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Abstract: Deep learning (DL) has been introduced in automatic heart-abnormality classification using
ECG signals, while its application in practical medical procedures is limited. A systematic review
is performed from perspectives of the ECG database, preprocessing, DL methodology, evaluation
paradigm, performance metric, and code availability to identify research trends, challenges, and
opportunities for DL-based ECG arrhythmia classification. Specifically, 368 studies meeting the
eligibility criteria are included. A total of 223 (61%) studies use MIT-BIH Arrhythmia Database
to design DL models. A total of 138 (38%) studies considered removing noise or artifacts in ECG
signals, and 102 (28%) studies performed data augmentation to extend the minority arrhythmia
categories. Convolutional neural networks are the dominant models (58.7%, 216) used in the reviewed
studies while growing studies have integrated multiple DL structures in recent years. A total of
319 (86.7%) and 38 (10.3%) studies explicitly mention their evaluation paradigms, i.e., intra- and
inter-patient paradigms, respectively, where notable performance degradation is observed in the inter-
patient paradigm. Compared to the overall accuracy, the average F1 score, sensitivity, and precision
are significantly lower in the selected studies. To implement the DL-based ECG classification in
real clinical scenarios, leveraging diverse ECG databases, designing advanced denoising and data
augmentation techniques, integrating novel DL models, and deeper investigation in the inter-patient
paradigm could be future research opportunities.

Keywords: electrocardiogram (ECG); arrhythmia; deep learning; convolutional neural network
(CNN); inter-patient paradigm; systematic review

1. Introduction

Cardiovascular diseases (CVDs) are common chronic diseases that pose major threats
to human health [1]. Electrocardiogram (ECG) is a kind of noninvasive technique that
records the fluctuation of the heart’s bio-electric activities. The phenomena of cyclical
contractions and relaxations of the heart could be tracked by an ECG machine through
electrodes placed on the patient’s skin surface. Normal ECG signals consist of different
types of waves, including T wave, P wave, and QRS complex. The statistical and morpho-
logical characteristics of those ECG waves are important health indicators that could reveal
symptoms of heart-related health issues [2]. For example, the absence of P-waves and an
irregular ventricular rate in ECG signals could relate to atrial fibrillation (AF) [3]. In daily
medical routine, to identify heart abnormalities and provide effective treatment for those
issues, cardiologists usually perform ECG screening for patients, which requires significant
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human efforts and expensive medical procedures. Due to the population aging, the number
of patients having cardiovascular diseases is expected to increase explosively, which calls
for efficient, accurate, and low-cost automatic ECG diagnosis [4]. In this review, we focus
on the classification of heart arrhythmias, i.e., irregular heartbeats, which is a common
medical procedure to identify CVDs.

Deep learning (DL) has shown remarkable success in medical diagnosis and has been
exploited for automatic heart abnormality classification with ECG signals in recent years.
The mapping from ECG features to their corresponding medical categories is learned,
which can be characterized by DL models consisting of multiple perception neural layers.
The inference capability of the DL model is optimized by a training process with training
datasets [5], where the neuron weights are optimized to minimize the mismatch between
the inferred and the ground-truth categories of the training data. Compared to traditional
machine learning-based classification methods such as clustering and support vector
machine (SVM), the DL-based ECG classification could better map the characteristics of
ECG signals to their corresponding categories thanks to its powerful multi-level abstraction
capability of feature extraction [6]. In this work, the studies which consider DL-based
arrhythmia classification with ECG signals are reviewed. The diagnosis for different
arrhythmia types is a different clinical problem for cardiologists in practice. However, from
the perspective of the classification task with DL, the classification methods for arrhythmia
categories share an identical context and goal, i.e., establishing the accurate mapping from
ECG characteristics to corresponding categories. Hence, this survey focuses on the current
research status, challenges, and research opportunities for deep learning-based arrhythmia
classification overall.

According to [7], clinical trials of artificial intelligence-enhanced ECG (AI-ECG) diag-
nosis have been conducted at the Mayo Clinic for the detection of various cardiovascular
diseases, which has demonstrated the potential benefit of AI-ECG. However, they conclude
that the implementation of the AI-ECG diagnosis is still in its infancy. Hence, although DL
techniques have proven their effectiveness for ECG classification in the research community,
their applications in the practical clinical process have been limited due to challenges both
from the perspectives of DL techniques and ECG data. For example, in the inter-patient
paradigm, DL models need to infer arrhythmia types based on ECG signals from patients
who are not included in the training process, which is more challenging than the intra-
patient paradigm where the models could experience the same patients during both of
the training and inference stages. Hence, as the DL techniques significantly rely on the
distribution of data in the feature space while ECG signals vary considerably from person
to person, the models trained based on particular ECG datasets may not be applied reliably
in practice. As many existing reviews [5,6,8] concentrate mainly on DL algorithms, we con-
sider various factors across the whole DL workflow for the ECG arrhythmia classification.
Specifically, our major contributions are as follows.

• We perform a systematic review for DL-based arrhythmia classification with ECG sig-
nals from perspectives of ECG database, preprocessing, DL methodology, evaluation
paradigm, and performance metrics in the complete DL workflow as well as the code
availability of the reviewed studies;

• The trend of techniques in each perspective in recent years is analyzed to summarize
the historical road map and illustrate possible future research directions;

• We present the detailed performance gap between the ECG arrhythmia classification
under intra- and inter-patient paradigms.

To the best of our knowledge, there is no systematic review on the comparison of
DL-based ECG arrhythmia classification under different evaluation paradigms, i.e., intra-
patient paradigm vs. inter-patient paradigm. Most existing works consider the intra-
patient paradigm; while the investigation in the inter-patient paradigm is limited but more
desirable in clinical applications, a thorough comparison between the two paradigms could
shed light on future research opportunities.
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2. Materials and Methods
2.1. Search Strategy

This systematic review for DL-based ECG arrhythmia diagnosis is performed based
on the literature search with four major scholar databases, i.e., Google Scholar, PubMed,
Scopus, and the Digital Bibliography and Library Project, focusing on studies published
until December 2022. As many studies do not explicitly mention their classification tasks,
we first implement a coarse search to include more candidate studies and avoid overlooking
studies for arrhythmia classification. Hence, the searching keywords for the literature search
are set as (Deep learning OR deep neural network OR convolutional neural network OR
CNN OR recurrent neural network OR RNN OR LSTM) AND (ECG OR electrocardiogram).

The detailed paper search and refinement process is shown in Figure 1. A total of
3910 studies are obtained in the initial identification step. After removing the duplicates,
2265 unique studies remain. We then perform the refining process to extract studies that are
more relevant to arrhythmia classification with DL. After the initial identification step, the
obtained studies go through further screening and eligibility evaluation according to the
inclusion and exclusion criteria. Specifically, 1694 studies are excluded by screening their
titles and abstracts, and 203 papers are also removed based on the full-text assessment. The
inclusion criterion enforces that the studies should be published in English and leverage
DL to classify arrhythmia with ECG signals. The studies dealing with other tasks, such as
emotion detection and drug and alcohol assessment, should be removed. Those studies
which do not have full-text available are also excluded. Hence, a total of 368 studies were
selected to be included in this review. The whole process is completed by two independent
reviewers (QX and QXZ) in order and rechecked by PYL to ensure fair results of paper
search and refinement.
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2.2. Data Extraction

Table 1 summarizes the data items that are further extracted from the 368 selected
studies. This review focuses on diverse aspects, including the general information, ECG
database, preprocessing, DL methodology, evaluation paradigm, performance metric, and
code availability. A detailed description of the extracted information from those aspects is
as follows:

A. General Information: An overview of the origin of the selected studies, i.e., the
conference proceedings or journals in which they are published and their publication
years, is provided;
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B. ECG Database: The publication information, ECG signal information, and demo-
graphic information are analyzed for popular ECG databases employed for arrhyth-
mia classification;

C. Preprocessing: Two types of commonly used preprocessing techniques, i.e., denois-
ing to remove artifacts and data augmentation to deal with imbalanced datasets,
are summarized;

D. DL Methodology: The DL algorithms from all the selected studies are investigated
and summarized. The information about the types of DL models, optimization
techniques, and classification categories for arrhythmia is presented;

E. Evaluation Paradigm: The data-driven ECG diagnosis can be categorized into intra-
and inter-patient paradigms depending on how the training and testing ECG data
from patients are organized;

F. Performance Metric: In addition to the widely used performance metrics such as
overall accuracy, other metrics such as sensitivity (Sen), positive predictivity (Ppv),
false positive rate (FPR) and F1 score of the selected studies is discussed;

G. Code Availability: Detailed information about studies that publish their code and
the source of the code is listed.

Table 1. Extracted information from papers.

Extracted Items Definition

A General Information

Origin Journal/conference where the articles were published.
Publication year Years of selected studies were published in.

B Database

Publication information Source, release year, and whether the database is public
available or not.

Signal information Number of channels, sampling rate, signal duration, subject,
and records.

Demographic information Information about the characteristics of subjects,
e.g., gender, age.

C Preprocessing

Denoising Denoising techniques.
Data Augmentation Methods to balance data categories.

D DL Methodology

Model Deep learning architecture or framework.
Optimization Techniques to optimize the model learnable weights.

Category Number of categories of the DL models.

E Evaluation Paradigm Whether training and testing datasets contain ECG data from
the same patients or not.

F Performance Metrics Metrics to evaluate the classification performance, e.g., F1, Sp.

G Code Availability Whether the code is shared online or not.

3. Results

The selected 368 studies consist of 290 journal papers and 78 conference papers
focusing on DL-based arrhythmia classification, where 347 (94%) studies were published
after the year 2017. Specifically, the number of published works in 2022 is almost four
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times more than that in 2017 (increasing from 21 works in 2017 to 99 works in 2022), which
indicates that the research interest in DL-based ECG arrhythmia classification has been
growing significantly in recent years. The top three journals where the selected studies are
published are Computers in Biology and Medicine (22 studies), Biomedical Signal Processing and
Control (18 studies), and IEEE Access (18 studies). We provide the detailed information of
selected papers at Supplementary Table S1.

3.1. Database

DL models require a large amount of ECG signals as the training data to learn the
relation between ECG characteristics and the corresponding types of arrhythmias. However,
ECG data are considered highly private and sensitive health information, which in general,
is difficult to collect from a large group of patients and form a comprehensive database. For
the ease of access and the sake of fairly comparing developed DL methods in existing works,
the majority of selected studies (89%, 326 out of 368) have established and evaluated their
DL models based on ECG datasets from open-source or publicly available databases such
as MIT-BIH Arrhythmia Database (MITDB) [9] and MIT-BIH Atrial Fibrillation Database
(AFDB) [10]. Table 2 presents the ECG datasets used in the selected works, including their
publication information, signal information, demographic information, and the number
of selected works that use them for arrhythmia classification. As can be seen in Table 2,
MITDB is the most popular, as about 61% (223 out of 368) of works use it for arrhythmia
classification. Other popular databases used by more than ten selected works are AFDB,
PTB [11], PTB-XL [12], NSRDB, and INCART databases.

Table 2. Popular ECG databases used by the selected studies.

Database Publicly
Available

Release
Year

No.
Channels

Sampling
Rate (Hz) Duration Subjects Collection

Place
No. of

Records
Demographic
Information Papers

MIT-BIH
Arrhythmia

Database
(MITDB)

Yes 2005 2 360 30 min 47 USA 48

Male: 25,
female: 22

(23–89 years
old)

223

MIT-BIH Atrial
Fibrillation
Database
(AFDB)

Yes 2000 2 250 10 h 25 USA 23

Subjects are
suffering from

atrial
fibrillation

26

PTB Diagnostic
ECG Database

(PTB)
Yes 2004 15 1000 2 min 290 Germany 549 Male: 377,

female: 139 24

PTB-XL ECG
dataset (PTBXL) Yes 2020 12 500 10 s 18,885 Germany 21,837 Male: 9820;

female: 9065 15

MIT-BIH
Normal Sinus

Rhythm
(NSRDB)

Yes 1999 2 / 24 h 18 USA 18

Male:5 (26–45
years old),
female:13

(20–50 years
old), both no

significant
arrhythmia;

15

St Petersburg
INCART
12-lead

Arrhythmia
(INCART)

Yes 2008 12 257 30 min 32 Russia 75

Male: 17,
female: 15

(18–80 years
old). None of

the patients had
pacemakers;

most had
ventricular

ectopic beats

11

BIDMC
Congestive

Heart Failure
(BIDMC)

Yes 2000 2 250 20 h 15 USA 15

Male:11
(22–710 years
old), female: 4
(54–63 years
old); subjects
with severe
congestive

heart failure.

10
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Table 2. Cont.

Database Publicly
Available

Release
Year

No.
Channels

Sampling
Rate (Hz) Duration Subjects Collection

Place
No. of

Records
Demographic
Information Papers

MIT-BIH
Malignant
Ventricular

Ectopy
Database
(VFDB)

Yes 1999 2 250 30 min 16 USA 22

Subjects with
episodes of
sustained

ventricular
tachycardia,
ventricular
flutter, and
ventricular
fibrillation.

9

Chapman
University and

Shaoxing
People’s
Hospital
Dataset

(Chapman)

Yes 2020 12 500 10 s 10,646 China 10,646

Male: 5956,
female 4690

(4–98 years old).
17% of subjects

had normal
sinus rhythm,

and 83% had at
least one

abnormality.

8

Fantasia Yes 2003 12 250 2 h 40 USA 40

20 young (21–34
years old) and

20 elderly
(68–86 years
old) subjects

7

UCI Machine
Learning

Repository
Arrhythmia

Dataset (UCI)

Yes 1998 12 / / 279 USA 452

203 instances
correspond to
male subjects;

249
are from female

subjects

4

MIT-BIH Noise
Stress Test
Database
(NSTDB)

Yes 1984 2 360 30 min 12 USA 15

Subjects are
physically

active
volunteers

4

Creighton
University
Ventricular

Tachyarrhyth-
mia Database

(CUDB)

Yes 2007 1 250 8 min / USA 35

Subjects who
experienced
episodes of
sustained

ventricular
tachycardia,
ventricular
flutter, and
ventricular
fibrillation

4

The American
Heart

Association
database

short/long
(AHA)

No (2
samples

available)
1982 2 250 30/150 min / USA 10/67 / 4

Chinese
Cardiovascular

Disease
Database
(CCDD)

Yes 2012 12 500 10 s / China 90 / 4

The QT Dataset
(QT) Yes 1999 2 250 15 min 15 USA and

Europe 105

Chosen
primarily from
among existing
ECG databases

3

European ST-T Yes 2009 2 250 2 h 79 Europe 90

Male: 70
(30–84 years

old), female: 8
(55–71 years

old);
Myocardial

ischemia was
diagnosed or
suspected for
each subject

3

In addition, most datasets contain 12-lead ECG signals where ten electrodes are placed
in different locations of the human body, such as V1 for the fourth intercostal space on
the right sternum and RA (right arm) for anywhere between the right shoulder and right
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elbow [13]. It results in 12-channel ECG signals where signals of aVR (augmented vector
right), aVL (augmented vector left), and aVF (augmented vector foot) channels are obtained
based on combinations of ECG signal measurements from other electrodes. The multi-
channel ECG signals could better capture additional heart status information based on a
greater number of simultaneous measurements. Furthermore, the sampling rates of ECG
signals range from 128 Hz to 1000 Hz, and about half of ECG databases (8/17) have a sample
rate of 250 Hz, as can be seen in Table 2. Based on the signal duration, the ECG signals can
be categorized into long- and short-term measurements, from 10 s to 2 h. Most databases
provide gender and age information, and the numbers of females and males tested are
generally balanced. Some datasets, such as MITDB, contain both normal and abnormal
ECG signals, while most ECG signals in datasets, such as the INCART database, are from
patients having ventricular ectopic beats. Compared to the widely-used MIT-BIH series of
databases collected in the USA, such as MITDB, NSRDB AFDB, recent ECG databases such
as PTB/PTB-XL and Chapman collected in Germany and China, respectively, emerged in
the research community, which is considered by increasing studies considered for DL-based
ECG arrhythmia classification.

Figure 2 shows the trend of major databases used by selected works each year from
2017 to 2022. One can observe that every year, MITDB is still the dominant database
in the research community. The proportion of studies that consider PTB/PTBXL has
been increasing in recent years. The diversity of databases is improved as the number of
databases used by more than ten studies increases from 6 in 2017 to 9 in 2022.
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Being the most popular ECG database, MITDB contains 2-lead ECG signals with a
sampling rate of 360 Hz and a duration of 30 min. The ECG signals are collected from
47 patients. Recordings 201 and 202 are collected from the same patient, resulting in
48 recordings in total. The age of patients ranges from 23 to 89 years. The duration of each
recording is about 30 min. However, the ECG dataset from MITDB is an imbalanced dataset
where most ECG recordings are normal while abnormal recordings are much less than the
normal ones. As the abnormal signals are more difficult to collect, most ECG databases
encounter the issue of data imbalance, which could potentially introduce learning bias in
the DL-based classification frameworks [14].

Besides ECG datasets obtained specifically for arrhythmia classification, to improve
the robustness of the DL models, noisy but normal ECG records can be added to the training
dataset. For example, the MIT-BIH Noise Stress Test Database, which is collected from
physically active volunteers to mimic ambulatory ECG, acts as a category of noisy ECG
signals [15–17]. In this way, the real situation in clinical practice can be emulated.
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Among the selected works, 165 (45%) of studies consider more than one ECG dataset
by combining multiple different ECG databases. For example, [18] exploits five public ECG
datasets, i.e., AFDB, MITDB, NSRDB, the 2017 PhysioNet/CinC Challenge Database, and
the first China Physiological Signal Challenge 2018 Database (CPSC2018), where AFDB is
used for training and evaluation while other four datasets are used to test the generalization
performance of the proposed DL model. This mechanism of training and testing DL models
with ECG signals from two non-overlapping groups of patients, respectively, is a typical
case of inter-patient diagnosis. However, as those datasets have different attributes such as
categories and numbers of channels, a smaller number of classification categories, such as
categories of Atrial fibrillation (AF)/non-AF and categories of AF, Normal, Premature Atrial
Contractions (PAC), Premature Ventricular Contractions (PVC), Ventricular fibrillation (VF),
and Noise are often considered [19,20]. In [21], ECG signals from MITDB, MIT-BIH AFDB,
CUDB, and MIT-BIH VFDB are fused to form one dataset where the training and testing
datasets are obtained by randomly selecting ECG data from the combined dataset. Hence,
the intra-patient diagnosis is performed where the DL model has the possibility to train and
test based on ECG information from the same patient. By mixing multiple ECG datasets,
the issue of imbalance in data categories can also be alleviated [22]. Regardless of inter- or
intra-patient diagnosis, it shows a clear trend over the last few years that increasing studies
exploit combined ECG datasets for DL-based ECG arrhythmia analysis [18,21,23–26].

3.2. Preprocessing

Before inputting ECG signals into DL models, a preprocessing step is often applied
to those signals, which could improve the learning efficiency and reduce the computa-
tional complexity of DL models [27]. In this review, the preprocessing step is reviewed
from two aspects, i.e., denoising [28] and data augmentation [29]. The two deal with
noisy ECG signals and imbalanced datasets, respectively, which are common cases in real
clinical scenarios.

3.2.1. Denosing

The ECG signals are prone to be contaminated by background noise and bioelectrical
inference, such as power-line noise and muscle movement. The denoising step could clean
the ECG signals to prevent overwhelming micro features in signals and help DL models
focus more on the ECG features [30]. Based on the selected studies, only about 38% of
selected works (138 out of 368) specifically mentioned their denoising methods, and those
methods can be mainly categorized into three types, i.e., traditional filter-based denoising
methods (45.9%, 62 out of 138), wavelet-based denoising methods (38.4%, 53 out of 138),
and hybrid denoising methods (16.7%, 23 out of 138). The traditional denoising filters,
such as lowpass, bandpass, and notch filters, assume that the noise and useful signals
lie in different frequency bands. Other denoising filters include smoothing filters such
as the median filter and the Savitzky–Golay (S-G) [23,31–33] and adaptive filters [34,35].
The discrete wavelet transform (DWT) could project ECG signals onto the time-frequency
domain based on wavelet basis functions [36]. To remove the noise, the wavelet coefficients
at high-frequency bands can be simply set to zero or apply a thresholding process to set
the modest wavelet coefficients to zero [19–22] based on the assumption that the useful
ECG signal is similar to the selected wavelet basis function. A combination of different
types of denoising methods can be applied for noise removal, e.g., [37,38] combines DWT,
median filters, or S-G filters for denoising. However, this type of method will induce higher
processing latency.

The frequency counts of the three types of methods in each year are presented in
Figure 3a. The number of works considering denoising has been increasing in recent
years. The traditional filter-based methods are more popular than the other two denoising
methods because of their effectiveness but easier implementation. In addition, there have
been increasing works that consider wavelet-based methods for ECG signal denoising in
recent years.
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3.2.2. Data Augmentation

ECG data often has biased distributions of abnormal categories much less than normal
categories, as the abnormal signals are more difficult to obtain. DL models trained with
the imbalanced ECG dataset will, in nature, put more attention to majority categories and
overlook the minority categories leading to biased learning. In this survey, we focus on the
data argumentation technologies [39], which take effect during the data preprocessing step
to gain more training samples. From the selected studies, 102 (28%) studies explicitly claim
the use of data augmentation techniques in their work. The augmentation techniques can
be categorized into two types, i.e., perturbation-based methods (64%, 65 out of 102) and
synthetic-based methods (36%). Specifically, for perturbation-based methods, extra data
samples can be added to ECG dataset by adjusting or perturbating the original samples
from the same dataset, such as scaling and shifting ECG waveforms [40] or adding artificial
noise to existing ECG signals [41]. The perturbation of data samples is essentially acquiring
new data samples from the neighborhood of corresponding original data samples in the
feature space. Hence, the new data samples could be highly correlated to the original
samples based on which the new data is perturbated. On the other hand, synthetic-based
methods generate synthetic ECG data either based on the linear combination of real data
samples or the construction of ECG signals by imitating real ECG features. The synthetic
minority oversampling technique (SMOTE) and its variants, such as SMOTENN [42],
Borderline SMOTE [43], and SVM-SMOTE [42–45], are often used to extend the minority
categories. Just recently, DL techniques have also been used for synthetic data generation,
e.g., the convolutional neural style transfer network [46], the generative adversarial network
(GAN) [47], and the ACGAN consists of variational auto-encoder model [14].

Figure 3b shows frequency counts of the two types of augmentation methods each
year. One can see that the synthetic-based strategies have drawn more attentions in recent
years as the number of works considering this type of data augmentation method increased
from 1 in 2017 to 17 in 2022.

3.3. DL Methodology
3.3.1. Model

The design of DL models is crucial to the pipeline of DL-based ECG arrhythmia
classification. The DL models have multi-level or multi-layer structures, and each level or
layer can be regarded as a feature extractor that can learn how to better summarize signal
characteristics [48]. Based on the intrinsic property of the major feature extractor within
the neural networks, the DL classification models considered in the selected studies can
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mainly be categorized into the following types: convolutional neural networks (CNNs),
recurrent neural networks (RNNs), including the long short-term memory (LSTM) and
bidirectional LSTM (BiLSTM), transformer, “hybrid” which refers to combinations of
different DL models, and “others” corresponding to less popular models such as restricted
Boltzmann machines and deep-belief networks. The detailed analysis of those DL models
for ECG arrhythmia classification is as follows.

• CNN

CNN is a DL model widely used in image classification, signal analysis, and natu-
ral language processing [48]. Each layer of CNN usually contains a convolutional filter
followed by pooling operations to extract both local and global features [49]. Depending
on the number of filtering directions of the convolutional filters in the spatial domain,
the CNN can be further categorized into 1D CNN and 2D CNN. Specifically, the filters
in 1D CNN and 2D CNN move along one and two filtering directions, i.e., feature di-
mensions, respectively. In general, 1D CNN is suitable for raw or denoised ECG signals,
which only have one single feature dimension. For instance, in [50], an adaptive 1D CNN
is proposed for ECG classification and anomaly detection at any sampling rate of ECG
signals to avoid hand-crafted feature extraction. In [51], a lightweight 1D CNN considering
channel shuffle over the group and depth-wise convolutions is designed, where 2-s ECG
signal segments are considered as model input [37]. In [38], the 1D CNN is leveraged to
classify 2, 5, and 20 types of heart diseases where few-shot learning is considered to deal
with the small-size of the dataset. On the other hand, 2DCNN mainly takes into account
the image-like input, such as the spectrogram and scalogram of ECG signals. In [52], the
2D scalogram is obtained by transforming the 1D ECG signals having 500 samples to the
wavelet domain using continuous wavelet transform. Then the 2D scalogram is regarded
as a 3-channel color image with a size of 227 × 227 in the spatial domain. A classic 2D CNN,
i.e., AlexNet [53], is used to classify ECG signals. In [54], the plot of 1D ECG recordings
is directly transformed to 2D gray-level images with a size of 15 × 15 which are then fed
as input for the 2D CNN. In [55], a multi-lead CNN takes multi-lead ECG as the matrix
input, where the sub-2D convolution and lead asymmetrical pooling are exploited to extract
multi-scale features. Due to simpler operation compared to 2D convolution, 1D CNN often
contains fewer learnable parameters and has higher computation speed, making it suitable
for real-time ECG classification and is often easier to be deployed in hardware.

• RNN/LSTM/BiLSTM

Taking into account the temporal correlation of feature sequences, RNN is a type of DL
structure that considers the input as a time series. As ECG signals are time series in nature,
their temporal correlation within the signals could potentially better reveal the sign of their
categories. For typical RNNs, the information in their hidden layer at the current moment
does not only depend on the current input but relies on the information at the previous
time instance [56]. In this way, the RNN is more sensitive to the temporal features of the
input sequence and is advantageous in capturing hidden temporal information in ECG
features [56]. Furthermore, the improved RNN, i.e., the long short-term memory (LSTM),
gains higher popularity than the conventional RNN because of its higher capability to
analyze time series. Specifically, the LSTM has three gate structures to control the output,
input, and forget information flow in stored memory cells [57]. Compared to the RNN, the
LSTM could deal with longer signal sequences as it selectively acquires useful information
from historical inputs. In [58], a 6-layer LSTM is developed to automatically identify PVC
beats based on ECG sequences. Furthermore, bidirectional LSTM (BiLSTM) is a special
type of LSTM consisting of two LSTMs that go through the input sequence along the
temporal direction forwardly and reversely, respectively [32]. Hence, it could capture both
the causal and noncausal time dependency information of signals to pursue potential better
classification performance. In [59], the BiLSTM model is used for ECG classification based
on the extracted ECG wave statistics along the temporal dimension, including RR interval,
QR interval, ST segment starting point, and amplitudes of Q- and R-waves. In [60], a 2D
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BiLSTM is used for AF detection based on the spectrogram of ECG signals, where the input
features are the frequency components at each time instance. In [61], the BiLSTM taking
the sequence of RR intervals as input, is proposed for AF detection. To summarize, the
input sequences for RNNs can be the raw ECG sequences, time-varying wave statistics,
and time-frequency representation of ECG.

• Transformer

The attention mechanism gained more popularity in recent DL research communities
as it is capable of learning how to assign higher learning weights to significant features [62].
The transformer is an encoder–decoder structure that consists of only attention mechanisms
and fully connected layers [63]. It was originally designed for natural language processing
(NLP) but has been extended to other applications since it could achieve better performance
than RNN/LSTM [64]. In [65], the encoder part of the transformer is used for heartbeat
classification with ECG signals where the heart beat sequences are considered as input. In
addition, RR intervals are concatenated with the features extracted by the attention module
for final classification. In [66], a random forest model is first used to select 22 important fea-
tures, such as RR interval median and P-wave correlation coefficients. Then the encoder of
the transformer is exploited to extract features directly from ECG signals. The combination
of the hand-crafted features and the features automatically extracted by the transformer
is used for ECG classification. A waveform transformer is proposed in [67] in which the
input ECG segments are first projected to a 1D vector through a multi-layer perceptron.
Then the embedded segments, together with positional embedding and learnable class
embedding, are taken as the input for the transformer encoder. The extracted features from
the transformer are combined with 22 static features together for the final ECG classification.
The transformer was developed in 2017, and its application to ECG signal is still in its early
stage; however, more results with the transformer are expected in the future.

• Hybrid DL model

Many selected studies consider integrating multiple DL models into one DL network
for ECG arrhythmia classification. For example, in [68], it combines the CNN and the RNN
to form an encoder–decoder structure for heartbeat classification. CNN is used for feature
extraction, and RNNs are used to translate the extracted features to their corresponding
categories. More examples of the combination of CNN with LSTM and BiLSTM can be
seen in [69–71], where CNNs are stacked in front of LSTM/BiLSTM modules for feature
extraction. In [63], 1D CNN is first used to extract the features from ECG sequences. Then
the CNN features are added with the positional encoding to further serve as the input for
a transformer to finally detect the ECG arrhythmia. In [72], a 1D CNN is exploited for
local attention embedding, and the encoder of the transformer is used for further feature
extraction. In [23], shallow-domain knowledge-injection attention is first to extract the ECG
signal feature. Then the attention outputs from the original and smoothed ECG data are
regarded as the multivariate input for the 2D classification CNN. More works considering
combining CNNs with transformers can refer to [35,73]. The CNNs are also combined
with attention mechanisms in [74–76]. In the selected studies, 82 studies take advantage of
hybrid models, which assemble different types of DL models to classify ECG arrhythmia.
The top 3 hybrid models include CNN+LSTM (24 studies), CNN+BiLSTM (15 studies), and
CNN+RNN (8 studies). In most hybrid models, the CNNs often serve as feature extractors,
followed by other models which perform further feature extraction.

As shown in Figure 4a, the proportions of different DL models used in the selected
studies are presented. Overall, the CNN (58.7%, 216 out of 368), RNN/LSTM/BiLSTM
(9%, 33 out of 368), and hybrid (22.3%, 82 out of 368) are the most popular DL models
for arrhythmia classification. Each year, there are more selected works considering CNN
models than those considering other models each year but the number of works considering
the hybrid model has been increasing in recent years.
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3.3.2. Optimizer

The way to optimize the DL models’ learnable weights through backpropagation is
another important control knob for classification performance. Figure 4b shows the trend
of optimization techniques mentioned in the selected studies within years. A total of 50%
(184 out of 368) studies did not explicitly report their optimization method. Three most
frequently used optimizes are adaptive moment estimation (Adam) (66.8%, 123 out of 184),
Stochastic gradient descent (SGD)/ SGD with momentum (SGDM) (12%, 22 out of 184),
and root mean square propagation (RMSProp) (3.8%, 7 out of 184).

3.3.3. Classification Categories

Out of 368 selected studies, 118 (32%) studies categorized ECG signals into five
classes. The large proportion stems from the fact that most studies utilize MITDB as
their ECG databases, where ECG signals have been categorized into five essential groups
(N: Normal beat; S: Supraventricular ectopic beat; V: Ventricular ectopic beat; F: Fusion
beat; Q: unknown beat) following the American Association of Medical Instrumentation
(AAMI) standards [77]. Some studies [68,78] follow the AAMI standards but calculate the
classification performance of categories of N, S, V, and F, which account for major categories
in the ECG dataset. Binary classification (19%, 73 out of 368) is mostly used to identify
one certain arrhythmia type, such as AF [79] and left ventricular dysfunction [80]. The
conclusions from many studies suggest that accurate multi-class arrhythmia classification
is more challenging [19,20].

3.4. Evaluation Paradigm

The model generalization performance of DL models is a crucial perspective to be
considered in the step of model evaluation. The generalization performance refers to
the capability of classification models to infer categories of previously unseen and new
data. For ECG classification, two evaluation paradigms have been investigated to evaluate
the classification capability of DL models, i.e., the intra- and inter-patient paradigms, as
depicted in Figure 5a. Specifically, in the inter-patient paradigm, the learning model trained
on ECG signals from one group of patients is evaluated with different groups of patients
which do not overlap with the training group. The intra-patient paradigm refers to the
case that the DL mode could be trained and evaluated based on ECG signals from the
same patients.
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Among all the selected studies, 27 studies focus on the inter-patient paradigm, while a
significant number of studies (319) consider the intra-patient diagnosis. In addition, a total
of 11 studies consider both paradigms, while few studies do not describe their paradigm
explicitly. As can be seen in Figure 5b, the proportion of the selected studies considering
the inter-patient paradigm has been increasing in recent years as it is more desirable for
clinical applications in practice.

Detailed information about the selected studies, which consider the inter-patient
paradigm, is presented in Table 3. It summarizes the specific ECG data used for train-
ing/validation and testing, deep learning algorithm, classification category, and classifica-
tion performance. The MITDS1/DS2 method (82%, 31 of 38) is the most popular evaluation
method for the inter-patient paradigm. Specifically, the ECG data in MITDB is divided into
two groups, i.e., DS1 and DS2, where 22 records are included. The details about how to
obtain the standard DS1 and DS2 are illustrated in [77]. Please note that the MITDS1/DS2
method is modified in some studies [63] for ECG analysis, where different recordings are
included in DS1 and DS2. Additionally, some works consider leveraging ECG data from
one database for training and testing the trained models with different ECG databases. For
example, the model in [81] trains based on AFDB and then tests the model with MITDB.
The number of classification categories in those selected works varies from 2 to 9 categories.

Table 3. The inter-patient paradigm studies in the selected articles.

Paper Train/Validate
Data

Test Data Algorithm Class
Performance

Acc (%) F1 (%) Sen (%) Ppv (%) Spe (%)

[82] MITDB DS1 MITDB DS2 DenseNet-
BiLSTM 5: N, S, V, F, Q 92.37 63.49 68.29 60.35 94.51

[83] MITDB DS1 MITDB DS2 CNN 5: N, S, V, F, Q 88.34 / 90.9 48.25 88.51

[84] Fantasia +
INCART

Fantasia +
INCART CNN-LSTM 2: N, CAD 95.76 95.57 95.7 / 95.76

[85] MITDB DS1 MITDB DS2 O-WCNN 5: N, S, V, F, Q 99.43 92.05 91.06 93.5 99.69
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Table 3. Cont.

Paper Train/Validate
Data

Test Data Algorithm Class
Performance

Acc (%) F1 (%) Sen (%) Ppv (%) Spe (%)

[81] AFDB MITDB
CNN+RNN 2:AF; NoAF 89.3 / 99.82 51.71 87.94

AFDB NSRDB / / / / 95.01

[86] MITDB DS1 MITDB DS2 CNN+BLSTM 5: N, S, V, F, Q 96.77 77.84 74.89 81.24 95.16

[28] PTB-XL (by
subject)

PTB-XL (by
subject) CNN-FWS 2: N; abnormal 90.05 90.2 88.9 91.5 /

[87] PTB PTB MLA-CNN-
BiGRU 6 62.94 / 63.97 63 /

[88] MITDB DS1 MITDB DS2 CNN 5: N, S, V, F, Q 96.36 / 70.6 48.1 96.16

[89]
Tongji

Hospital,
China

CPSC 2018 DCNN 6 / 84.2 80 / 98

[90] MITDB DS1 MITDB DS2 CNN 5: N, S, V, F, Q 90.22 / 35.64 27.71 87.87

[78]
MITDB DS1 MITDB DS2

DDCNN +
CLSM

5: N, S, V, F, Q
95.1 84 87.2 82.4 /

MITDB DS1 MIT-BIH-
SUP 88.2 / 77.7 64.7 /

MITDB DS1 INCART 91.6 / 88 65.3 /

[91] MITDB DS1 MITDB DS2 CNN-LSTM 5: N, S, V, F, Q 95.81 71.06 69.20 74.94 94.56

[92] MITDB DS1 MITDB DS2 DRCNN 5: N, S, V, F, Q 88.99 / 52.10 56.82 94.75

[93] MITDB DS1 MITDB DS2 OptRPC 5: N, S, V, F, Q 98.48 / 98.45 98.43 98.06

[94] UVA Holter
Recordings MITDB CNN+RNN 4: NSR; AF;

Other; noise / 75.5 / / /

[95] MITDB DS1 MITDB DS2 CNN 2: PVC; no
PVC / 98.90 99.20 98.60 /

[29] MITDB DS1 MITDB DS2 SE-ResNet 5: N, S, V, F, Q 99.61 / 93.78 / /

[96]
MITDB DS1 MITDB DS2

CNN 5: N, S, V, F, Q
84,62 / / / /

MITDB SVDB 84.17 / / / /
MITDB INCARTDB 95.36 / / / /

[97] MITDB DS1 MITDB DS2 RBM 5: N, S, V, F, Q 98.61 / 87.31 / 98.76

[98] MITDB DS1 MITDB DS2 Faster
R-CNN 5: N, S, V, F, Q 95.68 / 72.8 90 /

[99] MITDB DS1 MITDB DS2 CNN 5: N, S, V, F, Q 94.70 88.9 89 93.7 /

[100] MITDB DS1 MITDB DS2 FNN+CNN 5: N, S, V, F, Q 94.2 / 58.2 53.6 /

[101] MITDB DS1 MITDB DS2 CWT+CNN 5: N, S, V, F, Q 98.74 68.76 67.47 70.75 /

[102] MITDB DS1 MITDB DS2 WaveNet-
LSTM 5: N, S, V, F, Q 96.80 / / / /

[42] MITDB DS1 MITDB DS2 DHCAF 5: N, S, V, F, Q 93.0 / 75.1 70.4 /

[103] MITDB DS1 MITDB DS2 CraftNet 5: N, S, V, F, Q 89.24 / 89.25 61.84 95.79

[48] MITDB DS1 MITDB DS2 BiLSTM 5: N, S, V, F, Q 97.3 / 77.9 / /

[27] MITDB DS1 MITDB DS2 CNN 5: N, S, V, F, Q 92.3 / 73.50 68.33 /

[104] MITDB DS1 MITDB DS2 CNNs 5: N, S, V, F, Q 98.6 / 93 / /

[4] MITDB DS1 MITDB DS2 DNN 2: S, non-S / / 61.4 98.3
MITDB DS1 MITDB DS2 2: V, non-V / / 91.8 / 99.5

[105] MITDB DS1 MITDB DS2 FE-CNN 5: N, S, V, F, Q 98.6 88.0 84.2 92.3 99.45

[106] MITDB DS1 MITDB DS2 LSTM 5: N, S, V, F, Q / / 74.91 76.16 /

[107] MITDB DS1 MITDB DS2 RBM 5: N, S, V, F, Q 95.20 / 83.07 51.42 /

[31] MITDB DS1 MITDB DS2 DNN 5: N, S, V, F, Q 97.5 / 85.9 84.4 /

[68] MITDB DS1 MITDB DS2 BiLSTM 5: N, S, V, F, Q 99.53 / 96.19 97.21 98.58

[108] CPSC MITDB RBNN 3: L; R; O 78.58 / 78.57 / /

[109]
MITDB DS1 MITDB DS2 CRNN 5: N, S, V, F, Q 93.66 75.85 76.98 74.76 95.59

MITDB SVDB 5: N, S, V, F, Q 75.33 42.11 47.36 61.66 89.12
MITDB DS1;

SVDB MITDB DS2 5: N, S, V, F, Q 93.04 75.18 80.53 70.89 94.57

Acc: overall accuracy; F1: F1 score; Sen: Sensitivity; Ppv: Positive predictivity; Spe: Specifically.

As the motivations, tasks, datasets, and classification methods of all the reviewed
studies are different, it is unfair and not straightforward to compare the classification
performance across all the reviewed studies. However, we still intuitively compare the
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average performance metrics of all the selected studies in the inter-patient paradigm,
regardless of the number of categories to be classified. The averaged Acc, F1 score, Sen,
Ppv, and Spe are 92.62%, 79.48%, 79.25%, 71.74%, and 95.26%, respectively. Although
those statistics are biased due to the way they are calculated, it intuitively shows that the
classification performance can still be improved as some performance metrics, i.e., F1 score,
Sen, and Ppv are significantly lower on average than the other two.

Furthermore, Table 4 illustrates similar information about the 11 studies which inves-
tigate both the inter- and intra-patient paradigms. The averaged values of classification
accuracy of the 11 studies are 98.39% and 90.15% in the intra- and inter-patient paradigms,
respectively. As shown in Figure 5c, the averaged values of F1 score, Sen, Ppv, and Spe
for 11 studies in the intra-patient paradigm (inter-patient paradigm) are 95.52% (83.89%),
93.51% (78.16%), 92.78% (62.82%), and 99.19% (93.86%), respectively. The differences in
the F1 score, Sen, and Ppv between the two paradigms are 11.63%, 15.35%, and 29.96%,
which are much higher than the difference in terms of accuracy. Therefore, the inter-patient
paradigm is a more challenging scenario, which calls for more research attention and effort.

Table 4. Comparative summary table of inter/intra-patient paradigms studies.

Paper Paradigm Train/Validate
Data

Test Data Algorithm Class
Cross-

Validation
Performance

Acc F1 Sen Ppv Spe

[82]
Intra- MITDB MITDB DenseNet-

BiLSTM
4: N, S, V, F 10-fold 99.44 95.89 95.69 96.11 99.32

Inter- MITDB DS1 MITDB DS2 92.37 63.49 68.29 60.35 94.51

[83] Intra- MITDB MITDB
CNN 5: N, S, V, F, Q 10-fold 99.48 / 96.97 98.83 99.87

Inter- MITDB DS1 MITDB DS2 88.34 / 90.90 48.25 88.51

[84]

Intra- Fantasia+
INCART

Fantasia+
INCART

CNN-LSTM 2: N, CAD

/ 99.85 99.52 99.85 / 99.84

Inter-
Fantasia+

INCART (by
Subjects)

Fantasia +
INCART (by

Subjects)
95.76 95.57 95.70 / 95.76

[85] Intra- MITDB MITDB
O-WCNN 4: N, S, V, F 10-fold 99.58 99.28 99.2 / 99.15

Inter- MITDB DS1 MITDB DS2 99.43 92.05 91.06 93.50 99.69

[81]
Intra- AFDB AFDB

CNN+RNN 2:AF; NoAF
5-fold 97.80 / 98.98 95.76 96.95

Inter- AFDB MITDB 89.30 / 99.82 51.71 87.94
Inter- AFDB NSRDB / / / / 95.01

[86] Intra- MITDB MITDB
CNN+BLSTM 5: N, S, V, F, Q 10-fold 99.56 96.40 95.90 97.14 99.47

Inter- MITDB DS1 MITDB DS2 96.77 77.84 74.89 81.24 95.16

[28]
Intra- PTB-XL PTB-XL

CNN-FWS 2: N;
abnormal

/ 89.92 90.70 91.40 90.01 /

Inter- PTB-XL (by
subject)

PTB-XL (by
subject) 90.05 90.20 88.90 91.50 /

[87] Intra- PTB PTB MLA-CNN-
BiGRU 6

5-fold 99.11 / 99.02 99.10 /
Inter- PTB PTB 62.94 / 63.97 63.00 /

[88] Intra- MITDB MITDB CNN 5: N, S, V, F, Q / 99.81 / 88.82 95.68 99.54
Inter- MITDB DS1 MITDB DS2 96.36 / 70.6 48.10 96.16

[89]

Intra-

Tongji
Hospital,
Database

China

Tongji
Hospital,
Database

China

DCNN 26 / / 91.3 89.1 / 99.7

Inter-
Tongji

Hospital,
China

CPSC 2018 6 / 84.2 80.0 / 98.0

[90] Intra- MITDB MITDB CNN 5: N, S, V, F, Q / 99.31 / 73.66 69.6 98.83
Inter- MITDB DS1 MITDB DS2 90.22 / 35.64 27.71 87.87

Average performance compartment of above studies
Intra-patient 98.39 95.52 93.51 92.78 99.19
Inter-patient 90.15 83.89 78.16 62.82 93.86
Differences 8.24 11.63 15.35 29.96 5.33

Acc: overall accuracy; F1: F1 score; Sen: Sensitivity; Ppv: Positive predictivity; Spe: Specifically.

3.5. Performance Metrics

To evaluate the classification performance of DL models, the commonly used perfor-
mance metrics are overall accuracy (Acc), sensitivity (Sen), positive predictivity (Ppv), false
positive rate (FPR), and F1 score. Sen and Ppv correspond to recall and precision rates,
respectively. It can be seen that Acc (82.1%, 302), Sen (72%, 265), F1 score (59.8%, 220) are
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the three most used performance metrics to evaluate the classification performance of the
DL models for arrhythmia classification.

Regardless of the evaluation paradigm and other conditions, such as task and number
categories to be classified, we simply calculate the average of those metrics and find that the
classification accuracy of the DL models in the selected studies is already above 95%, while
other metrics such as F1 score, sensitivity, positive predictivity, and specificity are relatively
lower, within the range of 80–95%. Furthermore, interesting comparisons between the DL
models and professional cardiologists are performed in [110,111]. It can be concluded that
the DL models are very competitive to cardiologists, which exhibits their great potential for
clinical ECG classification.

3.6. Code Availability

Sharing the code of DL models online is a way for researchers to reproduce the
performance results of existing works. However, only around 6% (20 out of 368) provide
the code information directly in their papers, and most of them shared the code through
the GitHub platform. In Table 5, to help researchers access the relevant codes conveniently,
we list detailed information about the studies whose codes are publicly available. Few
studies mention that the codes are available upon request, e.g., [85,112] but are not listed in
the table.

Table 5. The details information of code available studies.

Paper Code Platform Database Evaluation
Paradigm Class Types Model

[23] Website

UEA; UCR;
PhysioNet. AF-D1,
AF-D2, and Two

Lead

Intra-patient 2 SDK-CNN

[29] GitHub MITDB Intra-patient 5 CNN (ResNet)

[113] GitHub MITDB; CPSC2018 Intra-patient 5 DNN

[114] GitHub MNIST and Fashion
MNIST; MITBIH Intra-patient 2 D-RBFDD

[115] GitHub PTBXL; CPSC2018 Intra-patient 2 SPN-V2

[116] GitHub

UCI
Machine-learning
repository-based

arrhythmia dataset;
MITDB

Intra-patient 13 CDNN

[75] GitHub 2021 PhysioNet
Challenge data Intra-patient 30 d-RINCA

[20] GitHub 2020 Physionet
Challenge data Intra-patient 24 CNN (ResNet)

[117] GitHub

Chapman University
and Shaoxing

People’s Hospital
Dataset

Intra-patient 4 Hybrid DNN

[118] GitHub
Physionet Challenge
database; AFDB; AF

Termination database
Intra-patient 2 CNN+ BiLSTM

[40] GitHub CPSC2018 Intra-patient 9 DNN

[98] GitHub MITDB Intra-/Inter-patient 5 Faster R-CNN-DNN

[70] Gitlab MITDB Intra-patient 5 CNN-BLSTM
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Table 5. Cont.

Paper Code Platform Database Evaluation
Paradigm Class Types Model

[101] GitHub MITDB Intra-patient 5 CWT+CNN

[111] GitHub
Telehealth Network

of Minas Gerais
(TNMG)

Intra-patient 6 DNN

[119] GitHub MITDB; CPSC2018 Intra-patient 17 CNN+ BiLSTM

[120] Website CPSC2018 Intra-patient 9 CNN

[121] Website 2017 PhysioNet
Challenge data Intra-patient 12 DNN

[68] GitHub MITDB Intra-patient 5 Hybrid CNN

[122] Website 2017 PhysioNet
Challenge data Intra-patient 4 CNN

4. Discussion

In this section, the findings from the selected papers in the field of DL-based ECG
arrhythmia classification are summarized from the perspectives of the ECG database,
preprocessing, DL methodology, evaluation paradigm, and performance metric. In addition,
future challenges and possible directions are also discussed accordingly.

4.1. ECG Database

The quality of data plays a vital role in achieving high classification performance [37].
DL techniques highly depend on the training data from which they learn the relationship
between data characteristics and corresponding categories. As ECG signals are considered
private medical information, they are, in general, difficult to collect from a broad range
of patients having different genders and ages. In addition, the measurement conditions
should be kept unified for every patient, and the annotation for ECG signal samples
should be precise, which all require standard facilities and significant annotation effort
from cardiologists [5]. Hence, at the current stage, the publicly available ECG databases
are the main data resources for DL-based ECG arrhythmia classification and support the
progress of the research. However, the symptoms of arrhythmia in ECG signals vary
from person to person. Exploiting diverse ECG databases to help DL models experience a
greater amount of data samples could significantly improve their inference performance in
practical clinical applications.

According to this review, among the multiple ECG databases, the MITDB is the most
popular database for DL-based arrhythmia classification, while it was collected about
40 years ago [9]. The MITDB actually acts as the data baseline to help compare newly
designed DL methods to well-established models. Nowadays, as the model complexity of
DL models increases to pursue higher classification performance, it inevitably consumes
more ECG data for training. Hence, there have been growing works that consider combin-
ing datasets from multiple different public ECG databases [16,123]. Another example is
that, in PhysioNet Computing in Cardiology Challenge 2020, seven public databases are
provided to participants. However, the differences in the number of leads, signal duration,
measurement condition, and patient demographic distribution of those different ECG
databases should not be simply ignored.

Another issue with the existing arrhythmia-related ECG database is that the data
categories are significantly imbalanced. The amount of ECG data in the normal category
is often dominant in those databases [10]. Although various methods, such as data aug-
mentation [124] and focal loss [92], are used to address the issue of imbalanced datasets,
collecting more data in abnormal categories is the ideal way to entirely resolve the issue.
However, collecting the specific data requires patients who exactly have the diseases to be
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classified, which often is difficult in reality. Hence, the imbalance of the ECG dataset is one
of the challenges that researchers should expect to confront in the long term.

4.2. Preprocessing

Real clinical ECG signals often contain diverse noise and interference. However,
many existing works do not consider ECG signal denoising, which could raise risks when
they are implemented for real clinical scenarios. Thorough studies about the impact of
ECG denoising on the DL-based ECG classification methods in clinical applications are in
demand. Furthermore, the existing denoising methods assume that the characteristics of
noise and interference differ from that of the useful signals in a predetermined domain,
such as the frequency domain and the wavelet domain [96]. In general, the DWT-based
denoising methods could better retain the details of higher frequency signal components
compared to traditional filtering-based denoising methods, which rely on discrete Fourier
transform [36]. However, the DWT-based denoising methods are offline algorithms that
cannot apply to real-time ECG signal denoising [125]. Design for advanced denoising
algorithms specifically considering ECG characteristics is needed to be explored.

As ECG datasets are often imbalanced, data augmentation could be a necessary step
to further level up the performance of DL models. It can be concluded that synthetic-
based methods have gained higher popularity in recent years. In particular, the GAN-style
model actually learns to generate synthetic ECG signals based on the characteristics of ECG
signals [126]. However, this type of method is still a data-driven process that relies heavily
on the quality of ECG data. Research [46] proposes a DL model which jointly considers
synthetic ECG signals generated by a mathematical model and real clinical ECG data. It
could be a better solution for imbalanced data as the generated data set as the generated
new data samples are not simply the linear combinations of other data samples but contain
the theoretical a priori knowledge from cardiologists.

4.3. DL Methodology

This review clearly shows that CNNs are the most popular DL models for ECG
classification thanks to their excellent capability for feature extraction [8]. As ECG signals
are time series in nature, RNNs are another popular type of DL model that has been widely
adopted. The transformer is a type of relatively new DL model with the emergence of
the attention mechanism and has been used in some recent works. In addition, it clearly
shows that more studies leverage hybrid DL models for the arrhythmia classification.
Specifically, the CNNs often served as feature extractors right after the input layer of the
hybrid model [28]. Other DL structures, such as RNNs and transformers, are exploited
to further extract refined features. Their results show that in most cases, the hybrid
model could achieve better classification performance but induce higher computational
complexity [26,84,127–130]. However, as most selected studies consider traditional DL
models such as CNNs and RNNs, the investigation into incorporating novel DL models or
structures for arrhythmia classification with ECG signals is still limited. With the emergence
of novel DL models such as ViT [131] and MLPMixer [132], the adaption of those novel DL
models is expected to be introduced for ECG classification to pursue better performance
improvement. In addition, most selected works focus on the improvement in classification
performance as much as possible, while the interpretability of DL models is generally
not discussed. The interpretable DL models [45] are highly desired to make the ECG
classification results trusted in real clinical scenarios and could potentially further help
cardiologists relate the heart abnormalities to possible hidden features of ECG signals, such
as ECG phenotyping discussed in [7].

In most of the reviewed studies, the DL models are exploited under the supervised
learning framework. However, how to leverage DL models in other artificial intelligence
frameworks, such as active learning [133] and reinforcement learning [134], to improve
the accuracy of ECG diagnosis could be one future research direction. In addition, how to
systematically optimize the DL model structures, such as the size of convolutional kernels
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and hyperparameters, such as the minibatch size and learning rate, could be another crucial
control knob for ECG classification.

The number of categories considered in the reviewed studies generally ranges from
2 to 9. As the number of categories to be classified in the DL models increases, learning
the mapping for arrhythmia classification becomes more challenging [20]. In MITDB, the
total number of categories is 26. However, the amount of ECG data in some categories are
very limited. Hence, to achieve accurate classification performance with a higher number
of categories to be classified, improving the learning capability of the DL process requires
research effort, which could overcome the challenges such as the high complexity of the
mapping relationship and lack of data in minority categories.

4.4. Evaluation Paradigm

Based on how the training and testing datasets are organized, the ECG classification
can be categorized into two paradigms, i.e., inter- and intra-patient paradigms [109]. Most
of the selected studies consider the intra-patient paradigm, while more recent works
consider the inter-patient paradigm as it is highly desirable in clinical applications [86].
However, under the inter-patient paradigm, we found that the values of Acc and Spe are
more than 10% higher than those of F1 score, Sen, and Ppv. In addition, we also compare
the classification performance of the same models in the inter- and intra-patient paradigms
from the existing works which consider both of the paradigms at the same time. It shows
that the F1 score, Sen, and Ppv achieved in the inter-patient paradigm are about 15% lower
than the performance metrics achieved in the intra-patient paradigm. Hence, further
research effort is required to fill the performance gaps between the inter- and intra-patient
paradigms, which brings research opportunities.

4.5. Performance Metrics

A wide variety of performance metrics are used for comparison. The most common
metrics are overall Acc, Sen, Ppv, FPR, and F1 score. In general, the classification accuracy
of the proposed DL models in most of the selected studies is already above 95%, while other
metrics such as Sen, Ppv, FPR and F1 score were relatively lower in the range of 80–95%,
which also calls for the research effort.

5. Conclusions

DL techniques have been extensively investigated for arrhythmia diagnosis with
ECG signals, which exhibit the great potential to be implemented in clinical applications.
However, this survey shows that some essential aspects of the DL pipeline require fur-
ther research efforts before reliably applying it in clinical ECG arrhythmia classification.
Specifically, leveraging diverse ECG databases for training and testing, design of advanced
denoising and data augmentation techniques, developing novel integrated DL models,
and deeper investigation in the inter-patient paradigm could be future research directions
and opportunities to ensure trusted DL-based arrhythmia classification and promoting its
application in real clinical scenarios.
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