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Abstract: HAR technology uses computer and machine vision to analyze human activity and gestures
by processing sensor data. The 3-axis acceleration and gyro sensor data are particularly effective in
measuring human activity as they can calculate movement speed, direction, and angle. Our paper
emphasizes the importance of developing a method to expand the recognition range of human
activity due to the many types of activities and similar movements that can result in misrecognition.
The proposed method uses 3-axis acceleration and gyro sensor data to visually define human activity
patterns and improve recognition accuracy, particularly for similar activities. The method involves
converting the sensor data into an image format, removing noise using time series features, generating
visual patterns of waveforms, and standardizing geometric patterns. The resulting data (1D, 2D, and
3D) can simultaneously process each type by extracting pattern features using parallel convolution
layers and performing classification by applying two fully connected layers in parallel to the merged
data from the output data of three convolution layers. The proposed neural network model achieved
98.1% accuracy and recognized 18 types of activities, three times more than previous studies, with a
shallower layer structure due to the enhanced input data features.

Keywords: human activity recognition (HAR); 3-axial sensor; image type encoding method; WISDM
dataset; CNN

1. Introduction

Currently, smartphones are one of the essential items in daily life [1]. Smartphones
integrate various sensors such as accelerometers, gyroscopes, light sensors, and temperature
sensors, making them versatile for a wide range of services such as device control and
monitoring. They are also used as wearable devices for analyzing physical activity [2–5].
For this analysis, data from 3-axis accelerometers and gyroscopes are commonly used, as
they provide useful information on speed, direction, and angles of human movement. This
data is crucial for human activity recognition (HAR), a technology that learns and infers
advanced knowledge necessary for physical activity recognition based on raw sensor data.
HAR can be effectively utilized in everyday life [6].

HAR is being pursued through various measurement methods and related services
and research. Tian et al. [7] attempted HAR using a single-band wearable accelerometer
and proposed an ensemble-based filter feature selection method that enhanced the strength
of a single accelerometer and improved accuracy by removing overlap and unnecessary
attributes. Kang et al. [8] proposed a hybrid deep learning model that uses both sensor
data from accelerometers and skeleton data from images. Anguita et al. [9] collected sensor
data by attaching smartphones to people’s waists to differentiate various human activities
and performed activity recognition using support vector machines. Sengul et al. [10]
distinguished four common activities in daily life using accelerometer and gyroscope
data to predict injuries caused by falls in the elderly. Moreover, many previous studies
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have focused on segmentation algorithms for accelerometer time series data [11], random
undersampling, random oversampling, ensemble learning methods [12], and so on.

However, human physical activities can be divided into various types (walking,
running, hiking, drinking water, sitting, etc.), and they also include similar activities
(drinking water vs. eating, etc.) as well as types with clear differences (lying down vs.
climbing stairs, etc.). Additionally, 3-axial sensor data can be prone to errors due to noise
and uncertainty (sensor shaking, functional impairment, etc.), and the data size is smaller
than that of video data, making it difficult to train. Therefore, various explored to obtain
stable 3-axial sensor data, and there is considerable interest in visualization research for
encoding sensor data into images without loss [13–16].

Therefore, this paper proposes a method to improve the accuracy of HAR by utilizing
the 3-axial data (accelerometer and gyroscope sensor data) of a smartphone to visualize
2D and 3D. In addition, it recognizes 18 human physical activities through a single device
(smartphone) instead of attaching multiple devices. Partial activity patterns of a single body
movement were obtained through time series data grouped at regular intervals, and they
were visualized in 2D and 3D image streaming formats. By clearly differentiating between
similar human physical activities through this process, an improved HAR is proposed.

Section 2 of this study describes the body activity recognition technology using sensors.
Section 3 introduces the proposed method of encoding the raw sensor data into an image
form. Section 4 comparatively analyzes the performances of the previously studied neural
network learning model and the proposed model. In the final section, we present our
conclusions.

2. Related Research

Defining human actions as a single motion or external form is difficult because even if
two motions may appear identical, they may result in different outcomes depending on
subsequent movements. Therefore, time series data that captures the changes in data over
time is used more frequently than a single data point for recognizing human actions [17,18].
Sensors are the most effective devices for gathering such data [12,19,20]. Currently, deep-
learning-based models associated with sensor data can automatically extract and classify
the characteristics of time series data, enabling accurate behavioral recognition.

In [21], a CNN with local loss was proposed for HAR. The experimental results
showed that the local loss performed better than the global loss for the baseline architecture,
and various human activities could be identified despite the low number of parameters.
However, this study only showed high performance in recognizing six activities (walking,
jogging, walking upstairs, walking downstairs, sitting, and standing) with 98.6% accuracy.
The present study proposes a method to recognize 18 different types of actions, enabling
more diverse biometrics.

A lightweight deep learning model for HAR was proposed in [22]. This model was
developed using long short-term memory (LSTM) and recurrent neural network (RNN)
and showed high performance, achieving an accuracy of 95.78% for recognizing 18 types of
activities on the WISDM dataset. However, due to their recurrent structures, LSTM and
RNN models require longer training and inference times compared to general CNN-based
models. To address this issue, we utilized only convolutional layers (1D, 2D, and 3D
convolutional layers) in a parallel structure, allowing us to analyze and observe a small
dataset from various perspectives.

Ignatov et al. [23] studied an independent deep-learning-based approach for the
classification of human actions. In addition to the simple statistical feature of preserving
the global shape of time series data, they proposed a CNN model for extracting local
characteristics. This study segmented the collected accelerometer sensor data into various
sizes to determine the most effective segmentation size and evaluated the performance of
each segmentation. In our study, we used the duration of the actions to set the size of the
segmented data and performed activity classification using this configuration.
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In [24], to capture various activities for HAR, mobile devices with built-in perceptual
extraction networks were attached to users, and the data collected from these devices
were used for the initial training. The trained weight values were transferred to the server
through the communication network. The transferred data were compared with the trained
weight values from other devices to determine the optimal weight value, and the final
weight value was delivered to each device for re-training. The method proposed by [24]
allows for the simultaneous collection and training of multiple activity data, and strong
performance can be achieved by comprehensively determining the weights of individually
trained models. However, comprehensive weight determination can emphasize strong
performance, but it may also reduce accuracy when classifying similar activities for precise
analysis. In consideration of this, we proposed a method to enhance the original sensor
data, which enabled the classification of 18 distinct activities.

Previous studies on HAR have utilized various methods such as using RNN-based
models to learn temporal changes or hybrid models that mix CNNs. Although HAR using
CNN models has also been studied, it does not perform as well as RNN or hybrid models
(refer to Chapter 6). However, RNN-based models can be limited in real-life usage due to
long training and inference times, and hybrid models have complex structures that make it
difficult to understand the learning process. Additionally, since human physical activity
is diverse and there are many similar movements, there is a high possibility that features
may be lost during the operation process of the layers in deep model structures, and it is
difficult to wear many wearable devices due to discomfort. To address these issues, we
propose a HAR method based on a wearable device using a single smartphone.

To effectively collect human physical activity from wearable devices, we expand
(encode) high-dimensional 3-axis sensor data. This generates new features of human
physical activity that could not be detected in one-dimensional data and removes fine
noise from the sensor. In other words, by defining high-dimensional features such as
directionality and spatiality in one-dimensional data, we propose new information about
features of human physical activity. These new features enable the recognition of more
diverse types of human physical activity and the discovery of unique features among similar
types of human physical activity. Additionally, to effectively learn from the increased
input data, we connect convolutional layers in parallel to enable parallel computation and
complement the missing information in the encoding and learning processes using various
dimensional data (1D data (3-axis sensor), 2D data (image), and 3D data (video image)).
The encoding process is described in detail in Section 3.

3. Image Type Encoding Method of the 3-Axial Sensor Data

Accelerometer and gyroscope sensors that measure the velocity, momentum change,
etc., of an object can detect the active state of an object, due to which both these devices are
used extensively. The (x, y, and z) 3-axial data values from these sensors are arranged into
a time series structure to recognize human activities using the properties of data changes
according to time. However, in the case of similar human activities, the recognition accuracy
decreases due to the small data dimension, which limits the expression of the characteristics.
Therefore, the 3-axial raw data gathered through the accelerometer and gyroscope from
this study were encoded into 2D and 3D images that express time properties. The image
data were trained together with the 1D raw data to increase the precision and accuracy in
order to perform high-dimensional HAR.

3.1. Three-Axial Acceleration and Gyroscope Data Analysis of the WISDM Dataset

The 3-axial accelerometer and gyroscope sensor data used in this study are from
the “WISDM smartphone and smartwatch activity and biometrics” database published
by Weiss [25]. This database consists of data gathered at 50 ms intervals for 18 daily
activities from smartphones placed in the pockets of 51 subjects for three minutes. Table 1
summarizes the 18 measured activities, which are largely distinguished into basic activities
related to walking (A), hand-based activities (B), and dining activities (C).
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Table 1. Smartphone acceleration and gyroscope data from the WISDM database.

Label Activity No. of Columns No. of Merged
Columns No. of Data Grouping Type

Accel Gyro

0 Walking 279,817 203,919 152,114 51 A
1 Jogging 268,409 200,252 154,020 49 A
2 Stairs 255,645 197,857 160,430 50 A
3 Sitting 264,592 202,370 180,315 51 A
4 Standing 269,604 202,351 165,068 51 A
5 Typing 246,356 194,540 166,646 49 B
6 Brushing teeth 269,609 202,622 168,771 51 B
7 Eating soup 270,756 202,408 164,177 51 C
8 Eating chips 261,360 197,905 160,237 50 C
9 Eating pasta 249,793 197,844 170,598 50 C

10 Drinking 285,190 202,395 149,138 51 C

11 Eating
sandwich 265,781 197,915 164,635 51 C

12 Kicking 278,766 202,625 150,651 51 A
13 Catching 272,219 198,756 146,675 50 B
14 Dribbling 272,730 202,331 150,333 51 B
15 Writing 260,497 197,894 175,638 51 B
16 Clapping 268,065 202,330 165,304 51 B
17 Folding clothes 265,214 202,321 164,006 51 B

In Table 1, activity A is based on lower body movements, while most activities in B
involve both lower and upper body movements, and C includes activities such as eating
or drinking. Each activity’s data includes a minimum of 194,540 raw data points or more,
and the accelerometer and gyroscope data were merged based on the measurement time
(Table 1, no. of merged columns). Since the WISDM database comprises similar activity
groups and a small amount of data from 49 to 51 (number of subjects), in this study, we
augmented the training dataset by segmenting the data into time units.

3.2. Walking-Activity-Based Data Argumentation

Among the 18 activities of the WISDM dataset, the “Walking” activity in the given time
unit was the easiest to analyze. “Walking” is among the most common human activities,
and a healthy person can normally walk 4.5 km/h, and approximately 8 km can be covered
in 10,000 steps [26–30]. This shows that about 800 ms is required for a movement of 1 m.
In addition, it can be inferred that about 6,400,000 ms (=1 h 46 m 40 s) is required for an
8 km walk, which amounts to 10,000 steps. The time required for one step, denoted as
Tw, corresponds to about 640 ms of time. Therefore, this study sets the data segment size
(DSS) as shown in Equation (1) for the raw sensor data of the WISDM generated at 50 ms
intervals based on Tw, which equals one human step.

DSS =
Tw

TR
+ bias (1)

where, Tw: one step time; TR: sampling time of the WISDM dataset.
In Equation (1), TR = 50 ms indicates the interval of data collection of the WISDM

dataset, and Tw = 640 ms indicates the time consumed per step taken. The DSS was set
to 15 with a bias value of 2.2. One input pattern for neural network training corresponds
to 15 raw sensor data points, and the raw WISDM dataset segments the data repetitively
by moving by one each. Ultimately, 910 physical activity data points were increased to
2,896,476 as a result of using the data segmentation method proposed in this study. These
data were divided into training data and test data in a ratio of 8:2 (2,317,180 data points in
the training set and 579,296 in the test set).
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3.3. Brightness Intensity Distribution Pattern Transformation

Image type expansion was performed for the increased data obtained through raw
sensor data segmentation. The accelerometer and gyroscope sensor data segmented into
identical sizes can express 2D image patterns using the raw values that correspond to
the amplitude of the continuous data, and these pattern data can be used to analyze
physical activities.

Figure 1 shows an example of the raw accelerometer sensor data expressed as a
brightness value. The raw time series data in Figure 1a are mapped to a brightness value
and visualized according to that value. In the case of transforming each point A–E of
the time series graph into a brightness value, the brightness intensity distribution pattern
(BIDP) for each physical activity data can be obtained, as shown in Figure 2b.
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Figure 2. Example of BIDP visualization.

Each point is expressed as a distinct brightness value according to the measured
value. In the case of transformation into a 256-grayscale image, a brightness value of 128
is assigned to point A as it is located at the center between the maximum and minimum
amplitudes. Point B, which has the minimum amplitude, is assigned a brightness value of
0, while point C, which has the maximum amplitude, is assigned a brightness value of 255.
Points D and E are assigned brightness values of 0 and 128, respectively.

First, to represent the consistent pattern of physical activity in an image format, the
BIDP was transformed into a DSS × DSS matrix by applying Equation (2) after expressing
the raw data from the accelerometer and gyroscope sensors as brightness values in a 1 ×
DSS matrix.

BIDP = ATG =

 a1
...

aDSS

[g1 . . . gDSS
]
=

 a1g1 · · · a1gDSS
...

. . .
...

aDSSg1 · · · aDSSgDSS

 (2)

where, A =
[
a1 a2 a3 . . . aDSS

]
, G =

[
g1 g2 g3 . . . gDSS

]
.
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In Equation (2), A and G represent the 1× DSS size BDIP matrices of the accelerometer
and gyroscope sensors that correspond to one DSS, respectively. They are transformed into
images of DSS × DSS size by taking the dot product with the transposed matrix of matrix
A, denoted as AT .

Figure 2 shows the results of the BIDP dimension expansion over time. The spatial
characteristics of physical activities can be obtained by discerning brightness intensity
within patterns, which can be observed based on the raw sensor values. Figure 2a shows
a strong area of brightness distributed at the beginning of the BIDP, and the resulting
image is characterized by an emphasized space at the upper left corner. Figure 2b shows a
dot pattern with a strong brightness area distributed between light brightness intensities,
which is emphasized at the center. Figure 2c also shows a dot pattern, but the strong
brightness area is emphasized at the upper left corner instead of the center. Figure 2d
is similar to Figure 2a, but the location of the brightness area differs. In short, distinct
spatial characteristics can be obtained depending on the location of the strong brightness
intensities, which can be used to emphasize the properties of the sensor data.

However, Figure 2 shows experimental results that did not consider the 3-axial nature
of the raw data. The raw accelerometer data, which comprises three axes, does not exhibit
a standardized form as shown in Figure 3. Therefore, this study serializes the 3-axial sensor
data to apply Equation (2) above and express the spatial characteristics of physical activities
in a more accurate form.
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Serializing the 3-axial sensor data, as shown in Figure 3, differentiates the sensor
values for each axis and expresses a more complex geometric spatial pattern. An and
Gn in Figure 3 represent the 3-axial dataset of the accelerometer and gyroscope sensors
with DSS size, respectively, while SAn and SGn represent each component of the 3-axial
dataset serialized into linear form. Applying Equation (2) generates a SBIDPn of size
(DSS × 3)× (DSS × 3). The generated SBIDPn exhibits greater geometric spatial patterns
than Figure 2, which uses 1-axial data. This is clearly evident in the dimensional expansion
using actual 3-axial data. The generated SBIDPn exhibits greater geometric spatial patterns
than Figure 2, which uses 1-axial data. This is clearly evident in the dimensional expansion
using actual 3-axial data.
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Figure 4 shows an example of SBIDP for the 18 types of physical activities presented
by the WISDM dataset using the actual 3-axial raw accelerometer and gyroscope data.
All physical activities show dot patterns while some linear patterns can be seen in the
inner part due to the effect of the color space caused by the different ranges of brightness.
The line patterns inside the image represent information expressed from the different
strength values of each axis, which can be recognized as the spatial characteristics of the
physical activities. These characteristics are emphasized to a greater extent depending on
the magnitude of the differences in the strength values.
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3.4. 2 Step SBIDP Enhancement Method

The SBIDP generated through image encoding of raw sensor data expresses physical
activity characteristics as spatially diverse brightness, patterns, and shapes, as shown in
Figure 6. Figure 6 shows the change in the continuous BIDP images for three physical
activity data points according to the change in T. Labels 3, 7, and 17 have overall strong
brightness and take the form of vertical grid patterns, but their detailed characteristics
differ, as seen in their magnifications in Figure 5. In addition, while the physical activity
performed in label 3 of Figure 6 remains the same, the vertical pattern gradually becomes
stronger over time. However, the detailed pattern of label 3 in Figure 5 does not change.
Similar results were obtained for physical activity in labels 7 and 17. They exhibited stronger
grid patterns compared to label 3, as illustrated in Figure 5, which shows the varying levels
of brightness in different areas upon magnification. However, utilizing these robust grid
pattern features without any modifications as input for training a neural network model
may negatively impact its ability to accurately recognize physical activities.
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Therefore, in this study, to transform the detailed characteristics of the grid pattern
into one large pattern, component values of the raw accelerometer sensor value matrix A[·]
and of the gyroscopic sensor value matrix G[·] were arranged to generate SBIDP. This, as a
primary pre-processing step for neural network input, generates BIDPE1 with strengthened
spatial characteristic information. Figure 7 is an example of BIDPE1 generated using
the arranged sensor data matrix, and as can be seen, there are clearer and more defined
gradation spatial characteristics compared with the grid pattern of each label in Figure 6.
However, due to varying brightness values, the resulting pattern took on a curved shape.
The angular features of this curve were utilized to represent changes in physical activity
data, and Equation (3) was employed to generate BIDPE2 with further improved spatial
characteristics as a secondary step.

BIDPE2 =
3

∑
i=0

BIDPE1

(π

2
× i
)

(3)

where BDIPE1(θ) : θ rotated BIDPE1.
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Figure 7. BIDPE1 examples of 1st enhanced SBIDP by sorting elements of the A[·] and G[·] matrices.

∑ in Equation (3) denotes the image sum (OR) operation, and it refers to the image OR
of the arranged BIDPE1 rotated by 90◦, 180◦, and 280◦. Figure 8 illustrates the outcomes
of BIDPE2 after the secondary enhancement of spatial characteristics, wherein label 3 is
represented as an angled propeller and label 17 as a curved propeller. Figure 9 displays the
resulting BIDPE2 for all 18 physical activities in the WISDM dataset.
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Figure 9. BIDPE2 example of 18 activities in the WISDM dataset.

4. Three-Dimensional Visualization Method of BIDP

The BIDPE2 produced by the secondary process of enhancing spatial characteristics is
transformed into an image with various shapes based on the finely expressed brightness
value. To express this characteristic in detail, this section visualizes this image into a 3D
image with depth information, as shown in Figure 10. In general, raw sensor data as
time series data contain the recognition of the features of the physical activity of humans
according to time. In this study, to spatially express the time series feature of these raw
data, one physical activity record segmented as DSS was divided into three equal parts for
encoding into the form of a 3D image, as shown in Figure 10.
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Figure 11 presents an example of BIDP3D for the 18 physical activities of the WISDM
dataset, which were generated using the processing steps shown in Figure 10. BIDP refers
to the 2D image, and BIDP3D(t1), BIDP3D(t2), and BIDP3D(t3) each represent one of the
three even parts of a segmented physical activity, as a set of continuous 2D images, showing
3-channel spatial characteristics with time properties.
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convolves the sequence data and is well-suited for training long sequences, such as text. 
The 2D convolutional layer can extract the feature map for the spatial and directional in-
formation of image data, while the 3D convolutional layer extracts the feature map for the 
spatial and directional changes over time. Figure 12 shows the CNN model structure for 
training 1D RSD and the expanded 2D 𝐵𝐼𝐷𝑃 and 3D 𝐵𝐼𝐷𝑃ଷ஽ data. 

Figure 11. BIDP3D examples of 18 activities in the WISDM Dataset.

5. Proposed CNN Architecture for Learning Activity Data

For the simultaneous training of 1D raw sensor data (RSD), 2D BIDP, and 3D BIDP3D
data, 1D, 2D, and 3D convolutional layers are used. The 1D convolutional layer convolves
the sequence data and is well-suited for training long sequences, such as text. The 2D
convolutional layer can extract the feature map for the spatial and directional information
of image data, while the 3D convolutional layer extracts the feature map for the spatial and
directional changes over time. Figure 12 shows the CNN model structure for training 1D
RSD and the expanded 2D BIDP and 3D BIDP3D data.
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Figure 12. A Proposed multi-dimensional convolutional neural network.

As shown in Figure 12, the feature extraction part consists of three convolutional
layers, and the max-pooling layer (1D, 2D, and 3D) is used for subsampling. The number
of kernels in each convolutional layer is 24, 48, and 96, and the filter size is (3), (3 × 3), and
(3 × 3 × 3). All layers have “same” padding, and “ReLU” is used as the activation function.
The max-pooling layer was set to (2), (2 × 2), and (1 × 2 × 2) to reduce the feature map
size by 50%, and the resulting feature map was flattened into 1D. Classification using two
dense layers was performed in parallel, after merging the feature maps extracted through
the convolutional layer of each dimension. Each dense layer has 2,048 nodes, and “ReLU”
is used as the activation function. The results from the dense layers were merged again
using the concatenate function and used as the input to the output layer.

The model parameters mentioned in this study were set using the “keras_tuner” of
the open-source Keras library. The system used for the experiments was a Windows 10
64-bit environment with an i7-6700 CPU, 48 GB of RAM, and two NVIDIA GeForce RTX
3060 GPUs with 12 GB of memory each.

6. Performance Evaluation
6.1. Training Result

The training results for the images generated using RSD and the original data with the
learning model shown in Figure 12 demonstrate identical accuracy and loss, as shown in
Table 2 and Figure 13. The accuracy of the training data in Table 2 was 99.6%, and the loss
was approximately 0.0134. The model completed training at 90 epochs because there was
no significant difference in loss after the 73rd epoch, as shown in Figure 13.
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Table 2. Accuracy and loss from training model.

Our Model

Accuracy 99.52%
Loss 0.0134

6.2. Performance Evaluation Result

Table 3 shows the precision, recall, and F1 scores of the proposed model for each
class using validation data. The model achieved a performance of 90% or above for all
18 physical activity classes, but classes 12, 13, 14, and 17 showed low performance. This was
due to the fact that physical activities such as climbing stairs, kicking, catching, dribbling,
and folding clothes, which are expressed as slight left and right or up and down movements,
and have similar activity data, were included in classes 2, 12, 13, 14, and 17, as presented in
the confusion matrix in Figure 14.

Table 3. Performance evaluation of expanded data.

Class Precision Recall F1 Score

0 99.0% 99.0% 99.0%
1 99.0% 99.0% 99.0%
2 97.0% 97.0% 97.0%
3 99.0% 99.0% 99.0%
4 99.0% 99.0% 99.0%
5 100.0% 100.0% 100.0%
6 100.0% 100.0% 100.0%
7 99.0% 99.0% 99.0%
8 99.0% 99.0% 99.0%
9 99.0% 99.0% 99.0%
10 99.0% 99.0% 99.0%
11 99.0% 99.0% 99.0%
12 91.0% 93.0% 92.0%
13 94.0% 93.0% 94.0%
14 96.0% 96.0% 96.0%
15 100.0% 100.0% 100.0%
16 99.0% 99.0% 99.0%
17 97.0% 98.0% 97.0%

Appl. Sci. 2023, 13, 4961 14 of 18 
 

 
Figure 14. Confusion matrix of validation data (%). 

6.3. Performance Evaluation Comparison by Using the WISDM Dataset 

This section compares the performance of the proposed model and that of a well-
known neural network model with those of previous studies. Table 4 compares the HAR 
performance with that of the previous RNN-based model using the WISDM dataset. The 
proposed method shows a value of 98.15%, which is higher than the corresponding results 
of previous studies. However, the proposed method showed a slightly lower performance 
compared with the structure that serially connected numerous models (CNN-GRU-
LSTM); however, the proposed algorithm has a relatively simple and shallow layer struc-
ture as a parallel convolutional layer, as shown in Figure 12. 

Table 4. Evaluation of the proposed model compared with models based on RNN. 

Ref. Model F1 Score (%) Accuracy (%) 
[31] Tri-PSRNN 96.62 94.76 
[31] PSDRNN 94.01 93.06 
[32] LSTM-CNN - 95.85 
[33] LSTM-RNN 95.40 96.40 
[34] Single-input CNN-GRU model A 92.42 92.03 
[34] Single-input CNN-GRU model B 94.50 94.71 
[34] Single-input CNN-GRU model C 92.55 92.37 
[34] Multi-input CNN-LSTM 95.55 95.45 
[34] Multi-input CNN-GRU 97.22 97.21 
[35] CNN-GRU-LSTM 98.52 98.51 

- Proposed model 98.00 98.15 

The use of RNN-based models for HAR can lead to performance degradation due to 
the issues of exploding and vanishing gradients in back-propagation. Although LSTM and 
GRU techniques have been introduced to address these issues, the sequential nature of 
vector inputs allows for the processing of only one sequential data at a time, making it 
difficult to take advantage of the parallel processing capabilities of GPUs. As a result, 

Figure 14. Confusion matrix of validation data (%).



Appl. Sci. 2023, 13, 4961 14 of 17

6.3. Performance Evaluation Comparison by Using the WISDM Dataset

This section compares the performance of the proposed model and that of a well-
known neural network model with those of previous studies. Table 4 compares the HAR
performance with that of the previous RNN-based model using the WISDM dataset. The
proposed method shows a value of 98.15%, which is higher than the corresponding results
of previous studies. However, the proposed method showed a slightly lower performance
compared with the structure that serially connected numerous models (CNN-GRU-LSTM);
however, the proposed algorithm has a relatively simple and shallow layer structure as a
parallel convolutional layer, as shown in Figure 12.

Table 4. Evaluation of the proposed model compared with models based on RNN.

Ref. Model F1 Score (%) Accuracy (%)

[31] Tri-PSRNN 96.62 94.76
[31] PSDRNN 94.01 93.06
[32] LSTM-CNN - 95.85
[33] LSTM-RNN 95.40 96.40
[34] Single-input CNN-GRU model A 92.42 92.03
[34] Single-input CNN-GRU model B 94.50 94.71
[34] Single-input CNN-GRU model C 92.55 92.37
[34] Multi-input CNN-LSTM 95.55 95.45
[34] Multi-input CNN-GRU 97.22 97.21
[35] CNN-GRU-LSTM 98.52 98.51

- Proposed model 98.00 98.15

The use of RNN-based models for HAR can lead to performance degradation due to
the issues of exploding and vanishing gradients in back-propagation. Although LSTM and
GRU techniques have been introduced to address these issues, the sequential nature of
vector inputs allows for the processing of only one sequential data at a time, making it diffi-
cult to take advantage of the parallel processing capabilities of GPUs. As a result, training
and inference models may experience somewhat slower speeds. However, the algorithm
proposed in this paper uses CNN-based methods to overcome these shortcomings. With a
relatively simple image encoding method, it can perform HAR with dimensional concepts
(such as space and direction) in the CNN model, allowing for the extraction of features that
were not previously detectable in time series data.

Table 5 compares the proposed method with CNN-based models, including CNN
models that use input data that have been expanded into multidimensional data. The
proposed method achieved higher performance than previous CNN-based models. In
addition, the HAR data were composed in the form of a time series. Thus, the RNN model
that used the data change according to time showed a higher performance than the CNN-
based models. However, the method proposed in this study uses only a convolutional layer
and shows results similar to those of the RNN-based models. This implies that 18 physical
activities can be classified even with a relatively simpler eight-layer model.

When examining the structure of the comparison models in Table 5, the large-scale
models (Inception-V3 with 313 layers, EfficientNet B0 with 233 layers, and Xception with
126 layers) showed an accuracy of 90.27%, while the small-scale models (Multichannel CNN-
GRU with 9 layers, CNN with an attention mechanism with 6 layers, CNN with 6 layers)
showed a higher accuracy of 95.38% compared to the large-scale models. We attribute this
performance to the loss of feature points between classes due to deep-layer operations
on the input data. When visualizing time series data in a typical way, such as generating
waveform-based visual data such as graphs or histograms, the feature information that can
be obtained from the waveform information is limited, and all features will eventually be
integrated unless there are clear feature points. This is because the entire waveform can
contain similar features. To prove this, we designed a shallow-layer neural model and chose
a parallel input structure and method of expanding the dimension of input data to mimic
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deep feature information even in shallow layers. Through this, we were able to recognize
many categories of classes with a shallow structure compared to the comparison model.

Table 5. Evaluation of the proposed model in comparison with models based on CNN.

Ref. Model No. of
Activities Layer F1 Score (%) Accuracy (%)

[36] Baseline 6 10 - 89.55
[37] VGG16 6 23 - 89.32
[38] Inception-V3 6 313 - 91.54
[39] Xception 6 126 - 90.17
[40] EfficientNet B0 6 233 - 89.11
[23] CNN 6 6 - 93.32
[41] Multichannel CNN-GRU 6 9 96.39 96.41
[42] U-Net 6 11 96.50 96.40

[43] CNN with an attention
mechanism 6 6 - 96.40

- Proposed Model 18 8 98.00 98.15

7. Conclusions

This paper proposes an image encoding method using 3-axial sensor data of accelera-
tion and gyro and a human activity recognition (HAR) model based on it. By visualizing
the raw sensor data from the WISDM dataset, strong visual features of the data waveform
could be extracted, which improved recognition accuracy and categories. To augment the
1D raw sensor data, we divided it into time intervals calculated based on the “walking”
activity, which is one of the fundamental human activities, and normalized the represen-
tation range of the segmented 1D sensor data to values between 0 and 255. This enabled
clustering of the finely represented sensor data into a larger range, making it possible
to remove noise caused by fine changes, such as shaking. The data with the modified
representation range creates a 2D image through the matrix dot product of the acceleration
and gyro data, and this image includes areas of strong brightness and weak brightness
depending on the position of the data waveform. However, this can show overly geometric
patterns, which can actually degrade the performance of the model. Therefore, a second
processing step is used to generate a standardized visual image.

The standardized visual image shows a propeller shape with different curves and
brightness areas of the wings depending on the sensor data waveform, creating visual
feature differences in similar types of human activities. Moreover, due to the clear input
data, the hierarchical structure of the HAR model could be simplified to a relatively shallow
eight layers compared to previous studies. In addition, it was possible to recognize 18
categories of human activity, which is three times higher than in previous HAR studies,
and achieve a high accuracy of 98.15%.

Our proposed algorithm is a method for detecting various types of human body
activities on a single device. Through this, we were able to recognize 18 categories of body
activities. In future research, additional experiments are needed to recognize more types
of body activities, and comparison and analysis with previous studies that use dimension
expansion concepts such as image encoding will be necessary. Additionally, analysis of the
correlation between increased computational load due to data expansion and changes in
encoding images based on data waveforms will be needed.

If we design a self-big-data-measurement device for detecting human body activities
and collecting the measured data, we can expect its usefulness in the development of
customized healthcare services based on lifelogging.
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