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Abstract: The upper extremity behavior in smoothness and efficiency metrics should be different
between paraplegic and tetraplegic patients. The aim of this article was to analyze the behavior of
these metrics after receiving upper extremity training with the humanoid robot Robic as a treatment.
Ten pediatric patients participated in the study and completed ten experimental sessions with Robic.
Patients were assessed at baseline and at ending the training using the Box and Block test and a
non-immersive virtual application based on the Leap Motion Controller available in the RehabHand
software. From this application, the smoothness metric was calculated as the number of peaks or units
of movement detected in the velocity profile of the hand during the execution of the task, and the
efficiency metric was assessed by calculating the length of the hand trajectory. Patients with tetraplegia
had a significantly longer trajectory (286.01 ± 59.87 mm) than paraplegics (123.61 ± 17.14 mm) in the
baseline situation. However, at the end of the training, there were no differences between them. In
the Box and Block test, the paraplegic group passed more cubes than tetraplegics. In conclusion, the
first experience with a Robic robot in SCI was very positive, with observed improvements in upper
extremity dexterity in trained patients.

Keywords: pediatric spinal cord injury; robotic-based rehabilitation therapies; upper extremity
training; biomechanics; smooth movement; efficiency metric

1. Introduction

The incidence rate of pediatric-onset spinal cord injury (SCI) was estimated to be 3.3
and 6.2 cases per million per year for traumatic and non-traumatic SCI, respectively, in
Europe [1]. Among other sequelae, SCI impairs the function of the upper extremity (UE),
affecting the patient’s level of independence and influencing the performance of activities
of daily living and social participation.

After an injury, rehabilitation treatment is approached from different areas and per-
spectives. Moreover, in the case of the pediatric population, aspects such as adherence
and attention during therapeutic sessions are fundamental when analyzing the results
of treatment. To increase engagement and quality of life in this population, therapeutic
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interventions need to address all factors, including the underlying psychosocial aspects,
instead of task and environment modification alone [2].

Advances in Rehabilitation Robotics have introduced new and reliable technologies
into the therapeutic process [3]. Clinical experimentation demonstrates that a patient’s
motivation is a key aspect of the successful implementation of neural rehabilitation thera-
pies with robotic devices [4] and directly correlates to how fully a patient is engaged in the
treatment. Another line of research attempts to integrate the motivation factor, including
the “social” aspect, into robotic-based rehabilitation therapies [5]. An example would be the
Inrobics Rehab Clinic solution, in which Robic (NAO robot, Aldebaran Robotics) provides
guided training and social interaction with the patient. NAO robot has been successfully
applied in cardiac rehabilitation in a pilot study [6], and the Inrobics Rehab Clinic platform
has been previously applied to children with infantile cerebral palsy (CP) and obstetric
brachial plexus palsy [7].

However, although all these experiences have been positive, there is no evidence to
date of studies that have attempted to quantify the possible improvements in the movement
patterns of the UE due to robotic treatment. Movement patterns can be analyzed according
to different biomechanical aspects and characteristics of motor control, with the smoothness
of movement being one of the most interesting since this is a quality that is highly altered
in the presence of neurological pathology [8,9]. Smooth movement is defined as movement
towards a target without deviations from its ideal trajectory [8]. Also, the analysis of
the efficiency metric is of special interest from the pattern of the executed UE movement
based on the evaluation of the trajectory length [10]. Both metrics of UE movement quality,
smoothness and efficiency are computed from kinematic data from the hand and are known
to be affected in the adult SCI population [9,10] but have not been addressed in children.

The present study is proposed in a pediatric population with SCI and is based on
the initial hypothesis that the behavior in these metrics should be different depending on
whether the patient suffers from paraplegia or tetraplegia. Therefore, the aim is to analyze
the behavior of the smoothness and efficiency metrics after a treatment received with the
Robic humanoid robot that proposes the UE training specifically designed in this research
for the pediatric population.

The rest of the paper is organized as follows:

• Section 2 describes the methodology in relation to the design and implementation of
the UE training by means of the Inrobics Rehab Clinic platform; the characteristics
of the participants; the experimental protocol and the content of each experimental
session; and the variables analyzed;

• Section 3 presents the results in relation to the variables described at baseline and at
ending the UE training;

• Sections 4 and 5 included the discussion and conclusions of the study, respectively.

2. Materials and Methods
2.1. Study Design and Participants

The present study was approved by the Local Ethics Committee (Comité Ético de
Investigación Clínica con Medicamentos, Complejo Hospitalario de Toledo; Approval
number: 760 (29 September 2021)).

A prospective observational study was carried out. The participants were enrolled
and assigned to the UE training for clinical staff. The recruitment was made on a sam-
ple of 10 children with chronic SCI from the population treated at Hospital Nacional de
Parapléjicos (Toledo, Spain). The inclusion criteria were: (1) to have an SCI of at least
C6 metameric level in the case of complete motor injuries, classified according to the
International Standards for the Neurological Classification of Spinal Cord Injury (ASIA
Impairment Scale (AIS)) [11] as A or B AIS grades, or any level of incomplete AIS C or D
SCI that allows us to perform UE reaching movements; (2) age between 7 and 14 years old;
(3) to have reached the seated posture and to sign the corresponding written informed
consent. The exclusion criteria were: to have an unstable orthopedic injury such as un-
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consolidated fractures or with unstable osteosynthesis systems in UE; skin lesions and/or
pressure ulcers in the exoskeleton placement area; joint stiffness and/or severe spasticity;
bronchopneumopathy and/or severe heart disease that will require monitoring during the
exercise; visual problems and cognitive impairment. The dominant hand of the patients
was taken into account and assessed by means of the Edinburg Handedness Inventory [12].
The Upper Extremity Motor Score (UEMS) was obtained, with the clinical staff assess-
ment of the strength of 5 muscle groups of the UE. Each muscle group can be evaluated
between 0 (no function) and 5 (normal function), with a total of 25 points for each UE. All
patients/parents signed an informed consent form before the study.

The guidelines of the Declaration of Helsinki were followed in every case. Subject
demographics are provided in Table 1. No patients who did not meet the inclusion criteria
were selected, and, therefore, none were excluded either.

Table 1. Demographics and functional characteristics of the sample were analyzed.

Variables
Sample Analyzed

Tetraplegic Patients (n = 5) Paraplegic Patients (n = 5)

Sex (Male) * 1.00 ± 20.00 3.00 ± 60.00

Age (Years) + 9.67 ± 4.04 10.67 ± 2.08

Weight (kg) 39.66 ± 7.50 36.03 ± 12.22

Height (cm) 138.66 ± 11.06 140.33 ± 16.92

Etiology Injury (Traumatic) 1.00 ± 20.00 1.00 ± 20.00

Time since injury (months) 3.66 ± 2.51 10.00 ± 3.00

Injury Level C1: 1.00 ± 20.00 T3: 1.00 ± 20.00
C2: 1.00 ± 20.00 T12: 1.00 ± 20.00
C5: 1.00 ± 20.00 L1: 1.00 ± 20.00
C6: 1.00 ± 20.00 L2: 1.00 ± 20.00
C7: 1.00 ± 20.00 L3: 1.00 ± 20.00

AIS Classification
A - -
B 3.00 ± 60.00 -
C 1.00 ± 20.00 3.00 ± 60.00
D 1.00 ± 20.00 2.00 ± 40.00

Upper Extremity Motor Score 31.33 ± 15.27 a 50.00 ± 0.00 a

Significant statistically differences are expressed in bold font. a (p < 0.01); * categorical variables are expressed as
frequency and percentage; + continuous variables are expressed as mean and standard deviation.

2.2. Upper Extremity Training

The UE training was scheduled for 30 min UE experimental sessions, between 2
to 3 sessions per week (maximum 5 weeks for completing the training scheduled in
10 sessions) by means of the Inrobics platform (Figure 1). The sessions’ number performed
was registered as a feasibility outcome and compliance.

At the start of the session, the humanoid robot Robic was in a resting position, sitting
on the floor. The clinician initialized the tool from the APP and simultaneously configured
the relevant rehabilitation parameters (Figure 1). In this way, the robot was started, greeted
and stood up. This was followed by the experimental session, which initially consisted of
3 exergames separated by 2 periods of resting.

Patients performed the experimental sessions in their own wheelchairs (Figure 2).
The sessions were carried out by the same researcher with the collaboration of Inrobics
experts. The course of the sessions consisted of initial contact between the patient and the
professional with the platform, the development of the session and the closing.
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The muscle training protocol was developed at the National Paraplegic Hospital in
Toledo. The protocol consists of 4 different exercise programs: 2 standing programs and
2 sitting programs. Two were for children (standing and sitting), and the other 2 were
for adolescents (standing and sitting). The use of a program for children or a program
for adolescents is based on the Tanner scale, considering that the programs for children
should be used in stages 1–2 and from stages 3–4 for adolescents. The exercises for each
training program are based on the use of the International Classification of Functioning,
Disability and Health [13] (ICF) framework. In this framework, a person’s disability can
be considered in terms of impairments, activity limitations and participation restrictions.
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Therefore, the exercises were designed taking into account the limitations and difficulties
in order to create exercises and movements suitable for all the proposed tasks and thus to
fulfill all the objectives of strength training. For this study, the seated training program
for children was chosen, as they all corresponded to level 1. So, each experimental session
consisted of performing different exercises from the UE muscle training protocol, with the
patient always in a seated position. In Figure 3, the complete content for 1 experimental
session is shown in a graphical way.
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The program consisted of 10 training sessions carried out twice a week, each session
lasting approximately 30 min [14–16]. The training session consisted of 3 parts: warm-up,
main part and cool-down [17]. The warm-up and cool-down periods lasted approximately
10 min [17], with the warm-up period not differing from the main period in any of the
sessions, and only the cool-down period differing. The objectives of the main part of all
sessions were based on low-resistance aerobic endurance work. The aim was to perform
between 8 and 15 repetitions of the selected muscle groups (deltoids, shoulder rotators,
elbow flexors and extensors and wrist flexors and extensors) in a way that was sufficient to
meet the strength endurance requirements in preparation for repetitive movements, such
as those used in neurorehabilitation to acquire movement patterns for activities of daily
living. These patterns involve several muscles in the same movement with the common
goal of reducing the energy cost of movement and improving the quality of life of children
with disabilities [18]. Depending on the patient’s performance, the robot provided real-time
feedback. The therapist could visualize the sensor monitoring the patient’s movements at
any time and intervene during the session if necessary. At the end of the session, the robot
provided the patient with feedback on their performance.

2.3. Outcome Variables

The outcomes variables were collected at baseline and at ending the UE training using
a non-immersive virtual application based on the Leap Motion Controller (LMC) [19] avail-
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able in the RehabHand software developed at our center [20], specifically the application
Explorer performed with the dominant hand. This application proposed the execution
of a functional task based on the tracking and tracing of a previously defined trajectory
with an envelope shape, passing only once through each node. In this case, with the aim of
comparing the trajectories in different situations or between subjects, the order to reach each
node is always the same (Figure 4). The kinematic variables of the hand were recorded by
means of LMC and saved in a text file that was subsequently analyzed in Matlab. Thus, the
smoothness metric was calculated as the number of peaks or units of movement detected
in the velocity profile of the hand during the execution of the task, and the efficiency metric
was assessed by calculating the length of the hand trajectory performed. Moreover, patients
were evaluated by means of the Box and Block test [21].
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2.4. Data Analysis

All the statistical analysis was made by the software SPSS 17.0 for Windows (SPSS Inc.,
Chicago, IL, USA). The clinical and demographic characteristics of the participants were
analyzed by descriptive statistics, showing the results as the mean and standard deviation.

The non-parametric Mann–Whitney U-test was applied to analyze the possible differ-
ences between both groups analyzed (paraplegic and tetraplegic patients). The variables
analyzed with this method were the peak number or movement units, the trajectory length
measured in mm and the performance in the Box and Block test measured by the block
number. Moreover, these variables were compared at baseline and at ending the complete
UE training program for each group of patients by using the Wilcoxon statistical method.

3. Results

As a measure of usability and compliance, the number of sessions was recorded for
each participant. All completed the UE training with all experimental sessions.

At baseline, no statistically significant differences were found between the two groups
of patients analyzed, tetraplegic and paraplegic children, in the demographic and functional
variables, with the exception of the UEMS, the result of which differentiated the two experi-
mental groups, obtaining a significantly lower score in the tetraplegic group (31.33 ± 15.27)
than in the paraplegic group, which obtained the maximum score (50.00 ± 0.00; Table 1).
None of the patients, neither paraplegic nor tetraplegic, showed changes in the assessment
of the strength of the main muscles of the upper limb at the end of the exercise, or in other
words, there was no change in the UEMS in any of the patients that could be attributed to
the robotic training.

The results in terms of path length, number of peaks and Box and Block test for both
experimental groups are shown in Table 2.
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Table 2. Performance in relation to the trajectory, peaks number and the Box and Block test at baseline
and at ending the upper extremity training for tetraplegic and paraplegic patients.

Variables Tetraplegic Patients (n = 5) Paraplegic Patients (n = 5) p2 p3

At Baseline At Ending p1 At Baseline At Ending p1

Trajectory length
(mm) 286.01 ± 59.87 a 128.73 ± 30.07 0.109 123.61 ± 17.14 a 114.13 ± 34.59 0.285 0.004 0.700

Peaks number
(units) 81.67 ± 48.21 62.67 ± 6.65 0.285 79.00 ± 31.34 44.25 ± 18.57 0.285 0.700 0.700

Box and Block Test
(blocks) 17.83 ± 5.72 a 19.40 ± 5.41 b 0.066 39.40 ± 9.02 a 38.75 ± 8.38 b 0.496 0.008 0.009

Significant statistically differences are expressed in bold font. a,b (p < 0.01); The results are expressed as mean and
standard deviation. p1, p-value from the Wilcoxon method between the baseline and end conditions; p2 and p3,
p-value from the Mann–Whitney U method between tetraplegic and paraplegic patients at the baseline and end
conditions, respectively.

Comparison between Groups and between Baseline and Ending Conditions

The three variables obtained for the two groups were compared at baseline and at
ending the UE training.

In the analysis of the baseline condition, statistically significant differences were
observed in the measured length of the trajectory between the two selected groups, with
the tetraplegic children having a longer trajectory (286.01 ± 59.87) than the paraplegic
children (123.61 ± 17.14), p2 = 0.004 (Table 2, Figure 5a). Therefore, in terms of efficiency
metric, the performance of the paraplegic group was significantly better.
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Regarding the number of peaks, no statistically significant differences were found
between the two groups analyzed. The result was slightly higher in the tetraplegic group
(81.67 ± 48.21) than in the paraplegic group (79.00 ± 31.34; Table 2, Figure 5b), resulting in
a less smooth UE movement.

Regarding the Box and Block test, statistically significant differences were observed
between the two groups both at baseline and at the end, with a lower performance in the
number of blocks passed in the tetraplegic group (baseline 17.83 ± 5.72; ending 19.40 ± 5.41)
than in the paraplegic group (baseline 39.40 ± 9.02; ending 38.75 ± 8.38), p < 0.01 (Table 2,
Figure 6). Interestingly, no significant differences were found in this test performance in
relation to the robotic training program, but all tetraplegic children tended to perform
better once they had completed the training program that they had before starting it.

For the other two variables, trajectory length and the number of peaks, no significant
differences were found between the two experimental groups and between the baseline
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and ending conditions (Table 2). This finding can be seen in Figure 6, which shows the
overlapping of the results obtained in both tetraplegic and paraplegic patients. However,
the improvement experienced by both groups between the two assessments can be seen
graphically (Figures 5 and 6).
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in green.

It is worth showing the results obtained in a specific case of a patient with a spinal
cord injury at the metameric level T2 (green color in Figures 5 and 6). This patient belongs
to the paraplegic group. However, in terms of dexterity, his behavior was more similar
to that of the tetraplegic group at baseline, whereas, at the end of the UE training, it was
more similar to that of the paraplegic group. Figure 7 shows the trajectory followed by
this participant in both assessments, at baseline and at the end, graphically reflecting the
improvement experienced.
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4. Discussion

The aim of the present work is to analyze, in a group of chronically spinal cord injured
children, the smoothness and efficiency metrics after receiving UE training using the Robic
humanoid robot as support. All our participants completed all the training sessions and
maintained a sufficient level of attention during each of them to properly follow the robot’s
instructions under the supervision of the therapist.

We designed the training program based on some facts: (a) the hand is the main tool
for manipulating the human environment, and to perform this function, it requires an
efficient system of direction and transport provided by the shoulder, elbow and wrist [22];
(b) the central nervous system acts in a predictive fashion because it has “internal models”,
neural processes that can predict the effect of the interaction between different parts of
the body and between the body and the environment [23]; (c) the central nervous system
control muscles not one by one but in groups, in a task-specific way known as muscle
synergy [24]. So, although our proposed robotic training program did not include specific
exercises for the hands, nor did it include tasks aimed at improving their motor precision,
we nevertheless expected, on the basis of the above concepts, to find some effect on hand
movements related more to precision than to strength. And indeed, we found a tendency
to shorten the hand trajectory with a reduction in the number of pikes, our most interesting
findings, both related to the quality of upper limb motor control.

We did not expect to find changes in arm muscle strength (UEMS), but we also
found no variations in Box and Block test performance attributable to the robotic platform
intervention. The most plausible explanation could be that the intervention was of short
duration (10 sessions) and of too low an intensity to produce noticeable changes in the
selected muscle groups during the training period. Previous studies with children and
adolescents with disabilities show increased strength, improved mental well-being and
better overall function following the timing of strength training programs, which were
carried out in the participants’ homes three times a week for 6 weeks (a total of 18 prescribed
sessions) [25]. Therefore, the significant differences found in muscle strength and trajectory
between the tetraplegic and paraplegic groups are directly attributable to the spinal cord
injury itself, all the more so when the selected participants had chronic lesions of several
years’ evolution and established sensorimotor impairments.

There is considerable evidence that voluntary exercise training improves the fitness
of people with acute and chronic SCI, although the magnitude of the effect depends on
the level and severity of SCI and the characteristics of the exercise program itself [26–29].
However, the level of endurance and work capacity in tetraplegics does not approach
that of their paraplegic counterparts, with the level of SCI being the key determinant of
the magnitude of improvement. In our case, it was the children with cervical spinal cord
injuries who had the clearest benefits, most likely because the training protocol was not
intense enough for those with paraplegia, as the program does not reach the minimum
recommended level of activity—at least 30 min of moderate-intensity activity on 5 or more
days per week, or at least 20 min of vigorous-intensity activity on 3 or more days per
week [30].

Our data also show that even “suboptimal” activity patterns have beneficial effects on
more precision-related motor tasks, such as those of the hands. In this sense, the findings in
the length of the movement trajectory are particularly interesting. The movement execution
using longer and more curved trajectories have been described in patients who suffer
from sensory deafferentation in addition to motor loss, as is the case of spinal cord-injured
patients [23]. As mentioned above, all participants in our study had chronic but incomplete
injuries, with both sensory and motor remnants potentially trainable and varying degrees
of disruption of upper limb motor synergies derived from their level of injury. The fact
that the shortening of the hand movement trajectory occurs mainly, almost exclusively,
in quadriplegic children is explained by the fact that it is these children who have upper
limb functional deficits directly caused by SCI. With the exception of the T2 level SCI
patient presented individually, all the paraplegic children in our sample had preserved
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and functional all the circuits involved in the sensorimotor function of the arms so that
when they followed the trajectories in the non-immersive virtual application based on the
Leap Motion Controller (LMC), they had all the sensory resources to make the necessary
feedforward corrections so that the hand movements were smooth and efficient. These
kinds of improvements in quadriplegic patients would potentially enhance performance
in other manipulative tasks of cognitive content, such as writing, so important in the
age range of our selected patients. Probably the most promising aspect of our results is
precisely that our data shows that these aspects can be trained so that the reorganization
and optimization of motor synergies described in the motor learning processes of a given
task can also be achieved by training the muscle groups involved in the synergies, in our
case the arms [23,31,32].

With rehabilitation robotics, technologies have been introduced into the clinical envi-
ronment to be integrated into the therapeutic process of patients. Specifically, assistive social
robotics through the Robic robot provides guided therapy through a noncontact motor
rehabilitation system that has been extensively evaluated and progressively enhanced [7].
The main limitation of the study is the size of the sample analyzed, this being the first
experience of a Robic robot in a sample of pediatric patients with SCI. The improvements
observed in patients related to the UE dexterity throughout the smoothness and efficiency
metrics were measured by means of RehabHand software [20], which allows us to register
kinematic data from the hand during the execution of the functional tasks.

For this reason, future works should address three different aspects: the optimization
of the robotic platform so that it can provide real-time data on the subject’s movement
execution; the training protocols themselves, evaluating whether the effects that we have
found in the present work are maintained or even improved by applying more demanding
exercise protocols, in addition to analyzing how the reorganization of motor synergies
occurs depending on the level and severity of the spinal cord injury and introducing a
control group of SCI patients; and continue the research in the proposal of new metrics from
kinematic hand data measured by means of the technologies applied in neurorehabilitation.

5. Conclusions

The significance of the results obtained is that patients with tetraplegia need to improve
hand motor accuracy and dexterity prior to intervention, and with intervention, they train
and improve. However, patients with paraplegia do not have, due to their injury, impaired
manipulative dexterity of the UE. And with this intensive, short-term training, patients
with paraplegia do not improve. With a longer workload, it is possible that this could also
improve in this population. Thus, the findings of this research suggest further research
along these lines, especially when most UE research in paraplegia tends to focus on the
analysis of UE support strength for crutch use and wheelchair propulsion.
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