the physiological and functional properties,
such as the hemoglobin concentration and oxygen saturation of blood and tissues. The
optical properties are calculated by comparing the actual and predicted measurements.
Therefore, image reconstruction for DOT begins with the measurement.

Detailed descriptions of the measurement for DOT image reconstruction can be found
in the literature [1,3–7]. Light sources such as lasers and laser diodes are used for illumina-
tion of the surface of the medium to generate measurements of light propagating through
the measured object and reaching its surface. The measurements are obtained using op-
tical detectors that can measure the light intensity at the surface of the measured object.
Optical detectors such as photomultiplier tubes connected to optical fibers on which the
opposite side is attached to the measured object can be employed for the measurement. The
types of measurements are usually categorized into time-domain (TD), frequency-domain
(FD), and continuous-wave (CW) measurements with illumination using pulsed, intensity-
modulated, and continuous light, respectively. Through TD measurement, the distribution
of time-of-flight (DTOF) is obtained, and some characteristics, such as moments of DTOF
(the mean time of flight of photons is the first moment of DTOF), integral transform, and the
shape of the DTOF itself, can be used in image reconstruction. Through FD measurement,
the intensity of light, modulation depth, and phase shift are used. The light intensity is
used in the CW measurement.
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2.2. Prediction of the Measurement: Forward Process

The forward and optimization processes are described in detail in previous stud-
ies [2,23–28]. The predicted measurements to be compared with the actual measurements
are obtained by computing the light measured at the surface of the object based on the the-
ory of light propagation inside biological media. Light propagation involves the transport
of photons, accompanied by scattering and absorption. In this case, the radiative transport
equation (RTE) describes the light propagation and can be used to obtain predicted measure-
ments with a set of given optical properties. Some approximation methods of the RTE, such
as PN approximation, diffusion approximation (DA) with the photon diffusion equation
(PDE), and the Monte Carlo (MC) method are used in the computation of light propagation
to reduce the computational difficulties of the RTE. Except for the MC method, general
numerical computation methods such as the finite element method (FEM) and the finite
difference method are used to compute light propagation and predicted measurements.

2.3. Optimization Process for Nonlinear Image Reconstruction

Let Fi,j(µa, µs
′) be the mathematical operation for calculating the measured light with

optical properties µa and µs
′ and the given positions of the light sources and detectors to

obtain the predicted measurements: µs
′ = (1− g)µs is defined by the anisotropy (asymmetry)

factor, g, which is the average cosine of the scattering angle. Image reconstruction can
be formulated as an optimization problem to find µa and µs while minimizing the cost
function, which consists of the squared error and additive regularization term, as follows:

min
µa , µs ′

{
1
2

I

∑
i=1

J

∑
j=1

wi,j
(

Fi,j
(
µa, µs

′)−Mi,j
)2

+ γ · R
(
µa, µs

′)}, (1)

where Mi,j are the measurements with the ith source and jth detector, respectively, and wi,j
is the weight adjusting the contribution of Mi,j to the image reconstruction. R(µa, µs

′) is a
regularization term. The image-reconstruction process used to solve the inverse problem is
generally ill-posed. Image reconstruction often suffers from the nonuniqueness of solutions
and instability owing to noise contaminating the measurements. R(µa, µs

′) is a function for
evaluating the extent to which the solution (reconstructed image) satisfies the condition
expected in the desired solution and for reducing the overfitting of Fi,j to Mi,j contaminated
by noise. By minimizing R(µa, µs

′) with a residual error, this ill-posed nature can be
alleviated. Various types of R(µa, µs

′), such as the squared L2-norm of the reconstructed
image (Tikhonov regularization), Lp-norm (0 ≤ p ≤ 1), and total variation, which is the
norm of the gradient of the image, can be applied. g adjusts the regularization effect.

The relationship between the optical properties and measurements as a result of
light propagation is nonlinear. Therefore, image reconstruction is performed by solving
Equation (1) by employing nonlinear optimization methods with iterative updating pro-
cesses, such as the Newton–Raphson, quasi-Newton, and conjugate gradient methods.
For the nonlinear optimization process, the gradient of the cost function f, the sum of
the squared error term, with the regularization term in Equation (1) must be computed,
as follows:

∂ f
∂µk

=
I

∑
i=1

J

∑
j=1

wi,j
(

Fi,j(µk)−Mi,j
)∂Fi,j

∂µk
+ γ · ∂R(µk)

∂µk
, (2)

where µk is the optical property of interest at the kth position rk, where one of the nodes for
the FEM to compute Fi,j exists. The vector matrix formula in Equation (2) is often used.

∇ f (µ) =
∂ f
∂µ

= W JT(F−M) + γ · ∂R
∂µ

, (3)

where F and M are column vectors in which Fi,j and Mi,j are aligned, respectively. µ is a
vector of µk. W is the diagonal matrix with wi,j, and J is the Jacobian matrix with ∂Fi,j/∂µk
as its elements, which can be calculated by the perturbation method or the adjoint method
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derived in the early important work on the DOT image reconstruction by Arridge and
Schweiger [23,28]. Using the Newton–Raphson method, iterative image reconstruction can
be expressed as

µt+1 = µt − H−1(µt)∇ f (µt), (4)

where H = ∇2 f (µ) is a Hessian matrix and the subscript t is the number of iterations. The
updating process in Equation (4) is repeated until the solution converges.

The Levenberg–Marquardt method, which is often employed in DOT image recon-
struction, uses the following iteration to solve Equation (2), with W equal to an identity
matrix and γ = 0.

µt+1 = µt − (JT J + γ′ · I)∇ f (µt), (5)

where γ′ is a small positive value and I an identity matrix. The nonlinear optimization
methods, such as the steepest descent and conjugate gradient methods, have been compared
for DOT image reconstruction with DA [29].

2.4. Optimization Process for Linearized Image Reconstruction

This section describes the optimization process for image reconstruction using a
linearized forward process. As a good approximation, the µ of the reconstructed image µ
is obtained, and the measurements are approximated using the Taylor expansion as

M(µ) = F(µ) + J(µ)δµ+ · · · , (6)

where F(µ) is the predicted measurement with µ (or the measurement equivalent to the
predicted measurement) and δµ = µ− µ. When the series expansion is terminated in the
first order, the forward process can be linearized, and the linear equation

(M− F) = Jδµ, (7)

is obtained. The linearizations of the forward process for the absolute and logarithmic val-
ues of the measured light intensities are referred to as the Born and Rytov approximations,
respectively. Then, the optimization process can be formulated in a manner similar to that
in Equation (1) with regularization, as follows:

min
δµ

{
(δM− Jδµ)TW(δM− Jδµ) + λR(δµ)

}
, (8)

where δM = M − F. When employing classical Tikhonov regularization with a weighting
matrix L formulated as R(δµ) = ‖Lδµ‖2, δµ is obtained by setting the derivative of the
objective function of Equation (7) to zero,

δµ =
(

JTW J + γ · LT L
)−1

JTWδM, (9)

and the reconstructed image is expressed as µ = µ + δµ. Depending on the type of
regularization term, a nonlinear optimization process is needed to solve Equation (7). The
limitations of linearized image reconstruction have been previously discussed [30]. The
linearization approach is appropriate when changes in the optical properties are sufficiently
small and exist in small regions.

2.5. Bayesian Approach

The measurements are always contaminated with additive random noise. Thus, the
forward equation with a given optical property can be written as M = F(µ) + ε, where ε is
the random additive noise and µ is the given optical property. Owing to the randomness of
ε, M is a random variable with a conditional (prior) probability density function p(M|µ).
Assuming µ and ε are stochastically independent, the joint probability is formulated as
p(M, µ) = p(M|µ) · p(µ) = p(µ|M) · p(M), which is Bayes’ rule.
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In the Bayesian approach based on the above formula, image reconstruction is to find
µ maximizing the conditional (posterior) function, p(µ|M) = p(M|µ) · p(µ) as a likelihood
function under the condition of M determined, i.e., p(M) = 1. When ε is Gaussian random
noise with a covariance matrix W and an average of zero, the log-likelihood of the posterior
function is equivalent to Equation (1) with p(µ) = exp(−λ · R(µ)). Assuming that µ is a
Gaussian random variable with a variance 1/λ, the image reconstruction incorporates
classical Tikhonov regularization.

By choosing the probability density function, the Bayesian approach can take ad-
vantage of regularization methods and prior knowledge for image reconstruction, as
shown in previous studies [31–33]; some Bayesian approaches are introduced in the
following sections.

The image reconstruction method can be characterized by the methods selected for the
forward and optimization processes, particularly the equations employed in the forward
process and the cost functions with a certain regularization and use of prior information
in the optimization process. Several studies on image reconstruction algorithms are cate-
gorized and introduced in the following sections from the viewpoint of the forward and
optimization processes.

3. Forward Process
3.1. Radiative Transfer Equation

Light propagation through biological tissues is mathematically described by the radia-
tive transfer equation (RTE), as follows [23]:{

1
c

∂

∂t
+ s · ∇+ µa(r) + µs(r)

}
I(r, s, t) = µs(r)

∫
4π

p(s · s′)I(r, s′, t)dΩ′ + q(r, s, t), (10)

where c is the speed of light, I(r,s,t) the radiance (light intensity), and q(r,s,t) the light
source term. r and s represent the position and direction of light, respectively. p(s·s′) is
the scattering phase function, which represents the probability that the direction of light
s′ is changed to s by the scattering event. The Henyey–Greenstein function is commonly
used as p(s,s′) in DOT image reconstruction. Equation (10) represents the time-dependent
case. The time-derivative term on the left side of Equation (10) is removed in the case of
time-independent CW measurement. Fourier-transformed versions of Equation (10) are
used for FD measurements.

The computation of the RTE does not impose any limitations on the optical properties.
Therefore, RTE can compute light propagation more accurately than other methods, such
as DA, and can be the best choice for image reconstruction for objects that include void-
like regions, such as the trachea in the neck, which can affect DOT imaging of thyroid
cancer [34,35].

Klose and Hielscher employed time-independent RTE for image reconstruction [36,37].
For the computation of the RTE, they employed the upwind-difference discrete-ordinate
method by discretizing the angular and spatial variables in the RTE. After experimental
validation of the forward process with a rectangular phantom, including the void-like
region [36], image reconstruction using the gradient method, referred to as model-based it-
erative image reconstruction (MOBIIR), was performed. Images of µa and µs were obtained
in a phantom containing void-like regions [37]. Abdoulaev also reported MOBIIR with a
forward process using FEM [38].

Tarvainen et al. used the RTE in FD measurements during the forward process [39].
The RTE was computed using the FEM, in which stream diffusion modification was utilized.
In the optimization process, the cost function with total variation regularization (see
Section 4.1) was minimized using the Gaussian–Newton method. Image reconstruction
was successful in the 2D numerical simulations of various cases, including low-scattering
blobs and low-scattering and low-absorption gaps.

Soloviev and Arridge proposed RTE-based image reconstruction for the FD mea-
surement of an object, such as an embryo that consists of weakly and highly scattering
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regions [40]. Assuming that µa + µs is significantly different between the weak and high
scattering regions, an approximation of the RTE solution was derived for the forward
process. The optimization process with Tikhonov regularization was demonstrated using
3D numerical simulations.

Machida et al. proposed image reconstruction with linearization employing the Rytov
approximation accompanied by Green’s function calculated using the FN method [41].
The FN method was originally used to compute the 1D RTE using singular-eigenfunction
expansion, which was extended to 3D computation by employing the rotated reference
frame method [42]. The image reconstruction method was examined in phantom experi-
ments using CCD measurements. Machida also reported numerical simulations of image
reconstruction based on the Born approximation and 3D FN computation of the RTE for a
slab geometry with spatially oscillating structured light [43].

Image reconstruction employing RTE is particularly suitable for small measurement
objects such as finger joints. Clinical applications for diagnosing rheumatoid arthritis have
been reported [44–46]. Image reconstructions based on the RTE have been reported in
fluorescent diffuse optical tomography (FDOT) [47], which reconstructs the concentrations
of fluorescent probes [48,49], and in quantitative photoacoustic tomography (QPAT) [50],
which reconstructs the concentrations of exogenous and endogenous chromophores from
photoacoustic pressure waves [51–54]. FDOT and QPAT are used to image subjects that
exist in shallow regions and in small objects, where DA is often invalid. Efficient and
precise computational methods for RTE have been studied [20,55].

3.2. PN Approximation

To obtain a good approximation of the RTE, PN approximation [23] was attempted in
the forward process of image reconstruction. The PN approximation is derived from an
orthogonal function expansion using spherical harmonics in Equation (10), in which I(r,s,t),
q(r,s,t), and p(s·s’) [23] are formulated as

I(r, s, t) =
∞

∑
l=1

l

∑
m=−l

(
2l + 1

4π

) 1
2

ψl,m(r, t)Yl,m(s), (11)

q(r, s, t) =
∞

∑
l=1

l

∑
m=−l

(
2l + 1

4π

) 1
2

ql,m(r, t)Yl,m(s), (12)

P(s · s′) =
∞

∑
l=1

l

∑
m=−l

Θl,mY∗l,m(s
′)Yl,m(s), (13)

where ψl,m, ql,m, and Θl,m are the coefficients, and Yl,m the spherical harmonics of order
l and degree m, which are associated with the Legendre polynomial and orthonormal
function. Y∗l,m is the complex conjugate of Yl,m. Owing to the orthonormality of the spherical
harmonics, the RTE, in which Equations (11)–(13) are substituted, is decoupled into (N + 1)!
simultaneous equations by multiplying Y∗l,m when the spherical harmonic expansion is
terminated at l = N. The PN approximation is computed with simultaneous equations.

Boas et al. compared P3 approximation with DA for the determination of the optical
properties from MC simulated measurements and from P3-approximated measurements in
the FD measurement [56]. µa was more accurately determined using P3 approximation, al-
though the DA estimated µs’ better than P3 approximation in the highly forward-scattering
case. Jiang and Paulsen derived a stable and computationally convenient higher-order DA
(P3 approximation) with second-order spatial derivative terms and compared the measure-
ments with a cylindrical phantom and the computational results with the higher-order DA
and DA using FEM [57].

Oliveria and Tahir developed a computer program based on their original code,
called EVENT, to compute the PN approximation with FEM and compared the computa-
tional results with the PN approximation and with DA. They succeeded in reconstructing
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images from MC-simulated measurements by employing P7 approximation in TD measure-
ments [58].

Jiang developed an image reconstruction algorithm based on the third-order diffu-
sion approximation (P3 approximation) with Marquardt and Tikhonov regularizations
and succeeded in image reconstruction using 2D numerical simulations [59]. Yuan et al.
implemented a 3D FEM computation of P3 approximation and compared P3 approximation
with P1 approximation and MC simulation. They reconstructed an image of a 3D numerical
phantom mimicking a finger joint with cartilage between the bones [60].

Wright et al. performed image reconstruction implementing the FEM calculation of
the PN approximation in the forward process in FD measurement [61]. They employed
the even-parity formulation of RTE, which was derived by introducing the light intensity,
I±(s) = {I(s) ± I(−s)}/2, and the light source, q±(s) = {q(s) ± q(−s)}/2. Consequently, the
RTE was transformed into the formula of I+ including the second-order spatial derivative.
The simultaneous equations of PN approximation, which are expressed in the vector matrix
formula, are discretized using the FEM. Numerical simulations of image reconstruction
employing the P1, P3, and P5 approximations were performed, with the measurements
computed using the P7 approximation. It was demonstrated that the highly absorbing
and scattering regions in the low-scattering medium were imaged more accurately in the
reconstructed image using the higher-order PN approximation.

3.3. SPN Approximation

Klose and Larsen introduced a simplified spherical harmonics (SPN) approximation,
which was originally proposed for neutron transport, for CW light propagation in biological
media [62]. In the SPN approximation, the PN approximation of 1D light propagation in
the planar geometry was directly applied to 3D light propagation by replacing the 1D
differential operator, d/dx, by the 3D gradient operator, ∇. In the 1D PN approximation,
the Legendre moments of radiance φn(x) =

∫
Pn(ŝ)I(x, ŝ)dΩ are defined. A set of four

equations for the SP7 approximation was formulated for composite moments ϕm (m = 1,
2, 3, 4) defined by the sum of the series of ϕn (n = 1, 2, . . . ,6). The equations for the SPN
approximation (N < 7) were readily derived from those for the SP7 approximation, and
the equation for SP1 approximation was equivalent to the PDE described in Section 3.4.
The SPN approximation was calculated using a set of coupled diffusion-like equations with
second-order spatial derivative terms. The numerical simulations in [62] indicated that the
precision of the approximation improved rapidly from N = 1 to 7. The computational time
of the SPN approximation is significantly shorter than that for the RTE computation by the
discrete ordinate method discretizing s.

Chu et al. developed a 3D FEM for SPN approximation in FD measurements [63]. The
computational results were compared with those of MC simulations. The SPN approxima-
tion (N > 1) provides a more accurate phase and amplitude of the modulated light than SP1
approximation. Chu and Dehghani reported image reconstruction in FD measurements
using the SP7 approximation [64]. The 2D image reconstructions of µa and µs from the
phase and amplitude obtained by the numerical simulation with the SP5 approximation
were performed by employing the Jacobian matrix, J, calculated using the SP1 and SP5 ap-
proximations. Image reconstruction using the SP5 approximation provided more accurate
quantitative and qualitative images.

Domínguez and Bérubé-Lauzière reported image reconstruction using time-domain
parabolic SPN equations [65,66]. In addition to the aforementioned CW and FD cases, a
system of diffusion-like equations for the SP7 approximation was formulated for the TD
measurement. Numerical simulations of image reconstruction employing N = 1, 3, 5, and 7
were performed. In the simultaneous reconstruction of the heterogeneous medium where
the high-absorption inclusion and high-scattering inclusion existed, the reconstructed µa
and diffusion coefficient, D =1/{3(µa + µs

′)}, were evaluated. The SPN approximations
(N > 1) reconstructed the high µa inclusion and low D inclusions better than the SP1
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approximation, which underestimated µa. The error in the reconstructed value with the
SP7 approximation was slightly larger than that with the SP5 and SP5 approximations [66].

Some studies on image reconstruction with SPN approximations for FDOT and QPAT
have been reported [67–69].

3.4. Diffusion Approximation

In DA, light propagation in the TD measurement is described by the following
PDE [23]: {

1
c

∂

∂t
+ µa(r)−∇ · D(r)∇

}
Φ(r, t) = q0(r, t), (14)

where D =1/{3(µa + µs’)} is the diffusion coefficient, Φ(r, t) =
∫

4π I(r, s, t)dΩ the fluence
rate (photon density), and q0(r, t) an isotropic light source. For the CW measurement, the
first term in Equation (14) is removed. Equation (14) is the Fourier transform for the FD
measurement.

To compute light propagation with the PDE, the Robin boundary condition, which is
often used in image reconstruction, is as follows:

1
2A

Φ(r, t) = −n · D(r)∇Φ(r, t), (15)

where A is a parameter that depends on the internal reflection ratio, and n is the outward
normal vector. Early studies by Arridge and Schweiger [28] established the standard
nonlinear image reconstruction scheme for DOT. The computation of the PDE is typically
performed using the FEM. The Jacobian matrix J appearing in Equation (3) is obtained
using the adjoint method based on the reciprocity theorem [70,71]. In the TD measurement,
the perturbation η in Φ with µs

′ and µa at the measured position rd associated with small
changes ν and α in µs

′ and µa, respectively, is calculated as

η(rd, t) = −
∫

Ω

∫ ∞

−∞
ν(ξ)∇Ψ(rd, ξ, t, τ) · ∇Φ(ξ, τ) + α(ξ)Ψ(rd, ξ, t, τ)Φ(ξ, τ)dτdξ, (16)

where Ψ is Green’s function of the adjoint PDE, which calculates the light propagation
from rd with position ξ and time τ. From Equation (16), the entries of J with respect to
µs’ are computed with the inner product of the gradients of Ψ and Φ, discretized with the
FEM, whereas those with respect to µa are computed with the product of Ψ and Φ on the
right-hand side of Equation (16).

Various types of measurement exist for image reconstruction. Gao et al. compared
reconstructed images from the measured intensity (CW measurement), mean time-of-flight
(first moment), variance (second moment), skew (third moment), and full-time-resolved
DTOF [72]. The normalized DTOF provides a better image in terms of spatial resolution and
quantification in 2D numerical experiments using DA, although the image reconstruction
from full-time-resolved measurements required a 120-fold longer computational time than
that from the mean time-of-flight and variance. DA image reconstruction from Laplace-
transformed DTOF using a modified generalized pulse spectrum technique (mGPST) has
also been proposed [73].

DA is obtained from the P1 approximation with the assumption that the time derivative
of the net flux vector, J =

∫
4π sI(r, s, t)dΩ, equals zero, and the light source is isotropic. The

DA is valid while µa << µs
′. It is not valid to use the PDE for the nonscattering void region.

Moreover, DA requires spatiotemporal conditions in which the directions of photons are
sufficiently randomized by many scattering events and the light intensity changes very
slowly [23,74].

Although the limitation of DA requiring the abovementioned assumptions and con-
ditions, which often seem difficult to be fulfilled, has been debated, image reconstruction
employing PDE has been successfully applied in in vivo and clinical DOT studies [75–79].
Several studies on image reconstruction based on DA with various regularizations and
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inversion schemes have been reported because the computational burden of the PDE is
reasonable. Most studies on the optimization process introduced in Section 4 employed DA.

Sophisticated open sources for the forward computation of light propagation and image
reconstruction, such as TOAST++ [80,81] and NIRFAST [82,83], are currently publicly available
and have contributed to countless studies on DOT applications and image reconstruction.

3.5. Hybrid Approach

Although some limitations exist, DA can significantly reduce the computational bur-
den compared with the RTE computation. Taking advantage of DA, hybrid methods of
RTE and DA have been studied [84–86]. The RTE is used only in the spatial and temporal
domains, wherein using DA can be invalid for hybrid approaches.

Tarvainen et al. succeeded in image reconstruction by employing a forward process
coupling the RTE and PDE computations in 2D numerical simulations of the FD measure-
ment [87]. The measured circular object was divided into two circular subdomains. The
RTE was used in one of the subdomains near the measured surface, whereas the PDE was
used in the inner subdomain. The forward calculation coupling the RTE and PDE was im-
plemented using FEM. The optimization problem with weighted Tikhonov regularization
was solved using the Gauss–Newton method. It was demonstrated that the coupled RTE
and DA models reconstructed low-scattering inclusions as well as the RTE model from the
measurements simulated using the MC method, including Gaussian-distributed noise.

3.6. Monte Carlo Simulation

Generally, the MC method is a numerical technique used to solve deterministic prob-
lems such as partial differential equations using probabilistic methods [88,89]. In the
forward process of computing light propagation, the movements of photons with scattering
and absorption by biological tissues were stochastically simulated. Monte Carlo modeling
of light transport in multilayered tissues (MCML) developed by Wang et al. and other
software available online are widely used [90–93]. In the MC method, a photon packet
with unit energy w is launched into a medium comprising layers with optical properties.
The length of the free path in which the photon packet is not scattered is determined
by an exponentially distributed random variable. The ratio of photons maintaining the
direction and surviving the absorption at distance l is given by p(l) = µt exp(−µtl), where
µt = µa + µs. The energy of the photon packet decreases with absorption at the position
reached by the photon packet. The absorbed energy (µa/µt)w is recorded at this position.
The photon packet with the remaining energy (µs/µt)w continues to travel. The change in
the direction of the photon packet by a scattering event is determined randomly using the
Henry–Greenstein function p(s,s′). The photon packet is reflected randomly by obeying
Fresnel reflectance at the boundaries of the layers. A large number of photon packets are
traced such that the recorded absorbed light distribution converges to a good approxima-
tion of the light propagation. Comparisons between MC and DA have been reported in
many studies [94–97].

Hayakawa et al. proposed the perturbation MC (pMC) method for the computation
of the Jacobian matrix J to solve the inverse problem using a gradient-based nonlinear
optimization process [98]. In the pMC method, the standard MC method is first used to
record the energies of the detected photon packets moving from the light source to detectors
with scattering events. To compute the changes in the measurements, the recorded energy
w of the photon traveling through the region with the perturbations of µs → µs , µa → µa ,
and µt → µt is modified as

w = w
(

µs/µt
µs/µt

)ζ(µt
µt

)ζ

exp{−(µt − µt)L}, (17)

where L is the total length of the photon packet traveling through the region perturbed by
ζ scattering events. The matrix J can be obtained using Equation (17). The performance
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of the pMC method was numerically examined to determine the optical properties of an
object with two layers.

Kumar and Vasu demonstrated image reconstruction for a heterogeneous medium
with the background and inclusions having a low µs of approximately 0.5 mm−1, because
of which the DA did not hold [99]. A nonlinear iterative optimization method, called
the conjugate gradient squared method, was employed. Matrix J was computed using
the pMC method. µa and µs values of the inclusions were simultaneously reconstructed
with/without prior information regarding the locations of the inclusions in the 2D nu-
merical simulations. Image reconstruction using the pMC method succeeded in imaging
inclusions that could not be reconstructed using DA.

Boas et al. simulated light propagation in a 3D realistic adult head model using the
MC method [100]. Then, using the Rytov approximation, which is a series expansion of the
logarithm of Φ, the linearized forward process was formulated, as shown in Equation (7).
In this study, the entries of matrix J to reconstruct the changes in µa from the Rytov
approximation were calculated using the MC method based on the adjoint method with a
light source with the δ-function in the CW version, as follows [101]:

Jm,n =
G(rs,m, rn)G(rn, rd,m)

G(rs,m, rd,m)
, (18)

where G(r1, r2) is Green’s function, which is the fluence rate at r2 generated by the light
source at r1; rs,m and rd,m are the positions of the mth pair of the source and detector,
respectively. rn is the n-th voxel that discretizes the medium to the source positions. By
the image reconstruction using Equation (18) and standard Tikhonov regularization, the
changes in regional blood flow in the somatosensory area during median nerve stimulation
were imaged and superimposed on the magnetic resonance image of the subject’s head.

4. Optimization Process
4.1. Use of Regularization Minimizing Norms

Regularization methods were employed in DOT image reconstruction to solve the
inverse problem and alleviate instability, which means that reconstruction is strongly
affected by noise in the measurement and error in the forward process. The reconstructed
image was disturbed by noise and errors. As shown in Equation (9), the classical Tikhonov
regularization that minimizes the squared 2-norm (`2-norm or L2-norm) of the reconstructed
image can be readily applied to image reconstruction. Tikhonov regularization with an
appropriate γ is useful for obtaining a smooth image by reducing the effect of measurement
noise. However, smoothness is often accompanied by a decline in spatial resolution.
In such a case, the changes in the optical properties of the measured object are blurred
and are reconstructed in a larger volume than the true one. As a result, the change is
reconstructed as a smaller value than true one, which means that the concentration of
the photon absorber such as hemoglobin is underestimated by image reconstruction with
the Tikhonov reconstruction. Additionally, the effect of diffusive light propagation also
causes a low spatial resolution, generally in the image reconstruction of optical imaging, as
reported in the literature [102].

To improve the quality of the reconstructed image, the regularization method for
minimizing the p-norm (0≤ p≤ 1) of the reconstructed image has been used in recent years.

The p-norm is defined as ‖µ‖p =
(

∑K
k=1|µk|p

)1/p
, for the vector µ comprising K entries.

Figure 2 illustrates the idea of the regularization minimizing p-norm [103]. The dashed
line represents the set of optical properties µ = (µ1, µ2) at two positions which provide
an identical and single measurement. The image reconstruction of two optical properties
from a single measurement is underdetermined. By employing a certain value of the norm
of the reconstructed image (solid line), the number of candidates of the solution can be
reduced. The candidates exist on intersecting points of the dashed line and circle, which
represent the set of µwith a certain value norm in the 2-norm case. By choosing smaller p,
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it is observed that the intersection points approach one or the other of the axes. Thus, one
of entries of µ at a position takes a large value, and the other takes a value close to zero.
This indicates that the solution becomes sparse. Generally, the DOT image reconstruction
has a large number of unknown changes in µa and µs, which are localized in a smaller
number of voxels (smaller region) with smaller value of p as well as in the case of Figure 2.
Then, the blurriness of the image can be reduced. In the case of Figure 2, by minimizing the
p-norm, the solution can be specified on the tangent point. A difficulty encountered while
implementing the regularization minimizing p-norm is computing the gradient for the
optimization because the cost function becomes nonconvex. There are several techniques
to implement the regularization minimizing p-norm.
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Figure 2. Idea of the regularization minimizing p-norm of the reconstructed image with (a) p = 2
(Tikhonov regularization), (b) p = 1, and (c) 0 < p < 1. The solid lines represent the points of (µ1,
µ2) with a constant value of the p-norm. The dashed lines represent the group of points providing
identical measurements. The cross-section points of the solid and dashed lines are solutions with a
certain value of the p-norm. By minimizing the norms, the tangent points are selected as the optimal
reconstructed image.

Süzen et al. proposed a compressed sensing method for DOT [104]. In this study,
the DOT images were reconstructed using measurements acquired via random sampling.
Image reconstructions were performed using the regularization method, minimizing the L1
norm (1-norm) of the image. The optimization process was based on the literature [105],
in which the L1-norm, i.e., the absolute value, was approximated as |µ| ≈ √µ · µ + u,
with parameter u smoothing the function, and the gradient was approximately computed
as d|µ|/dµ ≈ µ/

√
µ · µ + u. L1-norm regularization was found to be more robust than

Tikhonov (L2-norm) regularization in terms of reducing the number of measurement
samples used in image reconstruction.

Shaw and Yalavarthy proposed image reconstruction with dynamic CW-domain DOT
that employed image reconstruction with Rytov approximation for video-rate imaging [106].
They applied the `1-norm (1-norm) minimization implemented with the open-source YELL1
algorithm [107] derived from the alternating direction method (ADM), which minimizes
the augmented Lagrangian function equivalent to Equation (8)

L(δµ, e, Γ) = ‖δµ‖1 +
1

2γ1
‖e‖2

2 − ΓT(δM + e− Jδµ) +
γ2

2
‖δM + e− Jδµ‖2

2, (19)

by updating sequentially the optical properties δµ, the residual error norm e, and the
Lagrange multiplier Γ [108]. The update of δµ was performed using the product of the
absolute value and the sign of the gradient with a threshold for minimizing the `1-norm.
Phantom experiments demonstrated that `1-norm regularization improved the image
contrast compared to traditional `2-norm regularization.

Kavuri et al. reported that L1-norm regularization improved DOT image reconstruc-
tion in terms of spatial resolution and depth localization in phantom experiments [109].
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L1-norm regularization was implemented using the depth-compensation method. The
Rytov approximation was employed to linearize image reconstruction. In this study, matrix
M for depth compensation was computed using the singular value decomposition of matrix
J. Then, matrix J in Equation (7) is replaced by JM. L1-norm regularization was implemented
with a logarithmic barrier penalty function bounding the reconstructed values at a certain
interval, which was minimized simultaneously with the cost function.

Cao et al. implemented sparsity regularization with L1-norm by employing an ex-
pectation minimization (EM) algorithm [110]. They modeled the measurements (Rytov
approximation) using additive noise and optical properties as random Gaussian vari-
ables. Subsequently, a Bayesian framework was applied for image reconstruction. The
cost function was formulated as the log-likelihood function of the posterior probability
to be maximized, which is equivalent to the minimization in Equation (1), where matrix
W is composed of the variance in the Gaussian distribution of the measurement additive
noise, and the regularization term is the L1-norm of the optical properties. The expectation-
maximization (EM) algorithm consisted of E- and M-steps. In the E-step, the log-likelihood
(cost function) is computed using the measurements and optical properties in each iteration.
In the M-step, the log-likelihood is maximized. The soft threshold method was used, in
which the gradient of the L1-norim was computed as sgn(δµ)|δµ| and as zero when |δµ|
was smaller than the threshold.

Okawa et al. used the `p-norm (0 < p ≤ 1) of a reconstructed image as a regularization
term using the focal underdetermined system solver (FOCUSS) algorithm [111,112]. The
change in the absorption coefficient δµa from the background was formulated to differen-
tiate the `p-norm as δµak = sgn(zk)|zk|2/p at the k-th FEM node with parameter zk. Then,
the optimization problem of the image reconstruction in Equation (1) was reformulated
as follows:

min
z

{
I

∑
i=1

J

∑
j=1

(
Fi,j(z)−Mi,j

)2
+ γ ·

K

∑
k=1
|zk|2

}
, (20)

where z is a vector composed of zk (k = 1, 2, . . . , K). Images were reconstructed using
the mean time-of-flight of the time-resolved measurements. Numerical and phantom
experiments demonstrated that the reconstructed area with changes in the absorption
coefficient decreased as p approached zero.

Prakash et al. reported the `p-norm (0≤ p≤ 1) regularization for CW domain measure-
ment [113]. They implemented the majorize–minimization framework, which replaced the
original nonconvex cost function with the `p-norm (0 < p ≤ 1) by a sequence of convex cost
functions equal to the original cost function at a certain point and larger than the original
cost function at the other points. Moreover, the regularization minimizing smooth `0-norm
was introduced. The smooth `0-norm was approximated as ‖δµa‖0 = K − ∑K

k=1 ρ(δµak)
with ρ (δµak) = exp(−δµak

2/σ2), which takes values of unity and zero when ∆µak > σ and
∆µak < σ, respectively. Improvements in image quality were demonstrated in a numerical
experiment with irregular geometry and a gelatin phantom experiment with optical prop-
erties mimicking typical breast tissue. Various applications of sparsity regularization have
been proposed [114,115].

Although regularization minimizing the norm of change in the optical properties
effectively reduces blurriness and can locate the localized cerebral blood flow change
caused by neural activity and cancer tissues with angiogenesis in the early stage, it is
difficult to reconstruct a certain volume of a relatively large tissue/organ with nearly
uniform optical properties. In such cases, the total variation (TV) method may be useful.
The TV regularization method minimizes the norm of the image derivative and reconstructs
the image using a nearly piecewise constant with jump discontinuities [116]. The TV
regularization term is represented as

RTV(µ) =
∫
|∇µ(r)|dr, (21)
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where µ is the reconstructed distribution of optical properties; |·| indicates the Euclidean
(L2) norm. In the actual calculation of the TV norm, a difference approximation of the
gradient of µ is performed. By minimizing the gradient of µ (approximated with differences
in µ on neighboring discretized nodes for numerical calculation using FEM), the image
tends to be flat and has piecewise constant parts.

Paulsen and Jiang applied the TV regularization method to the FD-domain DOT to
reconstruct D and µa simultaneously [117]. Image reconstruction was attempted through
numerical simulation with additive random noise and in the phantom experiment, where
the ratios of the imaging target with a radius of 12.5 mm to the background were 2:1 and
10:1, respectively. Image reconstruction with TV regularization also reconstructed the area
and values of D and µa correctly, whereas image reconstruction without TV regularization
was unable to correctly reconstruct the area and values.

Douiri et al. compared Tikhonov, TV, and Huber regularizations [118]. Although
TV regularization reconstructs a volume with piecewise constant optical properties, it is
difficult to reconstruct the changes in optical properties for a small volume included in a
large volume. To overcome this difficulty and reconstruct small and large structures, the
Hubert regularization term is formulated as follows:

RHubert(µ) =
∫

ψ(µ(r)) dr, (22)

ψ(µ) =

{
|∇µ|2/2 if |∇µ| ≤ σ

σ|∇µ| − σ2/2 otherwise
, (23)

where σ is the parameter for switching Ψ, which is automatically adjusted during each
iteration. In the flat homogeneous part with a small gradient of the reconstructed image, Ψ
functioned similarly to the Tikhonov regularization to smooth the image while preserving
the discontinuities with a large gradient. The numerical simulations demonstrated that the
changes in µa and µ′s of the small area in a large flat part was reconstructed more clearly by
Hubert regularization than by TV regularization. The Hubert regularization method was
extended to include prior information on the edges of regions in an object imaged using
different imaging modalities [119].

4.2. Use of Structural Prior Information

Because DOT provides functional information, the interpretation of DOT images
becomes more meaningful by superimposing DOT images onto morphological images
obtained by other imaging modalities, such as X-ray CT, MRI, and ultrasound imaging.
Moreover, information regarding the location where the optical properties can change
improves the precision and efficiency of image reconstruction by reducing the number of
unknown variables to be reconstructed.

Schweiger and Arridge proposed a two-stage image reconstruction method that em-
ploys prior information [120]. They assumed that the anatomical structure inside a mea-
sured object can be obtained using other imaging modalities. The averages of the optical
properties in certain regions obtained by the segmentation of other images were recon-
structed in the first stage. In the first stage, the optical properties of each region were
assumed to be homogeneous. Subsequently, the details of the optical properties in each
region were reconstructed in the second stage by employing the image obtained in the
first stage as an initial estimate. It was demonstrated that the proposed two-stage method
employing a segmented MR image of the brain provides a better image than image recon-
struction with a homogeneous flat initial estimate.

Dehghani et al. incorporated prior information into the matrix J [121]. The discretized
positions (FEM node) in a segmented region were lumped by introducing a K × K matrix
U that had elements Uξ,η = 1 when the ξ-th position was included in η-th segmented
region, and was otherwise 0. The matrix J in Equation (9) was replaced by the matrix
JU. The ill-posed nature of the inverse problem was relieved by grouping the discretized
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positions. The accuracy of the reconstructed values improved significantly in the 3D image
reconstruction of small objects. The prior information that was introduced into U to fix
a homogeneous change in the optical properties in a segmented region is called the hard
prior information.

Ntziachristos et al. employed a hard prior method to quantify hemoglobin concen-
tration and oxygen saturation of breast lesions in 14 subjects [122]. They obtained prior
structural information from the MR images. Image reconstructions of µa at wavelengths
of 780 and 830 nm were carried out for the regions of the tumor and other tissues (back-
ground). The cancerous tumor had a hemoglobin concentration almost 10 times higher
than that of the background tissues and the oxygen saturation of cancerous tissues was
approximately 10% lower than that of the background tissues.

Boverman et al. investigated the influence of imperfect prior information, which are
errors in the segmentation of MIR images, on two-step image reconstruction combined
with background estimation with nonlinear optimization and linearized image recon-
struction with a hard prior method [123]. By comparing the image reconstructed from
the homogeneous initial guess with that from the initial guess obtained based on prior
background information, it was demonstrated that image reconstruction with imperfect
prior information can localize the abnormal region in the breast but causes a bias in the
reconstructed image.

Di Sciacca et al. tried using hard prior information from ultrasound images in TD
measurements with eight wavelengths ranging from 635 to 1060 nm [124]. Digital phantoms
of the breast were used to visualize benign and malignant lesions. The digital phantoms
were generated using software from the Virtual Imaging Clinical Trials for Regulatory
Evaluation (VICTRE) Project. B-mode ultrasound images of the breast were simulated using
k-wave software [125] by employing phantoms. The optical properties were determined
using Gaussian random variables, which had different averages and variances between the
benign and malignant lesions. For image reconstruction, segmentations were performed
to separate the lesion and normal regions based on the B-mode image. Two-region image
reconstruction was performed, and the reconstructed optical properties were used for
classification, in which 75% of the lesions were classified correctly.

In contrast, the prior information incorporated into the regularization term was called
soft prior information [25]. In this approach, prior information was incorporated into
matrix L in Equation (9). One of the methods for employing L as prior information is
to use the elements of Lk,k′ = 1 when k = k′, Lk,k′ = 0 when k 6= k′, and Lk,k′ = –1/K when
the k-th and k′-th FEM nodes are in the same segmented region (Laplacian structure).
Using this method, the difference in optical properties at positions in the same segmented
region was minimized. Therefore, the optical properties tended to be homogeneous in each
segmented region.

Yalavarthy et al. examined soft and hard prior methods [126,127] in numerical simu-
lations with an MRI-based breast model and an experiment with a gelatin phantom. The
Laplacian and Helmholtz structures were used as soft prior methods. In the Helmholts
structure, which is a modified version of the Laplacian structure, Lk,k′ = −1/(K + h/l) when
the k-th and k′-th FEM nodes are used in the same segmented region, where h and l are
the distances between the nodes and the size of the imaging target (tumor), respectively.
Compared with image reconstruction without prior information, the use of structural prior
information dramatically improves the quantification and image quality of DOT.

Brooksby et al. used the soft prior method with MR to reconstruct the optical properties
of the breast using FD measurements [128]. In numerical simulations, the soft prior method
with a tissue layer structure recovered 74% of the true values. Additionally, a good initial
estimate of the optical properties provided 99% recovery.

Li et al. proposed a method that uses prior information on the structure obtained
using other imaging modalities in the regularization term [129]. Using the diagonal matrix
L, which has a diagonal element of 1 corresponding to the voxel in the segmented tumor
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region and 0 corresponding to the normal region, the cost function with the regularization
terms was formulated with linearization in the forward process as

‖δM− Jδµ‖2 + γ1‖(I − L)δµ‖2 + γ2‖Lδµ‖2. (24)

By taking a large value of the regularization parameter γ1 and a small value of γ2, δµ
in the tumor region can become relatively large, although the artifacts, which are noises
that appear in the reconstructed image, can be enhanced. In this study, the spectral prior
method described in Section 4.3 was also employed.

The Bayesian framework incorporates prior structural information. Guven et al.
proposed a hierarchical Bayesian approach [130]. Anatomical images, such as MRI and
X-ray CT, were segmented into subimages composed of background tissues. In each
subimage, we assumed that the absorption coefficient was Gaussian distributed with an
unknown mean and variance, which are referred to as the hyperparameters. The FD
measurements were then modeled with linearization employing the Rytov approximation
and additive Gaussian noise. The hierarchical Bayesian approach estimated δµa and
the hyperparameters simultaneously by maximizing the log-likelihood of the posterior
probability density function.

In a manner different from the Bayesian framework, Panagiotou et al. treated DOT
image reconstruction with probability statistics to incorporate prior structural informa-
tion [131]. For the regularization term, they used the joint entropy and mutual information
of the reconstructed and reference images obtained by different imaging modalities. The
joint entropy was formulated as follows:

H(δµ, xre f ) = −
x

p(δµ, xre f ) · log
(

p(δµ, xre f )
)

dµdxre f , (25)

where p(δµ,xref) is the joint probability function of the image intensities δµ and xref in the
reconstructed and referenced images approximated by the intensity histograms. Entropy
H(x) is the expected amount of information by obtaining x, which is defined in information
theory. Because H(δµ,xref) = H(δµ|xref) + H(xref), minimization of H(δµ,xref) leads to a DOT
image δµ providing a small amount of additional information H(δµ|xref) after obtaining
the reference image xref. This means that the DOT image behaved similarly to the reference
image. In addition, the mutual information MI(δµ,xref) = H(δµ) + H(xref)−H(δµ|xref), which
is a measure of the similarity between δµ and xref, was maximized as the regularization
term. In this case, H(δµ|xref) was maximized, whereas the entropy H(δµ) indicating
the randomness of δµ was minimized. It was demonstrated that H(δµ|xref) is superior
to MI(δµ,xref) as the regularization term in numerical experiments because MI(δµ,xref)
constrained the solution more than H(δµ,xref).

4.3. Use of Spectral Prior Information

While DOT can image the hemoglobin concentration and oxygen saturation of tissues
by using the reconstructed µa and µs

′, DOT image reconstruction faces the cross-talk prob-
lem caused by nonuniqueness, which means that a reconstructed image with a combination
of µa and µs

′ different from the true values is obtained from the measurements because the
different combinations of µa and µs

′ cause the measurements to be identical or very close
to each other.

Arridge and Lionheart [132] summarized the conditions for combinations of (µa1, D1)
and (µa2, D2) that cause the same CW measurements, as follows:

η0(µa1, D1) = η0(µa2, D2) in Ω0, (26)

with
η0(µa, D) =

[(
∇2D1/2

)
/D1/2

]
+ (µa/D), (27)
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and
D1 = D2 in Ω1, (28)

where δ0 is the measured region surrounded by Ω1 including isotropic light sources.
It was reported that the cross-talk problem was reduced by the image reconstruction

method, which directly reconstructed the concentrations of photon absorbers using multi-
spectral measurements because the spectral prior information of photon absorbers could
function as a constraint to maintain the consistency of the spectra in the reconstructed
images [133,134]. In DOT image reconstruction employing prior spectral information, µa
at the o wavelengths, λ1, λ2, . . . λo, was formulated with the concentrations of q photon
absorbers, c(r) = [c1, c2, . . . cq]T, as follows:µa(λ1, r)

...
µa(λo, r)

 =

ε1(λ1) · · · εq(λ1)
... · · ·

...
ε1(λo) · · · εq(λo)


c1(r)

...
cq(r)

, (29)

where ε1, ε2, . . . εq, are the extinction coefficients of the photon absorbers. In contrast, µs
′ is

defined as µs
′(λ, r) = a(r)·λ−b(r), by assuming a simplified Mie-scattering coefficient, where

a and b are the parameters depending on the size, refraction index, and concentration of
the scatterers [133,135]. By substituting the equations relating µa and µs

′ to a, b, and c into
Equation (1) or (8) and constructing matrix J, image reconstructions with prior spectral
information were performed.

Corlu et al. proposed an image reconstruction method for multispectral (four wave-
lengths) CW measurements using nonlinear gradient-based optimization [133]. In this
study, b was assumed constant, and a and c were reconstructed. To reduce the cross-talk
problem, the condition of increasing nonuniqueness in the multispectral-CW DOT was
derived based on the conditions in Equations (26)–(28). (a, c) and (a + δa, c + δc) yield the
same measurements when the following equation holds.

ε1(λ1)

λb
1

· · · εq(λ1)

λb
1

... · · ·
...

ε1(λo)

λb
o

· · · εq(λo)

λb
o


 δa

a · h(a + δa)

c1
...

cq

+
1

h(a + δa)

δc1
...

δcq


 =

1
...
1

, (30)

where δc = [δc1, δc2, . . . δcq]T and h(a + δa) = {1/3(a + δa)} · [∇2(1/3a)1/2/(1/3a)1/2 −
∇2{1/3(a + da)}1/2/{1/3(a + δa)}1/2}]. Equation (30) was rewritten using the vector matrix
formula Ax = 1. The least-squares solution of the equation is x0 = (ATA)−1AT 1 when o
> q. The residual error norm, E = ‖Ax0 − 1‖, was used as the measure of the ability to
distinguish µa from µs

′. When the residual error norm was close to zero, the measurement
involved cross-talk problems in image reconstruction. In the numerical simulation, it
was demonstrated that the cross-talk between µa and µs

′ was reduced by a combination
of wavelengths that provided an E that was as large as possible. Simultaneously, the
concentrations of oxy- and deoxyhemoglobin were clearly separated by the combination
of wavelengths with the small condition number of matrix A of ε in Equation (30). The
condition number is the ratio between the maximum and minimum singular values, and
indicates the degree of separation ability among c1, c2, . . . cq. This image reconstruction
method was applied to the FD DOT image of oxy-/deoxyhemoglobin, water, and µs

′ in a
real breast tissue at four wavelengths: 690, 750, 786, and 830 nm [136].

Li et al. used a spectral prior method for linearized image reconstruction [134]. The
linear equation, δM = Jδc, was solved for the changes in the concentrations of oxy- and
deoxyhemoglobin, and δc was the regularized Moore–Penrose generalized solution, δc
= JT(JJT + λI)−1δM. To compare the image reconstructions of δc using a spectral prior
(direct method) and calculation from the reconstructed δµa (indirect method), a numerical
simulation and a blood phantom experiment were conducted. By measuring the contrast-
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to-noise (CNR) ratio (peak value of deoxyhemoglobin divided by the mean standard
deviation of the reconstructed values in voxels) and cross-talk (changes in oxyhemoglobin
concentration divided by deoxyhemoglobin concentration), we verified that the indirect
method could improve the contrast-to-noise ratio and reduce cross-talk.

Li et al. employed the spectral prior method with a formulation of µs
′ that was

different from other methods [137]. Based on the Mie theory and the assumption that
the size of the scattering particle is Gaussian distributed, the u-th scattering particle has a
reduced scattering coefficient:

µsu
′ (λ) =

∫ ∞

0
{3Qscat(v, n, λ)[1− g(v, n, λ)]/2v} f (v)dv, (31)

f (v) =
(

1/
√

2πβ2
)

exp
{
−(v− αu)

2/(2β2)
}

, (32)

where v is the particle size, n is the refractive index, αu is the average particle size, b is the
standard deviation, and Qscat is the scattering efficiency. Then, µs

′ is formulated as

µs
′ (λ, r) =

U

∑
u=1

ϕu(r)µsu
′(λ), (33)

where ϕu is the volume fraction of the uth scattering particle. Equation (33) can be writ-
ten as a vector matrix formula, similar to Equation (29). ϕu was reconstructed with c
simultaneously. This algorithm was examined in numerical simulations with various ge-
ometries including particles with sizes of 150, 1000, and 6000 nm in a phantom experiment
using blood, intralipid, and agar powder. The algorithm was also tested on the clinical
measurements of patients with breast cancer.

4.4. Other Important Topics: Regularization Parameter, Artifacts, Local Minima, and AI

In DOT image reconstruction, the selection of the regularization parameter γ is im-
portant, as is the case in other inverse problems. The reconstructed image cannot suffi-
ciently approximate the true optical properties when γ is excessively large because the
squared error term in Equation (2) is not sufficiently small. However, the measurement
noise, which causes artifacts in the reconstructed image, disturbs the reconstructed image
when γ is extremely small. Selecting an appropriate γ is one of the important aspects in
image reconstruction.

The L-curve and generalized cross-validation (GCV) methods are often used to solve
inverse problems. The L-curve method finds γ that minimizes the squared error term and
regularization term in good balance by plotting the log of the squared residual error term
versus the log of the regularization term with various γ, which often draws an L-shaped
curve [111,114,115,138]. γ allows the corner of the L-shaped curve to efficiently minimize
both terms.

The GCV method in the case of Equation (9) with W = L = I selects γ that minimizes
the GCV function,

GCV(γ) = ‖δM− Jδµ(γ)‖2/
[

trace
{

I − J
(

JT J + γI
)−1

JT
}]2

, (34)

where δµ(γ) is the Tikhonov regularized image reconstructed using γ [139,140]. The trace
in Equation (34) is the sum of the diagonal elements in the matrix, which can be regarded
as a measure of the degrees of freedom in the regularized image δµ [116]. Various methods
have been proposed to select γ.

Correa et al. examined 10 methods to select g including heuristic, L-curve, GCV, unbi-
ased predictive risk estimator, discrepancy principle, normalized cumulative periodogram
(NCP), F-slope, quasi-optimality criterion, full width half maximum, contrast-to-noise ratio
(CNR), and CNR·Ψ−1 methods [141]. Linearized 3D image reconstruction was performed
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using a tissue-mimicking phantom made of epoxy resin with the imaging target. The opti-
mal method was selected based on the relative error in the reconstructed image, objectivity,
and the requirement of no prior knowledge. Although it is difficult to find the corner of the
L-shaped curve owing to its high ill-posedness, the L-curve method was selected as the
optimal method under the conditions of the study.

Jagannath and Yalavarthy compared the minimal residual method (MRM) with
GCV [139]. MRM updates δµ in a manner similar to that of the steepest gradient method to
solve Equation (8) with W = I using Tikhonov regularization with L = I. MRM changes γ in
each iteration to update δµ. The updating rule at the tth iteration is

δµt+1 = δµt − st · ∇ ft, (35)

∇ ft = JT(Jδµt − δM)− γt · δµt, (36)

where the step size of st = ‖∇ ft‖2/
(
‖J∇ ft‖2 + γt‖∇ ft‖2

)
. γt, which minimizes the

squared residual error, was searched using a simplex-type method. The image recon-
structions based on the Rytov approximation with CW measurements in the numerical
simulations and the gelatin phantom experiment demonstrated that the MRM provided a
higher spatial resolution and peaks closer to the true values than the GCV method.

Prakash and Yalavarthy proposed the conjugate gradient-type least-square QR (LSQR)
method to select γ [142]. The LSQR method is typically used to solve linear equations
efficiently and is applied to image reconstruction. The LSQR, MRM, L-curve, and GCV
methods were compared using numerical simulations and gelatin phantom experiments.
The LSQR and MRM methods improved the spatial resolution and quantitativeness of the
reconstructed images.

Sun et al. examined methods to select γ automatically, such as the L-curve, GCV
methods, MRM, projection error method (PEM), and model function method in nonlinear
image reconstruction using Tikhonov regularization from the logarithm of light intensities
in CW measurements [143]. The PEM calculates γ at the tth iteration, as follows:

γt = max
(

Jt
T Jt

)
/
[
2 + exp

(
−‖M− Ft‖2

)]
. (37)

The absolute bias error (ABE), which is the mean value of the error between the
reconstructed and true values; CNR, which compares the values in the region of interest and
background; and FWHM were evaluated through numerical simulations. PEM provided
better CNR and ABE than the other methods, especially for the image reconstruction of a
single target. MRM improved the spatial resolution more than the other methods.

Pogue et al. proposed γ as a spatial variant [144]. Because of the diffusive nature of
light propagation, the spatial resolution of the DOT image degrades as the distance from
the target to the sources and detectors increases. A spatially constant γ can excessively
smooth the image of a deeper target. For image reconstruction of a circular object with
Tikhonov regularization, the spatially variant γ is formulated as follows:

γ
(

rn
j

)
= γe exp

(
rn

j /R
)
+ γc, (38)

where rn
j is the radial position of the jth pixel and R is the radius of the image. γe and γc are

empirically determined parameters. In the numerical simulation of the FD measurements
with three targets, the spatially variant γ reconstructs the target close to the center of
the circular object more clearly than the spatially constant γ. The spatially variant γ
provided a better image than the spatially constant one by evaluating the peak value of the
reconstructed target, the FWHM, and the variance in the homogeneous region. Phantom
experiments were also conducted. The artifacts appearing in the high-sensitivity region
close to the sources and detectors were suppressed using this regularization method.
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Another way to suppress the artifacts and influence of measurement noise on the
reconstructed image is to reduce the measurement noise. Okawa et al. proposed a noise
reduction method for TD measurement [145]. The number of photons measured using the
time-correlated single-photon counting method is a Poisson-distributed random variable
with a mean equal to the noise-free photon count. Based on the probability density function
of the DTOF measurements formulated using the Poisson distribution function, a noise-free
DTOF that maximizes the posterior log-likelihood was estimated. Using the estimated
noise-free DTOF, the artifacts and variations in the homogeneous region were reduced in
the numerical and phantom experiments.

Errors in the measurement conditions cause a mismatch between the forward process
and the actual measurement. Consequently, artifacts may appear in the image to compen-
sate for this mismatch. Therefore, calibration of the sources and detectors is important
for accurately measuring light intensities. Boas et al. demonstrated the simultaneous
reconstruction of δµ and calibration factors [146]. In this study, the intensity of the ith
light source at position rs,i has a constant calibration factor si and is formulated as si·q0(rs,i).
Then, the measurement by the jth detector with calibration factor dj was expressed as si
· dj · Mi,j. The image reconstruction of the calibration factors and δµ was performed by
linearization using the Rytov approximation. The matrix J in Equation (7) can be rewritten
to include the effects of si and dj: The matrix was formulated using Green’s function for slab
geometry. Reconstructions of δµ and the calibration factors were performed using Tikhonov
regularization. δµ was scaled to be dimensionless for the simultaneous reconstruction. In
the numerical experiment with the simulated measurements generated with a randomly
chosen calibration factor, no artifacts appeared in the image reconstructed by the proposed
method, whereas the images reconstructed without considering the calibration factor were
contaminated with artifacts.

Oh et al. reported image reconstruction with a calibration factor (coupling coefficient)
in FD measurement using a Bayesian framework updating µa and coupling coefficients
sequentially [147]. The forward process used the finite difference method. A numerical
simulation was performed for a cubic object. The phantom experiments employed a light-
emitting diode and a photodiode as the source and detector, respectively. A cylindrical
object in a culture flask filled with intralipids was reconstructed.

Schweiger et al. reported the nonlinear reconstruction of µa and µs
′ and the coupling

coefficient to modify the errors in the amplitude and phase in FD measurements [148]. µa,
µs, and the coupling coefficients were scaled by averaging the initial estimates. The FEM
was used in the forward process. The damped Gauss–Newton method was used in the
optimization process. The 2D numerical simulation and a cylindrical phantom experiment
with two targets were performed. In the phantom experiment, hair was placed between
the optical fibers and the phantom surface to simulate functional brain imaging.

Fukuzawa et al. applied a calibration coefficient to TD measurements [149]. The
measured amplitude of the DTOF was influenced by changes in the contact condition
of the optical fibers on the surface of the measured object, especially when the surface
consisted of a soft material such as the skin of the scalp. The mGPST method using the
Laplace-transformed DTOF was employed for image reconstruction. In addition to the
numerical experiments, a phantom experiment employing a cylindrical polyacetal resin
coated with soft silicone rubber demonstrated that the change in compression on the
surface by the optical fibers caused an artifact at the surface in the reconstructed image.
The calibration coefficient was applied to the in vivo measurement of the infant’s head and
reduced artifacts.

The estimation of the calibration coefficient prior to image reconstruction was proposed
by Li and Jiang [150], employing a calibration matrix obtained from a homogeneous
phantom, and by Tarvainen et al. [151] using a rotationally symmetric array of source–
detector optical fibers in FD measurement.

In addition to the instability caused by noise, which is relieved by regularization,
the reliability of a reconstructed image is influenced by its nonuniqueness. In particular,
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using the gradient-based optimization method mentioned in Section 2.3, an initial guess
of the optical properties may lead to a local minimum of the cost function, which causes
the reconstructed image to not approximate the true image. Li et al. used a combination
of a genetic algorithm (GA) and a gradient-based method in the optimization process to
simulate DOT image reconstruction for prostate cancer diagnosis [152]. The GA randomly
generated wide-ranging candidates for the reconstructed image, which were updated by
mutation, crossover recombination, and selection [153]. The updating rule mimics the
biological evolutionary process. The initial guess selected by the GA was used in the
nonlinear gradient-based image reconstruction. The FEM geometry, including the prostate,
intraprostatic tumor, and rectum, was constructed to solve the PDE based on endorectal
MRI images.

Jiang et al. used simulated annealing (SA) to prevent the reconstructed image from
being trapped by local minima [154]. In this method employing SA, which is a type of a
Metropolis–Hastings Markov chain Monte Carlo method, δµa was expressed as a discrete
value as δµa = δµa

max {(Si/M) + (1/2)} by employing the spin variable Si = ±1, ±2, . . . ,
±M/2 at the ith position. The cost function f (Si) with linearization by Rytov approxima-
tion and a type of Tikhonov regularization was used in the Boltzmann distribution with
temperature T, formulated as p(Si) ∝ exp(−f (Si)/T), as the probability density function to
sample the spin variables. Si randomly generated in accordance with p(Si) was adopted
when the probability increased (i.e., f decreased). Starting from a high T, which provided
a highly random selection of Si and cooling by decreasing T, the spins resulting in the
reconstructed image were narrowed from a wide range of candidates. The numerical
simulations demonstrated that the SA avoided the local minimum arising in a single-spin
case [155] and that the DOT image was reconstructed in the multiple-spin case.

AI, as represented by deep learning, can provide a different approach to reconstructing
DOT images. Deep learning comprises an artificial neural network (ANN) with several
hidden layers. Various ANN architectures for deep learning, such as convolutional neural
networks (CNN), generative adversarial networks, and recurrent neural networks (RNN),
have been employed. The neural network outputs the data processed by artificial neuron
units, the connections of which are adjusted by a learning process using training data that
are given input and output pairs. Deep learning and its relationship with the DOT have
been detailed in the literature [16,17]. Yoo et al. proposed a deep-learning approach [15]
that employed an ANN to solve the following Lippman–Schwinger equation for δµ:

δΦ(r) = −
∫

Ω
G0(r,ξ)δµ(ξ)Φ(ξ)dξ, (39)

where δΦ = Φ − Φ0, and Φ0 and G0 are the fluence rate and Green’s function of the
CW version of the PDE with the squared diffusive wave number of the background
substituted for µa. Equation (39) can be inverted using a technique related to Hankel matrix
decomposition, which is achieved using a fully data-driven neural network with an encoder–
decoder structure. The training data were generated by numerical simulations using
NIRFAST. This approach output the image of δµ better than the `1-sparse regularization
method and the iterative updating method based on Rytov approximation in the numerical,
phantom, and in vivo mouse experiments.

Mozumder et al. proposed an ANN output of the updated optical properties for the
Gauss–Newton method used in a nonlinear optimization process [33]. Image reconstruction
was formulated using the FD PDE. The Bayesian approach was employed to incorporate
prior information on the distribution of the optical properties. In the process to update the
optical properties, CNN was employed. The update of the optical properties is expressed as

µt+1 = Gθ,t(µt, δµt), (40)

where µt is the distribution of µa and µs
′ in the tth iteration, denoted by the subscript,

Gθ,t is the updating function achieved by the CNN, and δµt is the gradient of the cost
function. µt and δµt are the inputs to the CNN. The selection of the step size, which must be
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determined in the updating process of the nonlinear optimization, was reduced. Numerical
experiments demonstrated that the proposed method worked better than the conventional
Gauss–Newton method under modeling errors. The proposed method reduced cross-
talk artifacts, whereas the Gauss–Newton method reconstructed images contaminated
by artifacts.

Takamizu et al. proposed image reconstruction using the long short-term memory
(LSTM) deep learning method, which is an extension of the RNN that uses gates to selec-
tively retain and forget information [156]. The deep learning scheme is composed of two
LSTM layers and a dense layer to reconstruct the positions with changes in µa. The datasets
generated using TD RTE were used to train the ANN. By comparing the DOT images
reconstructed using the proposed method and the conventional nonlinear optimization
method with DA, it was demonstrated that the proposed method reduced the blurriness of
the region with a large µa.

As shown in the above studies, the use of AI technology represented by deep learning
can reduce computational costs in the forward and optimization processes using training
data prior to practical image reconstruction. Forward calculation, particularly with RTE,
which is repeatedly required in the nonlinear optimization process, requires massive
computation, and becomes a bottleneck in the clinical application of DOT. AI can improve
the quality of an image by confining the solution space of the inverse problem of DOT
image reconstruction in accordance with appropriate prior information.

5. Discussion

The image-reconstruction algorithms reviewed in the previous sections were studied
to address each technical problem. In actual clinical measurements, image reconstruction is
required to consider these problems comprehensively. In particular, an improvement in
the spatial resolution is essential for the diagnosis of cancers, which are important imaging
targets of DOT. Studies on breast cancers using DOT and NIR spectroscopy indicated
that malignant breast cancer had statistically different optical properties from normal
tissues [8,10,12]. Malignant tumors can have a higher total hemoglobin concentration and
a larger scattering coefficient than normal tissues and benign tumors. In addition to breast
cancer, cancers of other organs involve abnormal vascularization. Microvessel density
in tumors, which can be imaged noninvasively by diffuse optical techniques, can be an
indicator of tumor grade and stage, and a prognostic indicator [157]. The progression and
expansion of malignant tumors require nutrient supply and waste removal, which can
be accomplished by microcirculation owing to angiogenesis and vasculogenic mimicry in
tumors. Therefore, contrast with hemoglobin must be useful.

However, it is difficult to distinguish cancer from benign lesions using hemoglobin as
a contrast agent because the hemoglobin concentration increases in both the carrier and
benign lesions [12]. One of the important characteristics useful for cancer diagnosis is
tumor heterogeneity. Although the hemoglobin concentration is an important biomarker, it
changes temporally and spatially in tumors. The peripheral area and invasive edge of the
tumor can have more blood flow and higher hemoglobin concentrations. However, blood
flow in growing tumors can decrease due to decreasing vessel density, severe structural
and functional abnormalities of the vessels, and the development of necrosis [158]. Hetero-
geneous hypoxic regions of tumors with low blood flow, which often exist in the core of
tumors and resist radiotherapy, are of interest in various medical imaging studies [159]. By
imaging the heterogeneity of tumors quantitatively and qualitatively using an improved
image reconstruction algorithm, DOT may be applied as expected in cancer diagnoses.

Therefore, the low spatial resolution of DOT due to diffusive light propagation should
be overcome by image reconstruction for clinical use, although it may not be easy for
the current DOT to reconstruct the heterogeneity within a tumor a few centimeters in
size. In image reconstruction, the mismatch between the forward calculation and the
actual light propagation degrades image quality. Therefore, high-precision computation
in the forward process is desirable. The use of RTE is a promising direction, especially
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for imaging cancers and abnormalities such as thyroid cancer and rheumatic arthritis,
which are near the illumination positions. The error of DA increases in regions with
µa > 0.01 mm−1 and a distance smaller than 5 mm from the illuminating position, according
to studies [74,97] comparing DA and MC simulations. DA can increase the error in the void
and low scattering regions, such as the trachea in the neck and cerebral spinal fluid layer
in the head, as discussed in the literature on RTE, PN/SPN approximations, and the MC
method. However, the use of the RTE with appropriate discretization is a time-consuming
and computationally expensive process. Higher-order approximations using PN/SPN
methods [57–66] and hybrid methods [87] can also be useful.

In the application of DOT, including cancer imaging and functional brain imaging,
the imaging targets associated with changes in hemoglobin concentration must be selected
from a heterogeneous background consisting of multiple organs and different tissues. The
effects of background heterogeneity cannot be ignored under realistic scenarios. Therefore,
in the optimization process, methods used in the literature, such as [118], which can manage
broad and local changes in the optical properties simultaneously, are needed. To obtain a
reliable image, prior structural information from other imaging modalities such as MRI,
X-ray CT, and ultrasound imaging is indispensable. Therefore, methods introduced in the
literature [120,123,126,130], which incorporate prior structural information and recover the
heterogeneity inside the segmented organs, should be employed. Because of the difficulty
in selecting the regularization parameter, two-stage image reconstruction [120,123] incor-
porates hard prior information as an initial estimate. In the second stage, to reconstruct
heterogeneities in the segmented regions, combination use of the sparsity regularization
methods using p-norm (0 ≤ p ≤ 1) [104,106,109–111,113] can be useful to achieve the high-
resolution image. The studies indicated that appropriate regularization improved not only
the spatial resolution but also the quantification. Other biomarkers, such as water, lipids,
collagen, and the scattering coefficient are useful for diagnosis, as shown in [136]. The
spectral prior method improved the quantification performance of the DOT.

The combined use of DOT and other optical imaging methods is one approach for
obtaining a higher spatial resolution. Some studies combining QPAT/FDOT and DOT have
been reported [160–166]. QPAT and FDOT are related to the DOT. Photoacoustic tomogra-
phy (PAT) achieved a higher spatial resolution than DOT by exploiting the low scattering
characteristic of ultrasound excited by NIR light [167]. FDOT can enhance the contrast of
malignant lesions using fluorescent molecules [47]. Both PAT and FDOT highlighted tissue
abnormalities. However, the background optical properties, which are not observed in the
PA and FDOT images, can be imaged by DOT. Moreover, the background optical properties
are useful for quantifying PAT/FDOT images because the image intensity of PAT/FDOT
depends on the fluence rate of the excitation light, which in turn depends on the optical
properties of the heterogeneous background. The reconstruction of the optical properties of
the PA sources [50] and the fluence compensation modification of the PA image [168–171]
by QPAT will be improved using background optical properties quantified by DOT, which
will play a very important role in guaranteeing quantification by PAT/FDOT. In this context,
the aforementioned two-stage DOT image reconstruction method is useful. A quantitative
comparison between abnormalities imaged by PAT/FDOT and normal tissues imaged by
DOT may provide useful information for diagnosis.

6. Conclusions

DOT with NIR light, which can image the concentrations of chromophores such as
hemoglobin deep inside the body, is expected to be a new imaging modality for cancer
diagnosis and functional brain imaging. Unlike X-ray CT, DOT image reconstruction must
consider diffusive light propagation, which reduces the spatial resolution and quantifica-
tion of images. Studies on image reconstruction have attempted to resolve the technical
problems of spatial resolution and quantification accuracy in DOT images of highly hetero-
geneous measured objects. Various image reconstruction methods were reviewed here.
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In the forward process, the use of the RTE, PN, SPN, diffusion approximations, and
MC simulations has been reported. Improvements in computational performance in recent
years have enabled us to base the high-precision forward simulation of light propagation on
predicting measurements for DOT image reconstruction. To reduce the mismatch between
the forward simulation and the actual measurement, which degrades the quality of the
reconstructed image, RTE and its higher-order approximation are useful. To balance the
required precision in clinical applications with computational time and cost, an appropriate
forward computation method should be chosen.

During the optimization process, various methods, including regularization tech-
niques and the use of structural and spectral prior information, have been proposed to
overcome the technical problems of low spatial resolution, noise, and artifacts. Sparsity
regularization techniques have improved spatial resolution. The use of prior information
on the structures inside the body obtained from other imaging modalities, such as X-ray
CT and MRI, is useful for treating heterogeneous backgrounds. Spectral prior information
improves the quantification of chromophore concentrations in multispectral DOT imaging.
For reliable image reconstruction in cancer diagnoses with high heterogeneity, the use of
prior information and sparsity regularization must be effective. By considering the purpose
of DOT in clinical use and the specificity of the diffuse optical measurement system, an
effective optimization method can be developed.

Although the authors have reviewed important studies, many of them could have been
missed owing to the limitations of the authors’ knowledge and time. As discussed in this
review, various efforts have been made during the past two decades to improve image re-
construction. Moreover, technologies surrounding DOT, such as AI, high-performance com-
putation, and PA imaging, have begun in recent years to change the circumstances. Novel
solutions that apply emerging technologies to improve image reconstruction and DOT ap-
plications in clinics can be anticipated by leveraging numerous previously reported studies.
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