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Abstract: Automatic music genre classification is a prevailing pattern recognition task, and many
algorithms have been proposed for accurate classification. Considering that the genre of music
is a very broad concept, even music within the same genre can have significant differences. The
current methods have not paid attention to the characteristics of large intra-class differences. This
paper presents a novel approach to address this issue, using a locally activated gated neural network
(LGNet). By incorporating multiple locally activated multi-layer perceptrons and a gated routing
network, LGNet adaptively employs different network layers as multi-learners to learn from music
signals with diverse characteristics. Our experimental results demonstrate that LGNet significantly
outperforms the existing methods for music genre classification, achieving a superior performance
on the filtered GTZAN dataset.
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1. Introduction

Automatic music genre classification is a well-established task in the field of machine
learning [1]. Its objective is to accurately classify given music tracks into a specific genre
or set of genres [2,3]. The potential applications of music genre classification in music
recommendation systems [4] and music streaming services [5] have led to extensive research
in this area.

Music genre classification typically involves two steps: acoustic feature extraction
and classification. As a critical component of music genre classification, acoustic feature
extraction extracts meaningful characteristics from music tracks. Traditional music features
include loudness, rhythm [1], beat [1,6], a zero-crossing rate [6], and Mel-frequency cepstral
coefficients (MFCCs) [7–9]. In addition, researchers have also explored spectrograms based
on Fourier transform [10,11], wavelet transform [12], or constant-Q [13] transform, which
contain rich time-frequency information (e.g., temporal information, periodic beat, rhythm,
etc.) and can achieve a more satisfactory performance.

The other critical component of music genre classification is designing classification al-
gorithms to handle acoustic features. Classic machine learning algorithms include statistical
methods, such as naive Bayes classifiers [14], random forests [15], and support vector ma-
chines (SVMs) [7,8]. Meanwhile, some studies have revealed that classic machine learning
models may not be suitable for large-scale data with diverse data distribution [4,5]. With
the advancement of deep learning [16] and computing resources, classification algorithms
based on deep neural networks continue to grow in popularity. Most researchers choose
recurrent neural networks (RNNs) [17], convolutional neural networks (CNNs) [18,19], or
Transformers [9] as the classification backbone for music genre classification. Such deep
learning-based methods could capture the latent information in acoustic features (e.g.,
timbre information and semantic information ), thus achieving a better performance in
real-world applications.
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However, there are still some limitations to the existing methods. Based on the analysis
of the music signals, we observe that the genre of music is a very broad concept [20]. Music
tracks belonging to the same genre may have diverse acoustic characteristics, such as the
rhythm and beats. Figure 1 illustrates the significant variation in spectrograms of music
tracks belonging to the “blues” genre.

Figure 1. The illustration of the spectrogram differences in blues music. For all three sub-figures, the
x-axis ranges from 0 to 30 s, while the y-axis ranges from 0 to 11,025 Hz.

The drawback of the existing methods is that they are not good at dealing with such
diverse data distributions with large intra-class differences. To correctly classify Blues A
and Blues C into the same genre, the model needs to further capture deep latent information.
However, when the amount of data is insufficient for “deeper digging,” it can lead to false
inductive bias and adversely affect the classification accuracy.

In this work, we specifically address the difficult problem of music genre classification
with large differences in intra-class data distribution. We propose the locally activated
gated neural network (LGNet) for music genre classification. LGNet includes multiple
multi-layer perceptrons (MLPs) [21] and a gated routing layer [22] on the backbone of
the classification network. We design several MLPs and employ them as multi-learners,
focusing on knowledge in different aspects. The gated routing layer is applied to determine
the allocation of inputs by calculating the matching degree between the input represen-
tations and each MLP. When the model encounters a certain sample, only the MLP with
a high matching degree is activated, while the remaining MLPs are deactivated. In this
manner, the model can adaptively allocate the most appropriate network layer according
to the input samples. Taking Figure 1 as an example, LGNet can dispatch the MLP layer
specialized in processing periodic beats and rhythms to Blues A while dispatching the
MLP layer specialized in processing low-frequency line spectra to Blues C. Such a locally
activated structure introduces more parameters for complex modeling, and due to its
locally activated property, additional parameters do not reduce the training and inference
speed. Thereby, LGNet can alleviate the problem of large intra-class differences in an
efficient manner.

According to our experimental results and analysis, we demonstrate that LGNet is
highly effective for music genre classification with large intra-class differences. The locally
activated gated network can achieve a satisfactory performance on the GTZAN dataset [1].
The contributions of our work are summarized as follows:

• We reveal the intra-class differences problem in music genre classification, which
impedes the progress of recognition performance.

• We propose the locally activated gated network, which can adaptively dispatch the
most appropriate network layer based on inputs.

• Our experimental results demonstrate that LGNet outperforms the existing methods
on the filtered GTZAN dataset.

2. Related Works
2.1. Classic Machine Learning

The proposal for a fully automatic music genre classification system was first put forth
by Tzanetakis and Cook [1]. They presented three feature sets to represent the timbral
texture, rhythmic content, and pitch content and trained statistical pattern recognition
classifiers using real-world audio collections. The GTZAN dataset they released has become
the benchmark dataset for most subsequent work in this area. Since then, various algorithms
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based on traditional machine learning have been proposed. Xu et al. [6] employed the multi-
layer classifier based on support vector machines to replace traditional Euclidean distance-
based methods and other statistic learning methods. Patil and Nemade [8] used acoustic
features such as the MFCC vector, chroma frequencies, spectral roll-off, spectral centroid,
and zero-crossing rate and combined SVM and K-NN (K Nearest Neighbor) algorithms to
accomplish the classification task. Chaudhury et al. [3] investigated naive Bayes, decision
trees, logistic regression, and random forest for the classification of music genres.

2.2. Deep Learning

With the advent of deep learning algorithms and computing resources, recognition
algorithms based on deep neural networks have become increasingly prevalent in this
field. Liu et al. [2] utilized a middle-level learning feature interaction method based on the
convolution neural network; Abeßer and Müller [23] captured the music theory of Jazz by
a recently proposed U-net deep neural network architecture; Zhuang et al. [24] designed
a Transformer classifier to analyze the relationship between different audio frames; and
Khasgiwala and Tailor [9] evaluated the performance of classification systems based on
the novel Vision Transformer, RNN-LSTM (Long Short-Term Memory), and CNN-based
architecture using MFCCs as the acoustic feature. As reported in the literature, deep
learning-based methods can generally achieve a more satisfactory performance than those
based on classic machine learning.

In addition, as a data-driven technique, the success of deep learning methods cannot
be separated from the construction of large-scale datasets. In addition, the performance of
a classification system depends on the quality and scale of the dataset. There are many free
and open source datasets available for music genre classification, including the GTZAN
Genre Collection (GTZAN), Free Music Archive (FMA), and Million Song Dataset (MSD).
The GTZAN Genre Collection is a widely used dataset for music genre classification and
includes pre-extracted features, such as Mel-frequency cepstral coefficients (MFCCs) and
chroma features. The Free Music Archive is a large collection of free, legal music that has
the associated metadata, such as the artist, album, and genre. The Million Song Dataset is a
collection of audio features and metadata for a million contemporary popular music tracks.
The MSD includes audio features, such as the pitch, timbre, and rhythm, as well as the
metadata, such as the artist, year of release, and popularity. These datasets contribute to an
open community and provide sufficient training data for data-driven deep learning models.

3. Materials and Methods

In this section, we give a detailed introduction to our LGNet, including our used
acoustic features, the neural network backbone, and the complete training flow.

3.1. Acoustic Feature Extraction

According to the literature, the acoustic features based on the spectrogram contain rich
time-frequency information. In recent years, applying neural networks to learn from the
time-frequency spectrograms has become the most popular paradigm in automatic music
genre classification. In this work, we perform three spectrogram-based acoustic features
to verify the generalizability of our proposed strategy. We describe the feature extraction
process in detail as follows:

STFT spectrogram: First, the input signal is windowed (e.g., using the Hanning
window function) to reduce the effect of spectral leakage, which can cause the spectral
components of the signal to spread beyond their actual frequency range. Next, the win-
dowed signal is partitioned into short segments with overlapping (this operation is referred
to as “framing”). For each segment, the Fourier transform is computed, resulting in a
frequency-domain representation of the segment. Finally, the modulo frames are assembled
into the STFT spectrogram, with time on the x-axis and frequency on the y-axis. The length
of the Fourier transform determines the frequency resolution of the spectrogram, while the
length of the segment determines its temporal resolution.



Appl. Sci. 2023, 13, 5010 4 of 11

Mel spectrogram: The Mel spectrogram is a variation of the traditional spectrogram
that emphasizes frequencies according to the perceptual characteristics of the human ear.
As mentioned above, we can obtain the FFT spectrum by windowing, framing, and Fourier
transform. The next step involves applying Mel filter banks to the spectrum. The Mel filter
bank is a set of triangular bandpass filters that are spaced according to the Mel scale, which
is a non-linear perceptual scale of frequency (as depicted in Equation (1)). Each filter in the
bank is centered at a particular Mel frequency and has a bandwidth that varies according
to the Mel scale. Finally, the filtered spectrum is transformed using a logarithmic scale to
obtain the Mel spectrogram.

Mel( f ) = 2595× log10(1 +
f

700
) (1)

CQT spectrogram: Constant-Q transform (CQT) is a popular tool for analyzing non-
stationary signals with varying frequency content over time, such as musical signals. After
obtaining the FFT spectrum, the CQT is computed by convolving the FFT spectrum of
each windowed frame with a bank of bandpass filters that are logarithmically spaced in
frequency (CQT kernel). Denote the maximum or minimum frequency to be processed
as fmax, fmin. fk represents the frequency of the k-th component, and b is the number of
spectral lines contained in an octave (e.g., b = 36). fk can be formalized as

fk = 2
k
b fmin k = 0, 1, . . . db · log2(

fmax

fmin
)e − 1 (2)

Then, the magnitude of the filtered spectrum is used to represent the CQT spectrogram.
CQT obtains different frequency resolutions by using different window widths so that the
frequency amplitude of each semitone can be obtained.

3.2. Neural Network Backbone

In this work, we adopt the deep residual network (ResNet-18) [25] as our network
backbone. As shown in Figure 2, ResNet begins with convolving and pooling the input
spectrogram to extract low-level features. This is followed by four basic blocks consisting
of multiple convolutional layers, each with the skip connection that allows the input to
bypass the block and flow directly to the output.

Figure 2. The framework of network backbone—ResNet18. “Conv” represents the convolutional
layer (yellow box) and “FC” represents the fully connected layer. For brevity, we omit the ReLU and
Batchnorm layers in the figure.

The basic block in ResNet-18 is called a “residual block”, which is designed to solve
the problem of vanishing gradients in deep neural networks. The residual block takes
inputs and passes them through a series of convolutional layers, batch normalization, and
activation functions—ReLU (we omit the ReLU and batch normalization in Figure 2 for
brevity). The outputs from this series of layers is then added to the inputs, creating a
“shortcut connection”. The purpose of the shortcut connection is to preserve the gradient
information from the inputs, which can be lost as it passes through the convolutional layers.
By adding the inputs to the outputs, the residual block allows the network to learn residual
functions, which are easier to optimize than the original functions. The convolutional
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layers in the basic blocks have a filter size of 3 × 3 and a stride of 1, with padding used to
keep the spatial dimensions of the inputs and outputs the same. The batch normalization
layer normalizes the outputs from the convolutional layers, helping to reduce the effects
of internal covariate shift and improve the stability and speed of the training process.
The activation function used in the residual block is a rectified linear unit (ReLU), which
helps to introduce non-linearity into the model and increase its capacity to learn complex
representations.

ResNet also includes several pooling layers that downsample the feature maps to
reduce the dimensionality of the input. The last adaptive pooling layer will pool the
feature map into 512 × 1 × 1, and the representation vector can be obtained after the
flatten operation. The classic ResNet is followed by a fully connected layer to output
the classification result, while our LGNet uses this representation for subsequent locally
gated activation and assignment. We refer to this ResNet-based network architecture that
transforms the input spectrograms into one-dimensional representations as “Front-end
network backbone”.

3.3. Framework of Locally Activated Gated Network

Figure 3 illustrates the framework of our proposed LGNet and its comparison with
the classic classification network. Our proposed LGNet shares the same front-end network
backbone as the classic classification network. Classic classification network directly feeds
the representations into the linear fully connected layer and outputs the predictions. Such
a method is not good at dealing with data distributions with large intra-class differences.

Figure 3. The framework of our proposed LGNet and its comparison with baseline classification
network. “FC” represents fully connected layer, while “spec” represents spectrograms. This figure
takes a batch with batch size = 4 as an example, the models are fed four independent samples, and
output their corresponding predictions.

For our proposed LGNet, we feed the representations into the gated routing network
to compute the routing score. Denote the batch size as n, input spectrograms as xi, and
the corresponding label as yi (i = 1, 2. . . n). The front-end network takes xi as input and
outputs the representations ri. We use a linear gated routing layer G(·) to learn the latent
characteristics contained in the representations, and then output the routing score si = G(ri).
Next, the activation function transforms the routing scores into the routing probabilities
pi, whose value represents the probability of being assigned to the corresponding MLP
layer. Take a structure composed of two MLPs as an example, when pi = (0.75, 0.25), the
representation will be sent to the first MLP layer. The model computes routing probabilities
for all representations and assigns them to the best-matched MLP layer based on pi. MLP
layers finally make predictions on the samples assigned to them.



Appl. Sci. 2023, 13, 5010 6 of 11

Additionally, in order to pursue the stability of the model, we fix the parameters of
the gated routing network after training for several epochs so that they will no longer
be updated. This prevents changes in the parameters of the gated routing network from
causing the allocation strategy to remain unfixed. The overall training flow for LGNet is
detailed in Algorithm 1.

Algorithm 1: The overall training flow for LGNet.
Data: training samples X and label Y.
Input: convolutional layers f (·); gated routing network G(·); MLP layers L(·);

number of MLP layers N ; activation function σ(·); max epochs E; routing
early stop epoch τ.

1 while epoch <E do
2 sample batches (xi, yi) ∼ (X, Y).
3 for all (xi, yi) do
4 obtain music representations ri ← f (xi).
5 compute routing scores si ← G(ri).
6 obtain routing probs pi ← σ(si).
7 obtain activated MLP id Zi ← argmaxi(pi).
8 compute logits logitsi ← LZi (ri).
9 compute loss Li = Crossentropy(logitsi, yi).

10 if epoch <τ do
11 update layers f (·), G(·), L(·) with loss ∑i {Li}.
12 else
13 update layers f (·), L(·) with loss ∑i {Li}.

4. Experiment Setup
4.1. Dataset

We choose filtered GTZAN [1] as the dataset for this task, which contains 1000 tracks
of 30-second length. There are 10 categories of music genres in GTZAN (blues, classical,
country, disco, hip-hop, jazz, metal, pop, reggae, and rock), and each genre contains
100 tracks with a sampling rate of 22,050 Hz. In consideration of several annotation errors
on the dataset, we adopt the “fault-filtered” split [26] to minimize the impact of error labels.
For the fault-filtered dataset, the total number of audio clips is reduced to 930 as a result
of filtering out mislabeled samples. The training, validation, test set, respectively, include
443, 197, 290 tracks. Given that it possesses more precise labels, we believe the fault-filtered
split can better reflect the performance of the recognition model than the original split.

4.2. Baseline Methods

In this work, we perform several widely used pattern recognition techniques as
baseline methods, including naive Bayes, Support Vector Machines (SVM), Long Short-
Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), fully convolutional networks (FCN),
FCN-LSTM, and residual networks (ResNet).

Naive Bayes is a probabilistic algorithm based on Bayes’ theorem, which assumes
that features are conditionally independent given the class label. SVM is a powerful
algorithm that constructs a hyperplane to separate different classes in the feature space,
often using a kernel trick to implicitly map the data to a high-dimensional space. LSTM
is a type of recurrent neural network (RNN) that utilizes a memory cell to selectively
forget or remember information over time, allowing it to handle long-term dependencies in
sequential data. Bi-LSTM is an extension of LSTM that includes a backward pass through
the sequence, enabling the network to capture information from both past and future
inputs. FCN is a neural network architecture that consists entirely of convolutional layers.
FCN-LSTM is a hybrid model that combines the strengths of FCN and LSTM and has been
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shown to effectively model spatio-temporal data. Finally, ResNet is a deep neural network
architecture that utilizes residual connections to enable the training of very deep networks
and has achieved promising performance on a wide range of computer vision tasks and
audio pattern recognition tasks.

4.3. Parameters Setup

During framing, this work sets the frame length as 30 ms and the frameshift as 15 ms.
In addition, we set the number of Mel filter banks to 128 as default. During training, we
use the AdamW optimizer with a weight decay of 1× 10−5. The initial learning rate is set
to 5× 10−4. All models are trained for 300 epochs on a single V 100 GPU. The batch size is
set to 64 as default.

5. Results and Discussion
5.1. Main Results

Table 1 presents the results for a music genre classification task, where different meth-
ods are evaluated with three different acoustic features. First, we compare the performance
of many existing classification models, with ResNet performing the best. So, we chose it
as the backbone of our network. Then, the experiments show that our proposed LGNet
has overwhelming advantages over the other models. Our LGNet uses a similar network
backbone as ResNet, on which only a few simple linear layers are added. Our strategies
can bring a 6.66% (CQT) to 8.16% (Mel) performance improvement. In addition, we find
that the number of MLP layers also has an impact on the results. The related research is
detailed in Section 4.3.

Table 1. Main results on the filtered GTZAN dataset. All reported results are the accuracy on the
test set.

Methods Accuracy (STFT) Accuracy (Mel) Accuracy (CQT)

Naive Bayes 50.48 54.45 51.90
SVM 62.25 64.36 64.99
LSTM 60.14 61.44 60.79
Bi-LSTM 61.48 62.01 61.41
FCN 73.55 74.39 68.86
FCN-LSTM 72.59 73.70 71.28
ResNet 74.60 74.55 72.51

LGNet-2MLP 82.43 82.36 79.17
LGNet-4MLP 82.24 82.71 79.55

In addition, we plot a confusion matrix to further illustrate the detailed performance
of our proposed LGNet on each genre. For the confusion matrix, darker colors indicate that
the model has a greater probability of making corresponding predictions. In Figure 4, we
observe that classic music and metal music are very well classified, while music with the
genre of country and rock is harder to distinguish. Overall, the performance of the auto-
matic classification system based on LGNet is satisfactory; it can make correct predictions
for most of the music tracks.
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Figure 4. The confusion matrix for our best LGNet model (accuracy = 82.71%).

Now, let us turn our attention to acoustic features. We observe that models based on
the Mel spectrogram outperform models based on other acoustic features in most cases. It
shows that applying the filter bank with a high resolution at low frequencies is an effective
method. In addition, the STFT spectrogram is also a well-behaved feature that sometimes
could outperform the Mel spectrogram (74.60% vs. 74.55% and 82.43% vs. 82.36%). We
also observe that models based on CQT spectrograms could not achieve a competitive
performance. According to our inference, CQT spectrograms contain more frequency bins,
including some less informative frequency bins that are not discriminative for classification.

5.2. Selection of Activation Function

Next, we investigate the selection of the activation function after the routing layer.
To normalize the routing probability values, we convert the routing score to the routing
probability by the activation function. There are two functions to choose from:

So f tmax(x) =
exi

∑n
j=1 exj

(3)

Sigmoid(x) =
1

1 + e−x (4)

As illustrated in Table 2, it is obvious that choosing the Softmax function is the best
option. This is because Softmax combines the normalization of all the input values, and
the output result is the correlation between the probabilities. For the sigmoid function, it
cannot reflect the correlation between different probabilities, and because the gradient of
the part far away from 0 is small, it is prone to gradient disappearance.
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Table 2. Selection of activation function. We uniformly choose LGNet with 4 MLPs as our model.

Methods Accuracy (STFT) Accuracy (Mel) Accuracy (CQT)

Linear 76.32 77.93 75.47
Softmax 82.24 82.71 79.55
Sigmoid 81.13 81.49 79.44

5.3. Number of MLP Layers

In this subsection, we explore the influence of choosing the appropriate number of
MLP layers. The number of MLP layers has a strong correlation with the number of model
parameters and the degree of model sparsity.

According to our experiments, in Table 3, choosing a moderate number of MLP
layers (four layers) brings the best results. It is obvious that more MLP layers mean more
parameters and a stronger ability to learn from complex data distributions. When the
number of MLP layers is small, although LGNet can still bring obvious improvements
compared to the original structure, its advantages have not been fully stimulated. When
there are too many MLP layers (such as 16), the data allocated to each MLP layer is
proportionally reduced, which may cause the MLP layers to not be fully trained. For
example, if there are 1000 training samples in the dataset, each MLP layer of LGNet-4MLP
can be allocated 250 training samples on average, while each MLP layer of LGNet-16MLP
may only be allocated 62.5 training samples on average. It can cause models with too many
MLP layers to suffer from overfitting due to the limited allocated data. The degradation of
the model performance of LGNet-16MLP in Table 3 confirms our conclusion.

Table 3. LGNet with different MLP layers.

Methods Accuracy (STFT) Accuracy (Mel) Accuracy (CQT)

LGNet-2MLP 82.43 82.36 79.17
LGNet-4MLP 82.24 82.71 79.55
LGNet-8MLP 82.20 82.59 79.67
LGNet-16MLP 81.71 81.46 78.90

6. Conclusions

This paper focuses on automatic music genre classification and reveals that the current
methods are not good at dealing with diverse data distributions with large intra-class
differences. Based on the issue, we propose an effective and parameter-efficient structure—
the locally activated gated neural network. We employ multiple MLPs and employ them
as multi-learners, focusing on knowledge in different aspects. In addition, our LGNet can
adaptively allocate the most appropriate network layer according to the gated routing layer.
According to our experimental results and analysis, we demonstrate that LGNet is very
effective for music genre classification. It can achieve a superior performance on the filtered
GTZAN dataset.

In the future, we plan to dig deeper into the potential of gating networks based on
such local activations. We want to try a more complex routing layer and introduce an
attention mechanism to control the weight of different MLP layers. Meanwhile, we are
interested in exploring whether there is a more optimal alternative to the structure of the
MLP layers.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; validation, Z.L. and T.B.; investi-
gation, Z.L. and T.B.; writing—original draft preparation, Z.L.; writing—review and editing, M.Y.;
visualization, Z.L. and T.B.; supervision, M.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2023, 13, 5010 10 of 11

Data Availability Statement: Our used GTZAN dataset is available at https://www.kaggle.com/
datasets/andradaolteanu/gtzan-dataset-music-genre-classification. In addition, our train, valida-
tion, and test split is available at https://github.com/jongpillee/music_dataset_split/tree/master/
GTZAN_split.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302.

[CrossRef]
2. Liu, J.; Wang, C.; Zha, L. A middle-level learning feature interaction method with deep learning for multi-feature music genre

classification. Electronics 2021, 10, 2206. [CrossRef]
3. Chaudhury, M.; Karami, A.; Ghazanfar, M.A. Large-Scale Music Genre Analysis and Classification Using Machine Learning with

Apache Spark. Electronics 2022, 11, 2567. [CrossRef]
4. Elbir, A.; Aydin, N. Music genre classification and music recommendation by using deep learning. Electron. Lett. 2020, 56, 627–629.

[CrossRef]
5. Rajanna, A.R.; Aryafar, K.; Shokoufandeh, A.; Ptucha, R. Deep neural networks: A case study for music genre classification. In

Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA,
9–11 December 2015; pp. 655–660.

6. Xu, C.; Maddage, N.C.; Shao, X.; Cao, F.; Tian, Q. Musical genre classification using support vector machines. In Proceedings
of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 6–10 April 2003;
Volume 5, pp. 429–432.

7. Kour, G.; Mehan, N. Music genre classification using MFCC, SVM and BPNN. Int. J. Comput. Appl. 2015, 112, 12–14.
8. Patil, N.M.; Nemade, M.U. Music genre classification using MFCC, K-NN and SVM classifier. Int. J. Comput. Eng. Res. Trends

2017, 4, 43–47.
9. Khasgiwala, Y.; Tailor, J. Vision transformer for music genre classification using mel-frequency cepstrum coefficient. In

Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON),
Kuala Lumpur, Malaysia, 23–25 September 2021; pp. 1–5.

10. Pelchat, N.; Gelowitz, C.M. Neural network music genre classification. Can. J. Electr. Comput. Eng. 2020, 43, 170–173. [CrossRef]
11. Cheng, Y.H.; Kuo, C.N. Machine Learning for Music Genre Classification Using Visual Mel Spectrum. Mathematics 2022, 10, 4427.

[CrossRef]
12. Jena, K.K.; Bhoi, S.K.; Mohapatra, S.; Bakshi, S. A hybrid deep learning approach for classification of music genres using wavelet

and spectrogram analysis. Neural Comput. Appl. 2023, 1–26. [CrossRef]
13. Zhao, H.; Zhang, C.; Zhu, B.; Ma, Z.; Zhang, K. S3t: Self-supervised pre-training with swin transformer for music classification.

In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 22–27 May 2022; pp. 606–610.

14. Silla, C.N.; Koerich, A.L.; Kaestner, C.A. A machine learning approach to automatic music genre classification. J. Braz. Comput.
Soc. 2008, 14, 7–18. [CrossRef]

15. Bahuleyan, H. Music genre classification using machine learning techniques. arXiv 2018, arXiv:1804.01149.
16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
17. Dai, J.; Liang, S.; Xue, W.; Ni, C.; Liu, W. Long short-term memory recurrent neural network based segment features for music

genre classification. In Proceedings of the 2016 10th International Symposium on Chinese Spoken Language Processing (ISCSLP),
Tianjin, China, 17–20 October 2016; pp. 1–5.

18. Ashraf, M.; Abid, F.; Din, I.U.; Rasheed, J.; Yesiltepe, M.; Yeo, S.F.; Ersoy, M.T. A Hybrid CNN and RNN Variant Model for Music
Classification. Appl. Sci. 2023, 13, 1476. [CrossRef]

19. Kamala, A.; Hassani, H. Kurdish Music Genre Recognition Using a CNN and DNN. Eng. Proc. 2022, 31, 64.
20. Rimmer, M. Beyond omnivores and univores: The promise of a concept of musical habitus. Cult. Sociol. 2012, 6, 299–318.

[CrossRef]
21. Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric

sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]
22. Xu, L.; Jordan, M.; Hinton, G.E. An alternative model for mixtures of experts. Adv. Neural Inf. Process. Syst. 1994, 7, 633–640.
23. Abeßer, J.; Müller, M. Jazz bass transcription using a U-net architecture. Electronics 2021, 10, 670. [CrossRef]
24. Zhuang, Y.; Chen, Y.; Zheng, J. Music genre classification with transformer classifier. In Proceedings of the 2020 4th International

Conference on Digital Signal Processing, Chengdu, China, 19–21 June 2020; pp. 155–159.
25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification
https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification
https://github.com/jongpillee/music_dataset_split/tree/master/GTZAN_split
https://github.com/jongpillee/music_dataset_split/tree/master/GTZAN_split
http://doi.org/10.1109/TSA.2002.800560
http://dx.doi.org/10.3390/electronics10182206
http://dx.doi.org/10.3390/electronics11162567
http://dx.doi.org/10.1049/el.2019.4202
http://dx.doi.org/10.1109/CJECE.2020.2970144
http://dx.doi.org/10.3390/math10234427
http://dx.doi.org/10.1007/s00521-023-08294-6
http://dx.doi.org/10.1007/BF03192561
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.3390/app13031476
http://dx.doi.org/10.1177/1749975511401278
http://dx.doi.org/10.1016/S1352-2310(97)00447-0
http://dx.doi.org/10.3390/electronics10060670


Appl. Sci. 2023, 13, 5010 11 of 11

26. Lee, J.; Nam, J. Multi-level and multi-scale feature aggregation using pretrained convolutional neural networks for music
auto-tagging. IEEE Signal Process. Lett. 2017, 24, 1208–1212. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LSP.2017.2713830

	Introduction
	Related Works
	Classic Machine Learning
	Deep Learning

	Materials and Methods
	Acoustic Feature Extraction
	Neural Network Backbone
	Framework of Locally Activated Gated Network

	Experiment Setup
	Dataset
	Baseline Methods
	Parameters Setup

	Results and Discussion
	Main Results
	Selection of Activation Function
	Number of MLP Layers

	Conclusions
	References

