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Abstract: Surveillance cameras have recently been utilized to provide physical security services
globally in diverse private and public spaces. The number of cameras has been increasing rapidly
due to the need for monitoring and recording abnormal events. This process can be difficult and
time-consuming when detecting anomalies using human power to monitor them for special security
purposes. Abnormal events deviate from normal patterns and are considered rare. Furthermore,
collecting or producing data on these rare events and modeling abnormal data are difficult. Therefore,
there is a need to develop an intelligent approach to overcome this challenge. Many research studies
have been conducted on detecting abnormal events using machine learning and deep learning
techniques. This study focused on abnormal event detection, particularly for video surveillance
applications, and included an up-to-date state-of-the-art that extends previous related works. The
major objective of this survey was to examine the existing machine learning and deep learning
techniques in the literature and the datasets used to detect abnormal events in surveillance videos
to show their advantages and disadvantages and summarize the literature studies, highlighting the
major challenges.

Keywords: video surveillance; abnormal events; anomaly detection; artificial intelligence

1. Introduction

The use of surveillance cameras in private and public spaces has become increasingly
prevalent in recent years for various purposes, including tracking, monitoring, and prevent-
ing violations. An anomaly, as defined in the surveillance field, refers to a deviation from
common rules, types, arrangements, or forms and can be characterized as an uncommon
event that deviates from “normal” behavior.

Detecting anomalies in surveillance videos is crucial to maintaining security in various
applications, such as crime detection, accident detection, abandoned object detection,
illegal activity detection, and parking area monitoring. However, the manual detection of
anomalies in surveillance videos is a tedious and labor-intensive task for humans. This
is due to the large amount of data generated by critical systems in security applications,
making manual analysis an impractical solution.

In recent years, there has been a significant increase in the demand for automated
systems for detecting video anomalies. These systems include biometric identification of
individuals, alarm-based monitoring of Closed-Circuit Television (CCTV) scenes, auto-
matic detection of traffic violations, and video-based detection of abnormal behavior [1].

Appl. Sci. 2023, 13, 4956. https://doi.org/10.3390/app13084956 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084956
https://doi.org/10.3390/app13084956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0958-348X
https://orcid.org/0000-0003-2422-0297
https://orcid.org/0000-0002-7111-8810
https://orcid.org/0000-0001-6913-1525
https://orcid.org/0000-0003-2931-8744
https://doi.org/10.3390/app13084956
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084956?type=check_update&version=1


Appl. Sci. 2023, 13, 4956 2 of 31

Automated systems significantly reduce human labor and time, making them more efficient
and cost-effective for detecting anomalies in surveillance videos.

Identifying and tracking anomalies in the recorded video comprise a growing research
problem in surveillance. Many methods have been proposed by researchers in academia,
including the use of machine learning algorithms and image processing techniques.

In recent times, the utilization of surveillance cameras in public and private areas has
risen significantly, serving multiple objectives. Identifying abnormalities in surveillance
footage is vital to upholding safety measures in diverse scenarios. Nonetheless, the manual
identification of anomalies in surveillance footage can be arduous and laborious for humans.
Researchers have proposed automated systems for detecting video anomalies to address
this issue, significantly reducing human labor and time. Despite the advancements that
have been made, there is still room for improvement in the accuracy, reliability, and
scalability in developing a flawless video surveillance system [2].

The Surveillance Video Anomaly Detection (SVAD) system is a sophisticated tech-
nology designed to detect unusual or suspicious behavior in video surveillance footage
without human intervention. The system operates by analyzing the video frames and
identifying deviations from normal patterns of movement or activity. This is achieved
through advanced algorithms and machine learning techniques that can detect and analyze
the position of pixels in the video frame at the time of an event.

Traditionally, anomaly detection methods have focused on identifying objects that
deviate from normal trajectories. However, these methods need to be improved [3] for use
in video surveillance due to the variety of objects that may be present in a video frame. As
a result, two main approaches have been developed for video anomaly detection. The first
approach involves measuring the magnitude of the error by calculating the reconstruction
error of future frames. This is achieved by comparing the predicted future frames with
the actual frames and identifying significant differences. The second approach involves
predicting the future frames based on the previous frames and assigning a high anomaly
score to any frame that deviates significantly from the predicted frame.

In recent years, with the advancement of hardware performance and the development
of new models, smart learning techniques have become increasingly popular in video
anomaly detection. However, the use of these techniques also brings several challenges.
One of the major challenges is the production of big data, which requires a large amount of
computational power for processing. High computational power also poses a significant
challenge, requiring a significant resource investment [4].

Over the past two decades, a significant amount of research has been conducted on
image and video processing to overcome these challenges. These studies have focused
on developing new methods for anomaly detection that are more efficient and effective
while also addressing the challenges associated with intelligent anomaly detection. Overall,
understanding the issues of traditional anomaly detection methods and exploring new
methods are crucial for the continued advancement of video surveillance.

This survey aimed to comprehensively examine the existing literature on Artificial
Intelligence (AI) techniques for detecting abnormal events in surveillance videos. Specifi-
cally, the survey aimed to provide an overview of the most-commonly used datasets and
evaluate their benefits and drawbacks. Additionally, the survey highlights key difficulties
in the literature, providing insight into areas that require further research and development.

First, it is important to note that the use of AI in surveillance video analysis has gained
significant attention in recent years due to its potential to improve the effectiveness and
efficiency of surveillance systems. This is particularly relevant in security and surveillance,
where detecting abnormal real-time events is crucial for public safety.

Various approaches and techniques, based on evolving artificial intelligence methods,
enable the analysis of surveillance videos and the identification of abnormal events such as
suspicious behavior, criminal activities, and other potential threats. The contributions of
our study are as follows:
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• A comprehensive survey of state-of-the-art AI approaches for SVAD was conducted.
This analysis thoroughly examined the current research in the field, highlighting the
most-popular techniques and methodologies used in SVAD.

• The commonly used datasets, needs, and issues of SVAD were explored in depth. This
examination provides insight into the challenges faced by researchers in this field and
the specific requirements of the datasets used for SVAD.

• The trade-offs in SVAD are discussed from the viewpoint of the performance of
approaches that use AI techniques. This analysis provides a nuanced understand-
ing of the trade-offs between performance and other factors, such as computational
complexity and scalability.

• Areas of application, challenges, and possible future work in the field of AI for
SVAD are presented. This examination provides a comprehensive overview of the
potential applications of SVAD and the challenges that must be overcome to realize
AI’s potential in this field.

The remainder of this study is organized as follows: Section 2 presents a review of
the related literature in the field of SVAD. Section 3 conducts an in-depth examination of
AI techniques employed in SVAD. Section 4 provides an analysis of the commonly used
datasets in this field. Section 5 evaluates the performance of existing SVAD applications.
Section 6 engages in a critical discourse on the findings and implications, and finally,
Section 7 presents our conclusions and recommendations for future research.

2. Related Works

There are many definitions of an anomaly. Frank E. Grubbs [5], in 1969, defined an
outlier or an anomaly as “An outlying observation, or outlier, appears to deviate markedly
from other members of the sample in which it occurs”. Hawkins [6], in 1980, defined it as
“an observation which deviates so much from other observations as to arouse suspicions
that a different mechanism generated it”. Barnett and Lewis [7], in 1994, defined it as “an
observation (or subset of observations) which appears to be inconsistent with the remainder
of that set of data”.

In several situations, the same action can be interpreted as an abnormal or anomalous
event because most anomaly detection techniques are based on the hypothesis that a pattern
that deviates from previously acquired patterns is considered abnormal [8]. According to
some studies [9–11], anomalies can be divided into three types:

• Point anomalies: These occur when only the entity’s data behave somewhat irregu-
larly compared to the rest of the data. Most research on anomaly identification focuses
on this form of anomaly because it is the most basic. A car in the middle of the road
can be termed a point anomaly.

• Contextual anomalies: These occur when a data value behaves irregularly compared
to the rest of the data in a particular context. The context includes the observer’s
subjectivity and overall perception of the situation. Parking a passenger car in a
bus-only car park can be considered a contextual anomaly.

• Collective anomalies: These occur when a collection of data samples is considered
abnormal compared to the real data. A group of people gathered at the exit of a door
can be called a collective anomaly.

Many approaches have been suggested within the scope of anomaly detection for
both crowded and uncrowded environments. One study [12] highlighted the relationship
between the number of moving objects in the clip and the complexity of the medium
utilized to detect and identify abnormalities in the video: slightly crowded environment
(10 square feet/per person), moderately crowded environment (4.5 square feet/per person),
and crowded environment (2.5 square feet/per person).
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Existing AI Techniques in SVAD

Because of a lack of knowledge sufficient to generalize their characteristics and cor-
rectly classify them as outliers, most machine learning (ML) and expert systems frequently
need help detecting and classifying these anomalies. These rare events make identification
challenging and contribute to an imbalanced data classification [13,14].

Once predictive models are built and sufficient data labels are provided, anomaly
detection is challenging, considering the binary classification problem. However, the data
available for training a model are restricted to containing few or no anomalous events, and
such labels are frequently infrequent or cumbersome [15].

SVAD aims to find abnormal frames or pixel parts that contain various spatial and
temporal data [16]. Spatial features can be collected from a single frame, whereas temporal
features can be collected from the data on object movement and the order of frames.
Generally, there are three methods for estimating abnormalities in SVAD [17]: (1) The
characteristics of both regular and irregular events are reflected in a shared space, and the
anomaly is identified based on the margin of the spatial distribution. (2) A dictionary was
trained using the semantic properties of the event patterns. This dictionary is then used for
anomaly calculation. (3) Anomalies are found through errors made during the prediction
and reconstruction of prior or subsequent frames using various feature extractors trained
to do so.

There are also various studies [18,19] on creating video synopses from surveillance
cameras. These studies allow for a more compact view to select only active activities instead
of whole frames and to achieve efficient video browsing. As a result, this contributes to
focusing on the area of interest in SVAD and reducing false negatives more accurately.

The majority of methods in this domain have a variety of restrictions [20] such as:
(1) The features used in many methods are handmade. (2) Most techniques demand a
time-consuming stage for building models, having expertise that might not be useful for
practical applications. (3) Perceiving deviations from normality as abnormal has been the
subject of numerous earlier studies. In literature, hand-crafted descriptors for anomaly
detection are particularly common. These traits continue to significantly contribute to
research on anomaly identification [21].

Researchers have been inspired to use ML or DL techniques for abnormal event detec-
tion due to the success of similar techniques in computer vision and image processing [22].
Many challenging cognitive tasks, such as finding anomalies in surveillance video, have
been solved using ML or DL [23].

Our review of the literature offers a comprehensive road map for SVAD. The published
works in this field are grouped based on the learning method and algorithms.

3. Analysis of AI Techniques in SVAD

The taxonomy of SVAD, consisting of two main groups, is described in Table 1.

Table 1. Taxonomy for anomaly detection in video surveillance.

Learning Algorithms

Supervised learning Statistics-based algorithms
Unsupervised learning Classification-based algorithms
Semi-supervised learning Reconstruction-based algorithms

Prediction-based algorithms
Other algorithms

3.1. Learning

Several Artificial Intelligence (AI) subsets are based on various applications and use
cases. This study mainly focused on Machine Learning (ML) and Deep Learning (DL).
DL is a subset of machine learning methods. ML is a powerful technology that can be
applied for anomaly detection. The process varies considerably depending on the problem.
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The performance of an ML algorithm may vary depending on the features selected in the
dataset or the weight assigned to each feature, even if the same model runs on two identical
datasets [24]. A model may become overfit if it has fewer features that are only sometimes
good. To better comprehend and construct a model using available ML techniques and
data, reviewing and comparing the current solutions is worthwhile. Machine learning (ML)
can be divided into three groups: Supervised Learning (SL), Unsupervised Learning (UL),
and Semi-Supervised Learning (SSL).

3.1.1. Supervised Learning

SL acquires knowledge from pre-existing labeled datasets or “the training set”, then
compares the predicted output to the known labels. A high-level training set is always
required to build a model that works effectively, but more is needed to ensure that the final
product will be satisfactory; the training procedure is also a crucial element in creating a
reliable predictor. A classifier model is first developed in SL through training, and after
that, it can forecast either discrete or continuous outputs. The ASL model’s performance,
such as accuracy, is typically validated before prediction to demonstrate its dependability.
Additionally, classification and regression techniques can be used to categorize SL tasks [25].

The training data are first divided into separate categories in the classification tech-
nique. It then calculates the probability of test samples falling into each category and
chooses the category with the most votes [26]. This probability represents the likelihood
that a sample is a class member. Credit scoring and medical imaging are examples of typical
applications. The regression technique uses input factors such as temperature changes or
variations in electricity demand to forecast continuous responses, often in quantity [27].
Forecasting power load and algorithmic trading are examples of typical applications. While
the regression model can calculate the root-mean-squared error, the classification model
can quantify the percentage of accurate predictions. Nevertheless, a discrepancy between
the expected and actual values is acceptable since the output data are continuous.

Several works have been performed with SL. One of the suggestions in this area is
presented by the study [28]. They proposed a unique way to identify fights or violent acts
based on learning the temporal and spatial information from consecutive video frames that
are evenly spaced. Using the proposed feature fusion approach, features with many levels
for two sequential frames are retrieved from the first and last layers of the Convolutional
Neural Network (CNN) and fused to consider the action knowledge. They also suggested
a “Wide-Dense Residual Block” to learn the unified spatial data from the two input frames.
These learned characteristics are subsequently consolidated and delivered to long-term
memory components to store temporal dependencies. Using the domain adaptation strat-
egy, the network may learn to efficiently merge features from the input frames, improving
the results’ accuracy. They evaluated their experiments by using four public datasets,
namely HockeyFight, Movies, ViolentFlow, and BEHAVE, to show the performance of
their model, which was compared with the existing models. There are several important
learning techniques in SL, such the Hidden Markov Model (HMM) [29], Support Vector
Machine (SVM) [30], Gaussian Regression (GR) [31], CNN [32], Multiple Instance Learning
(MIL) [33], and Long Short-Term Memory (LSTM) [34]. It is clear that each technique has
advantages and disadvantages in anomaly detection, and it is impossible to say that one
technique can solve all problems efficiently.

3.1.2. Unsupervised Learning

UL groups data by identifying hidden patterns or intrinsic structures. Data input is
necessary, but there are no predetermined output variables. There is neither labeled input
data nor a training technique, in contrast to SL. As a result, it operates independently, and
its performance could be more measurable. Although some researchers use the UL model’s
pre-existing labeled data to verify its results, this is only sometimes possible in practice. To
conduct an external evaluation, specialists may need to analyze the results manually.
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UL is mostly used for reducing dimensionality and clustering. UL is used in dimen-
sionality reduction to find the dataset’s linked features so that redundant data can be
removed to reduce noise. Using clustering techniques, the clustering problem allows for
the possibility of a sample belonging to more than one cluster or just one. Market research
and object identification are common applications [35].

One proposed approach in UL is that of [36]. They provided a technique for detecting
anomalies in surveillance missions, including UAV-acquired footage. They combined an
unsupervised classification technique called One-Class Support Vector Machine (OCSVM)
with a deep feature extraction technique utilizing a pre-trained CNN. Their quantitative
findings demonstrated that their proposed strategy produces positive outcomes for the
dataset studied. The authors in [37] extended their previous work by using mobile cameras
to assist UAVs when acquiring videos. They added two feature extraction methods, the
Histogram of Oriented Gradients (HOG) and HOG3D. They used the same UL method,
which was OCSVM [38]. They obtained good results based on the used video-obtained
datasets. There are many techniques under UL; PCA [39] and GANs [40] are examples
of them.

3.1.3. Semi-Supervised Learning

SSL is a machine learning method that utilizes labeled and unlabeled data to create a
classifier. This approach is particularly useful in situations with a limited amount of labeled
data available. The SSL algorithm utilizes the training procedure described in Supervised
Learning (SL) to create a predictor with a small amount of labeled data. The predictor then
categorizes unlabeled samples and assigns each pseudo-labeled sample a confidence rating.
This confidence rating informs the administrator of the prediction’s certainty level. Once
all data have been labeled, confident examples are added to the new training set to update
the classifier.

Certain assumptions must be made before training unlabeled examples, such as
smoothness and clustering. This is because unlabeled data are randomly labeled in the
prediction process [41]. The anomaly detection (AE) model [42] is an important SSL model,
as it utilizes labeled and unlabeled data to detect and identify anomalies in a given dataset.
Overall, SSL is an effective method for creating a classifier with a limited amount of labeled
data while leveraging the information present in unlabeled data to improve the accuracy of
the classifier.

3.1.4. Supervised vs. Unsupervised vs. Semi-Supervised

Supervised learning techniques for SVAD offer several advantages, including the
ability to accurately identify and classify anomalies using labeled data and the ability
to identify specific types of anomalies. These techniques are also useful for detecting
anomalies in surveillance and security applications. However, a significant amount of
labeled data is required, and these techniques can be sensitive to environmental changes,
affecting their accuracy.

Unsupervised learning techniques for SVAD offer advantages such as not requiring
labeled data and the ability to detect anomalies in real-time. These techniques can also
be used to identify patterns in the data that deviate from the norm and classify them as
anomalies. However, unsupervised learning techniques are not able to identify specific
types of anomalies and can also be sensitive to changes in the environment.

Semi-supervised learning techniques for SVAD can use labeled and unlabeled data,
allowing for accurate identification and classification of anomalies. These techniques can
also be used to identify specific types of anomalies and detect anomalies in real-time.
However, semi-supervised learning techniques require significant labeled data and can
also be sensitive to environmental changes.

In conclusion, supervised, unsupervised, and semi-supervised learning techniques
each offer advantages and disadvantages when it comes to anomaly detection in SVAD.
Each technique has its limitations, and the accuracy of the results can be affected by changes
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in the environment. Therefore, the choice of technique will depend on the specific needs of
the application and the availability of labeled data.

3.2. Algorithms

We briefly outline the key classifications that result in a wide range of SVAD algorithms.

3.2.1. Statistics-Based Algorithms

Two main algorithms are used in video anomaly detection: parametric and non-
parametric [43].

Parametric algorithms assume the data follow a specific probability distribution, such
as a Gaussian distribution. These algorithms estimate the parameters of the distribution
using the data and then use these parameters to calculate the likelihood of new data points.
One popular parametric algorithm for video anomaly detection is the Gaussian Mixture
Model (GMM). The GMM is a probabilistic model representing a dataset as a mixture of
multiple Gaussian distributions. The algorithm estimates the parameters of the Gaussian
distributions using the data and then uses these parameters to calculate the likelihood of
new data points. If the likelihood of a new data point is below a certain threshold, it is
considered an anomaly.

Non-parametric algorithms do not make any assumptions about the distribution of
the data. Instead, these algorithms rely on the empirical distribution of the data, which
is estimated using Kernel Density Estimation (KDE) [44]. One popular non-parametric
algorithm for video anomaly detection is the Local Outlier Factor (LOF) [45]. The LOF is a
density-based algorithm that calculates the local density of a data point by measuring the
distance to its k-nearest neighbors. The algorithm then compares a data point’s local density
to its neighbors’ density. The data point is considered an anomaly if the ratio is below a
certain threshold. Several studies have been conducted on statistical-based algorithms,
some of which are listed below: Gaussian Mixture Model (GMM), selective histogram of
optical flow, Histogram of Magnitude and Momentum (HoMM), Histogram of the oriented
Swarm (HoS), Histogram of Gradients (HoG), Bayesian, Fully-Convolutional-Network
(FCNs)-based models, and Structural Context Descriptor (SCD). Some statistics-based
studies are presented in Table 2.

3.2.2. Classification-Based Algorithms

One of the most-widely used methods for SVAD is classification-based methods, which
involve training a classifier to distinguish between normal and anomalous video frames
or segments.

The first step in using classification-based methods for video anomaly detection is to
extract features from the video frames. These features can include spatial and temporal
information, such as color, texture, motion, and object shape. Several feature extraction
techniques have been proposed in the literature, including hand-crafted features, such
as the Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature Transform
(SIFT), as well as in-depth learning-based features, such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs).

Once the features have been extracted, the next step is to train a classifier to distin-
guish between normal and anomalous video frames or segments. Several classifiers have
been proposed in the literature, including traditional machine learning classifiers, such as
Support Vector Machines (SVMs), random forests, k-Nearest Neighbors (kNNs), and deep
learning-based classifiers: CNNs and RNNs. The choice of the classifier will depend on the
specific application and the type of features that have been extracted.
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Table 2. Statistics-based methods.

Methods Summary

HoMM [46]

The histogram of magnitudes is used to record the motion of objects. The anomalous
motion of an object is represented by its momentum about the foreground region’s
occupancy. Feature descriptors for typical situations are learned in an unsupervised manner
using K-means clustering. By measuring the distance between cluster centers and the test
frame’s feature vector, frame-level anomalies are discovered. The region and anything
leaving that region are regarded as anomalous.
Datasets: UCSD, UMN; Techniques: background subtraction, optical flow, K-means
clustering.

Novel scheme based on SVDD [47]

Statistical histograms are used to model normal motion distributions. It combines motion
detection and appearance detection criteria to find anomalous objects. They created a
method based on Support Vector Data Description (SVDD), which creates a sphere-shaped
boundary around the regular items to keep out anomalous ones. They took into account a
fixed-dimension region, and anything left in that region is regarded as anomalous.
Datasets: UCSD, UMN, Subway; Techniques: histogram model, optical flow, support
vector data description.

Gaussian classifier [48] Deep autoencoder networks and single-class image-level classification are proposed to
detect event anomalies in surveillance videos.
Datasets: UCSD, Subway; Techniques: Gaussian classifier, CNN, sparse autoencoder.

CoP [49]
The method called Consistency Pursuit (CoP) is based on the idea that normal samples have
a very high correlation with each other, can span low-dimensional subspaces, and therefore,
have strong mutual consistency with a large number of data points.
Datasets: Hopkins155; Techniques: robust PCA, saliency map.

After the classifier has been trained, it can classify new video frames or segments as
normal or anomalous. The classifier will output a score or probability for each frame or
segment, indicating the likelihood that it is normal or anomalous. A threshold is usually
set to make a final decision, and any frames or segments with a score below the threshold
are considered anomalous.

One of the main advantages of classification-based methods for video anomaly detec-
tion is that they can be fine-tuned to a specific application by selecting appropriate features
and classifiers. However, one of the main challenges is that these methods require a large
amount of labeled training data to be effective. Additionally, they may be unable to detect
anomalous events significantly different from the training data [43].

Several classification algorithms have been proposed in the literature on data science,
which can be considered the most common in the field, and they were discussed in detail
in [50]. Some commonly used algorithms are summarized as follows.

Support Vector Machine (SVM) is a widely used classification, regression, or other
application method. An SVM generates a single hyperplane or a set of hyperplanes in a
high or endless space. The goal is to separate the two classes using a hyperplane that reflects
the greatest separation or margin. The larger the margin, the smaller the generalization
error of the classifier is.

k-Nearest Neighbors (kNN) is a non-parametric supervised learning technique, also
referred to as a “lazy learning” method. It maintains all occurrences that match the training
set in an n-dimensional space, rather than focusing on building a large internal model.
kNN uses data and employs similarity metrics to categorize new data points.

Decision Tree (DT) is a popular non-parametric SL approach. Both the classification
and regression tasks are performed using DT learning techniques. The DT is a recursive
operation; it starts with a single node and branches into a tree structure.

Some classification-based studies are shown in Table 3.
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Table 3. Classification-based methods.

Methods Summary

One-class classification [51]

A histogram of optical flow orientation is integrated with a one-class SVM to identify abnormal
events. Modeling high-density scenes may be performed quickly and precisely using optical flow
techniques. Pattern identification is performed after feature extraction to discriminate between
regular and irregular activities.
Datasets: UMN; Techniques: SVM, optical flow, histogram of optical flow orientation.

Asymptotic bounds [52] The crowd escape anomaly is detected using statistical and deep learning algorithms that directly
evaluate the pixel coordinates.
Datasets: UCSD, Avenue, ShanghaiTech; Techniques: YOLOv3, GAN-based frame predictor, kNN.

Decision tree [53] To detect abnormalities from video surveillance while precisely estimating the start and end times
of the anomalous event, a decision-tree-enabled solution leveraging deep learning was created.
Datasets: ImageNet, COCO; Techniques: decision trees, YOLOv5.

AE with kNN [54]
A new approach combines an AE-based method with single-class deep feature classification. An
AE is trained using normal images; then, anomaly maps are embedded using a pre-trained CNN
feature extractor. A one-class classifier with kNN is trained to calculate the anomaly score.
Datasets: MVTec; Techniques: convolutional autoencoder, high-density embedding,
one-class classification.

IGD [55]

There is a high probability of overfitting as abnormal datasets are insufficient. The Interpolated
Gaussian Descriptor (IGD) method, an OCC model that learns a one-class Gaussian anomaly
classifier trained with inversely interpolated training samples, is proposed to solve this problem.
The IGD is used to learn more meaningful data descriptions from typical normal samples. The
crowd escape anomaly is detected using statistical and deep learning algorithms that directly
evaluate the pixel coordinates.
Datasets: MNIST, Fashion MNIST, CIFAR10, MVTec AD; Techniques: Gaussian classifier.

Out of distribution [56]
A classifier that is simultaneously trained to give the GAN samples less confidence is used in
conjunction with a GAN. Samples from each test distribution of anomalies are used to arrange the
classifier and GAN.
Datasets: CIFAR, tree-enabled, LSUN; Techniques: DNN, GAN, Kullback–Leibler,
Gaussian distribution.

3.2.3. Reconstruction-Based Algorithms

Reconstruction-based methods operate under the presumption that normal data can
be integrated into a lower-dimensional domain where normal samples and anomalies are
represented in various ways [57].

An Autoencoder (AE) is a feed-forward neural network that includes an encoder and
a decoder structure [58]. The objective is to train the network to capture the important parts
of the input data and learn a lower-dimensional representation of the higher-dimensional
data. The Variational Autoencoder (VAE) is a type of AE that includes an encoder network
and a decoder network. The encoder network maps the input data to a low-dimensional
latent space, while the decoder network maps the latent space back to the original data
space. In this method, the VAE is trained on normal videos. The trained model is then
used to reconstruct the input video, and the reconstruction error is calculated. Anomalies
are detected by thresholding the reconstruction error. Any frame with a reconstruction
error above a certain threshold is considered anomalous. The Convolutional Autoencoder
(CAE) is also a type of AE consisting of convolution, deconvolution, pooling, and unpooling
layers. The first two layer types may be found in the encoding step, whereas the others
may be found in the decoding stage [59]. The Variational Autoencoder (VAE) is another
type of AE that incorporates convolution, deconvolution, pooling, and unpooling layers.
The first two layer types are used in the encoding step, while the others are used in the
decoding stage [59].

Reconstruction-based methods are a variation of adversarial generative methods.
Generative-Adversarial-Network (GAN)-based networks consist of two neural networks:
a Generator (G) and a Discriminator (D) [58]. The generator network creates new examples
in the target domain by mapping examples from the source domain to the target domain.
The discriminator network then tries to distinguish between examples created by the
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generator and examples from the target domain. Through this process, the generator
network learns to create examples indistinguishable from examples in the target domain.

In summary, reconstruction-based methods such as AEs and GANs have shown
promising results in anomaly detection tasks by mapping normal data into a lower-
dimensional domain and identifying anomalies based on the reconstruction error. Variants
of AEs such as Conv AEs and variational AEs have also been utilized in this domain. These
methods are part of a larger field of adversarial generative methods that include generative
adversarial networks.

Some reconstruction-based studies are shown in Table 4.

Table 4. Reconstruction-based methods.

Methods Summary

ST-AE [60]
The spatiotemporal AE comprises one encoder and two decoders of 3D convolutional layers. It
employs parallel training of decoders with monochrome frames, which is noteworthy compared to
the distillation process.
Datasets: Traffic, UCSD, Avenue; Techniques: CNN, autoencoder.

AMDN [61]

The appearance and motion DeepNet model employs AEs and a modified two-stream network with
an additional third stream to improve detection performance. The two-stream method has two major
drawbacks: the requirement for a pre-processing technique, such as optical flow, which may be costly
for real-world applications, and multiple networks for inference.
Datasets: Train, UCSD; Techniques: one-class SVM, optical flow.

GMFC-VAE [62]

The Gaussian mixture fully convolutional-variational AE uses the conventional two-stream network
technique and uses a variational AE to enhance its feature extraction capability. This method
estimates the appearance and motion anomaly score before combining the two clues to provide the
final detection results.
Datasets: Avenue, UCSD; Techniques: convolutional autoencoder, Gaussian mixture model.

OF-ConvAE-LSTM [63] This method uses the convolutional AE and long short-term memory to detect anomalies. The
framework produces the error function and reconstructed dense optical flow maps.
Datasets: Avenue, UCSD; Techniques: convolutional autoencoder, LSTM, optical flow.

Temporal cues [64]
A conditional GAN is trained to learn two renderers that map pixel data to motion and vice versa. As
a result, normal frames will have little reconstruction loss, while anomalous frames will have
significant reconstruction loss.
Datasets: Avenue, ShanghaiTech; Techniques: GAN, LSTM, optical flow.

Ada-Net [65] An attention-based autoencoder using contentious learning is proposed to detect video anomalies.
Datasets: UCSD, Avenue, ShanghaiTech; Techniques: GAN, autoencoder.

Adversarial 3D CAE [66]
A 3D CAE-based competitor anomalous event detection method is proposed to obtain the maximum
accuracy by simultaneously learning motion and appearance features. It was developed to explore
spatiotemporal features that help detect anomalous events in video frames.
Datasets: UCSD, Avenue, Subway, ShanghaiTech; Techniques: convolutional autoencoder.

Conv-AE + U-Net [67]

A two-stream model is created that learns the connection between common item appearances and
their related motions. A single encoder is paired with a U-net decoder to predict motion and a
deconvolution decoder that reconstructs the input frame under the control of the lp reconstruction
error loss terms using a single frame as the input.
Datasets: UCSD, Avenue, Subway, Traffic; Techniques: convolutional autoencoder.

3.2.4. Prediction-Based Algorithms

Prediction-based techniques can identify anomalies by assessing the difference be-
tween the expected and actual spatiotemporal properties of a feature descriptor [57]. These
models assume that normal activities are predictable, and any deviation from the prediction
indicates an anomaly. They typically use a Recurrent Neural Network (RNN) to predict
the next frame in the sequence, given the previous frames. The model minimizes the
difference between the predicted frame and the ground truth during training. Here, are
some commonly used algorithms:

Long Short-Term Memory (LSTM) is the most-widely used neural array model, com-
bining the principles of the forget gate, entry gate, and exit gate and successfully avoiding
back-propagation errors caused by vanishing/exploding gradients.
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The convolutional LSTM is an LSTM variation that addresses the precipitation now-
casting problem. In contrast to LSTM, convolution operations are employed to calculate the
feature maps instead of matrix operations, resulting in a significant decrease in the count of
the training parameters of the model [59].

Another prediction-based approach is the Vision Transformer (ViT) [68–70]. The
ViT model combines CNNs and transformers to extract spatiotemporal features from
video data and model the temporal relationships between these features. This approach
effectively captures long-term dependencies in the video data and is especially useful for
detecting anomalies.

In summary, RNN-based prediction techniques are effective at detecting anomalies
by comparing the expected and actual spatiotemporal properties of a feature descriptor.
LSTM is the most-widely used and successful neural array model, while the convolutional
LSTM and ViT are variations that address specific problems.

Some prediction-based studies are shown in Table 5.

Table 5. Prediction-based methods.

Methods Summary

FFP [57] Spatial and motion constraints are used to estimate the future frame for normal events in addition to
density and gradient losses.
Datasets: UCSD, ShanghaiTech, Avenue; Techniques: GAN, optical flow.

Deep BD-LSTM [71] A model combining CNN and bidirectional LSTM is proposed to recognize human movement in
video sequences.
Datasets: YouTube 11 Actions, UCF-101, HMDB51; Techniques: LSTM, CNN.

LSTM [72]
By using the effective gradient and quadratic-programming-based training methods, the parameters
of the LSTM architecture and the support vector data description algorithm are trained and
optimized.
Datasets: Avenue, Subway, ShanghaiTech, UCSD; Techniques: LSTM, one-class SVM.

SSPCAB [73]

A Self-Supervised Predictive Convolutional Attentive Block (SSPCAB) is proposed, which can be
easily incorporated into various anomaly detection methods. The block acquires the ability to
recreate the masked area utilizing contextual information for each site where the dilated
convolutional filter is applied.
Datasets: Avenue, MVTec AD, ShanghaiTech; Techniques: CNN, convolutional attentive block.

Spatiotemporal feature
extraction [74]

A neural network built with transaction blocks, including dictionary learning, feature learning, and
sparse representation, is proposed. A novel long short-term memory was also proposed and
reformulated using an adaptive iterative hard-thresholding technique (LSTM).
Datasets: UCSD, Avenue, UMN; Techniques: LSTM, RNN-based sparsity learning.

ISTL [75]
An Incremental Spatiotemporal Learner (ISTL) model is proposed to address the difficulties and
limitations of anomaly detection and localization to keep track of the changing character of
anomalies through active learning using fuzzy aggregation.
Datasets: UCSD, Avenue; Techniques: convolutional LSTM, fuzzy aggregation.

Residual attention-based
LSTM [76]

Using a light-weight CNN and an attention-based LSTM for anomaly detection reduces the time
complexity with competitive accuracy.
Datasets: Avenue, UCF-Crime, UMN; Techniques: residual attention-based LSTM.

CT-D2GAN [68] A Conv-transformer is used to perform future frame prediction. Dual-discriminator adversarial
training maintains local consistency and global coherence for future frame prediction.
Datasets: UCSD Ped2, Avenue, ShanghaiTech; Techniques: GANs; transformer; CNN.

ViT-based framework [69]
Using a ViT model for anomaly detection involves processing a single frame as one patch. This
approach yields good performance on the SVAD task while maintaining the advantages of the
transformer architecture.
Datasets: UCSD Ped2, Avenue, ShanghaiTech; Techniques: vision transformer.

3.2.5. Other Algorithms

Two clustering methods are available. Their argument is based on the idea that normal
data are clustered, whereas anomalous data are not [77] connected to any cluster. The
second type is predicated on the idea that, whereas anomalies belong to tiny clusters, typical
data instances belong to massive or dense clusters. Fuzzy traffic density and flow are built
using fuzzy theory to identify abnormalities in complicated traffic videos [78]. Heuristic
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techniques make decisions regarding anomalies based on feature values, geographical
locations, and contextual data intuitively [79]. However, many real-world systems do not
rely only on one technology. Using a light-weight CNN and an attention-based LSTM for
anomaly detection reduces the time complexity with competitive accuracy.

3.2.6. Analysis of Algorithms

Statistics-based algorithms assume that normal behavior follows a certain statistical
pattern, and any deviation from this pattern is considered an anomaly. They are simple and
efficient and can detect anomalies in real-time without requiring a large amount of training
data. However, they may not be effective at detecting novel anomalies or anomalies that
do not follow a statistical pattern.

Classification-based algorithms use machine learning techniques to classify behavior
or events as normal or abnormal based on labeled training data. They can detect novel
anomalies and adapt to changing environments with high accuracy. However, they require
a large amount of training data, and the labeling process can be time-consuming and costly.

Reconstruction-based algorithms reconstruct normal behavior or events and compare
them to the actual behavior or events to detect subtle anomalies. They do not require
labeled training data, but can be computationally expensive and may not be suitable for
real-time anomaly detection.

Prediction-based algorithms use machine learning techniques to predict future behav-
ior or events based on past behavior or events. Any deviation from the predicted behavior
or events is considered an anomaly. They can detect anomalies before they occur, which
can be useful in preventing security threats or safety issues. However, they require a large
amount of training data, and the accuracy of the predictions may decrease over time as the
environment changes.

In conclusion, the selection of the algorithm depends on the specific application and
requirements. Statistics-based algorithms are simple and efficient, but may not detect novel
anomalies. Classification-based algorithms have a high accuracy rate, but require a large
amount of training data. Reconstruction-based algorithms can detect subtle anomalies, but
can be computationally expensive. Prediction-based algorithms can detect anomalies before
they occur, but require a large amount of training data, and the accuracy of predictions
may decrease over time. Table 6 shows and overview of the algorithms.

Table 6. Overview of algorithms.

Algorithms Strengths Weaknesses

Statistics-based

Generally, they are suitable for real-time
applications as they are simple and
computationally efficient.

They cannot detect subtle or complex anomalies, such
as changes in spatial or temporal relationships.

Subtle or complex anomalies, such as those
involving spatial or temporal relationship changes,
cannot be detected.

False alarms may also occur when the data
distribution deviates from a Gaussian distribution.

High-dimensional datasets can be handled, and
robustness to noise can be exhibited.

Classification-
based

Anomalies can be learned to be detected based on
labeled training data, allowing them to adapt to
changes in the data distribution over time.

Generally, they could be improved for real-time
applications, being more computationally expensive
than statistics-based algorithms.

High-dimensional datasets can be handled, and
global and local anomalies can be detected.

A large amount of labeled training data is also
required, which can be difficult and time-consuming.
Only the anomalies encountered in the training data
can be detected, and new unseen anomalies cannot
be detected.



Appl. Sci. 2023, 13, 4956 13 of 31

Table 6. Cont.

Algorithms Strengths Weaknesses

Reconstruction-
based

A compact representation of normal data can be
learned, allowing subtle or complex anomalies to
be detected.

They are generally less well-suited for real-time
applications as they are more computationally
expensive than statistics-based algorithms.

High-dimensional datasets can be handled, and
global and local anomalies can be detected.

A large amount of normal data for training is also
required, which can be difficult to obtain in
some scenarios.
They are not robust to noise, and false alarms may
occur when the data are noisy or corrupted.

Prediction-based
Temporal dependencies in the data can be
leveraged to detect anomalies, making them
well-suited for time series data.

They are generally less well-suited for real-time
applications as they are more computationally
expensive than statistics-based algorithms.

High-dimensional datasets can be handled, and
global and local anomalies can be detected.

A large amount of normal data for training is also
required, which can be difficult to obtain in
some scenarios.
Anomalies involving spatial or temporal relationship
changes may be difficult to detect.
They do not possess robustness to noise, and false
alarms can be produced when the data are noisy or
corrupted.

4. Analysis of the Existing Datasets

Due to the inherent rarity of anomalies, more real-world datasets need to have real
anomalies. Natural or unnatural datasets have been created for researchers to use.

In some studies, video anomaly datasets have been categorized. For example, in
a study [1], datasets were divided into three main categories: heterogeneous, specific,
and others. By their nature, datasets containing various anomalies are categorized as
heterogeneous, while datasets containing a certain anomaly are categorized as specific.
Heterogeneous datasets consist of a greater variety of anomalies and scene variability, and
specific datasets have mainly specific types of anomalies.

Table 7 shows the categories of video surveillance datasets examined in this study.

Table 7. Category of video surveillance datasets.

Heterogeneous Specific

UCSD Subway
Avenue UMN
UCF-Crime
ShanghaiTech

4.1. CUHK Avenue Dataset

There are 21 test videos of anomalous events and 16 training videos of normal events in
the Avenue dataset [80]. The Chinese University of Hong Kong (CUHK) is where the videos
were shot, and they were released in 2013. A total of 47 abnormal events are included,
including walking in the wrong direction, running, dancing, throwing objects, and similar
anomalous actions. Clips recorded outdoors have a rate of 25 Frames Per Second (FPS) and
a resolution of 640 × 360. The ground truth is available at both the pixel level and the frame
level. Some examples of abnormal frames are shown in Figure 1.
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Figure 1. Examples of abnormal frames from the CUHK Avenue dataset are presented.

4.2. Subway Dataset

The Subway dataset [81], consisting of two sub-datasets, Subway Entrance and Subway
Exit, was published in 2008. This dataset contains anomalous events such as going in the
incorrect direction, avoiding payment, and similar actions. Some examples of abnormal
frames are shown in Figure 2. The videos were produced at 25 FPS and a 512 × 384
resolution. The entrance subset contains 1 h 36 min of video (144,250 frames), and the
exit subset contains 43 min (64,901 frames). Subway Entrance has 66 unusual events, and
Subway Exit has 19 unusual events. Two restrictions apply to this dataset: the count of
anomalies and predictable spatial localizations [48]. The ground truth is available only at
the frame level.

Figure 2. Examples of abnormal frames from the Subway dataset are presented. Abnormal frames
are shown in the first row from the Subway Entrance, and abnormal frames are shown in the second
row from the Subway Exit sub-datasets.
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4.3. UCF-Crime Dataset

The UCF-Crime dataset [33] includes robbery, fighting, shooting, shoplifting, abuse,
explosion, accident, arrest, burglary, arson, vandalism, stealing, and assault. Table 8 shows
the number of videos by category in the UCF-Crime dataset. There are 950 normal and
950 abnormal videos taken from the actual world. Some videos are poor-quality as they are
made from real-world footage. In addition, some videos may have anomalies that fall into
multiple categories.

The ground truth is available at both the clip and frame levels. Some examples of
normal and abnormal frames are shown in Figure 3.

Table 8. The number of videos in the UCF-Crime dataset.

Category UCF-Crime HR-Crime

Abuse 50 38
Arrest 50 42
Arson 50 48
Assault 50 47
Burglary 100 96
Explosion 50 26
Fighting 50 39
Road accident 150 68
Robbery 150 145
Shooting 50 46
Shoplifting 50 50
Stealing 100 98
Vandalism 50 46
Normal 950 782
Total 1900 1571

Figure 3. Examples of frames from the UCF-Crime dataset are presented. Normal frames are shown
in the first row, and abnormal frames are in the second row.

4.4. UCSD Dataset

The videos in the UCSD dataset [82] contain events recorded in various crowd scenes.
This was first published in 2010. The dataset includes anomalous actions, such as walking
on grass, vehicles moving on the sidewalk and street, and unexpected behaviors such as
skateboarding. Examples of abnormal frames are shown in Figure 4. In the Pedestrian (Ped)
1 sub-dataset, there were 34 training video samples and 36 test video samples, whereas
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the Ped2 sub-dataset has 16 training video samples and 12 test video samples. The Ped2
sub-dataset is generally used in studies. Ped1 has a low resolution and frame distortion [83].
The ground truth is available at both the pixel and frame levels.

Figure 4. Examples of abnormal frames from the UCSD dataset are presented. Abnormal frames are
shown in the first row from Ped1, and abnormal frames are shown in the second row from Ped2.

4.5. UMN Dataset

The UMN Dataset [84] is a collection of 11 short videos depicting a panicking crowd’s
abnormal movements. The dataset includes three distinct scenes, comprising two outdoor
and one indoor environment. Each video in the dataset concludes with a sudden escape
of individuals, depicted as walking in normal directions. It is important to note that the
ground truth, or the labeled information, is only available at the frame level.

The UMN dataset is significant in abnormal behavior detection as it provides a unique
opportunity to study the dynamics of panicking crowds. The dataset is particularly useful
for developing anomalous actions, such as walking on grass and vehicles moving on the
sidewalk. Items are essential for designing surveillance systems that identify and respond
to potential safety hazards in crowded spaces.

In conclusion, the UMN dataset is a valuable resource for researchers and practitioners
in abnormal behavior detection. The dataset provides a realistic representation of panick-
ing crowds and can be used to test and improve the performance of abnormal behavior
detection algorithms in crowded environments. Figure 5 shows examples of both normal
and abnormal frames.
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Figure 5. Examples of frames from the UMN dataset are presented. Normal frames are shown in the
first row, and abnormal frames are in the second row.

4.6. ShanghaiTech Dataset

The ShanghaiTech dataset [34] contains 330 training videos and 107 test videos. Thir-
teen scenes in the dataset feature complex lighting and camera angles. This dataset has
42,883 test frames and 274,515 training frames, each with a resolution of 480 × 856 pixels.
Examples of abnormal frames are shown in Figure 6. The ground truth is available at both
the pixel and frame levels.

Figure 6. Examples of abnormal frames from the ShanghaiTech dataset.

4.7. HR-Crime Dataset

The HR-Crime dataset [85] contains 782 Human-Related (HR) normal videos and
789 HR abnormal videos. The ground truth is only available at the frame level, with 239 test
videos annotated. HR-Crime is a subset of the UCF-Crime dataset containing the same
categories. Table 8 shows the number of videos by category in the HR-Crime dataset. Since
it is a new dataset, many studies have not used it. Some examples of normal and abnormal
frames are shown in Figure 7.
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Figure 7. Examples of abnormal frames from the HR-Crime dataset are presented.

4.8. Comparison of Surveillance Datasets

The anomaly types in the datasets are listed in Table 9. It has been observed that hu-
mans mostly cause these anomalies, and the diversity of anomalies consisting of inanimate
objects is low. In addition, when we examine Table 10, we see that the datasets are not
recent and are generally low-resolution, and the ground truth data represent frame-level
anomalies. When the structure and contents of the datasets are examined, we can categorize
the datasets based on the recording environment and ground truth labeling.

Table 9. Anomalies of SVAD datasets.

Datasets Anomalies

Avenue Throwing objects, loitering, and running

UCF-Crime/HR-Crime Abuse, arson, arrest, assault, burglary, explosion, road accident, fighting, shooting, robbery,
shoplifting, stealing, and vandalism

UMN Unusual behavior of the crowd and running

ShangaiTech Chasing, brawling, running, and non-pedestrian assets, such as skaters and bicycles, on the
pedestrian path

Subway Entrance/Exit Wrong direction, no payment, unusual interactions, and loitering
UCSD Ped1/Ped2 Passage of non-pedestrian assets, such as vehicles and bicycles, from the pedestrian path

The CUHK Avenue, UCSD Ped2, and ShanghaiTech datasets are the most-suitable for
evaluating anomaly detection performance in surveillance videos. Future studies should
consider testing the proposed methods on these datasets to determine their effectiveness.
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Table 10. Comparison of existing SVAD datasets.

Datasets Release Year Ground Truth Resolution FPS Environment Normal
Frames

Abnormal
Frames

Training
Frames Test Frames Total Frames

Avenue 2013 frame/
pixel

640 × 360 25 outdoor 26,832 3820 15,328 15,324 30,652

UCF-Crime 2018 frame/
clip

320 × 240 30 indoor/
outdoor

N/A N/A 12,631,211 1,110,182 13,741,393

HR Crime 2021 frame/
clip

320 × 240 30 indoor/
outdoor

485,227 335,378 N/A N/A N/A

UMN 2009 frame 320 × 240 30 indoor/
outdoor

6165 1576 N/A N/A 7740

ShangaiTech 2016 frame/
pixel

856 × 480 - outdoor 300,308 17,090 274,515 42,883 317,398

Subway
Entrance 2008 frame 512 × 384 25 indoor 132,138 12,112 76,453 67,797 144,250

Exit 60,410 4491 22,500 42,401 64,901

UCSD
Ped1 2010 frame/

pixel
238 × 158 - outdoor 9995 4005 6800 7200 14,000

Ped2 360 × 240 2924 1636 2550 2010 4560
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4.8.1. Based on Recording Environment

Various applications, such as public monitoring, are used indoors and outdoors. How-
ever, applications such as traffic monitoring are primarily used in outdoor environments.
Examples of outdoor environments are train stations, parks, crosswalks, streets, etc.; exam-
ples of indoor environments are shopping malls, schools, factories, subways, etc.

Datasets produced in indoor environments are less affected by light changes and lens
distortions than datasets produced in outdoor environments. Outdoor environments are
heavily affected by weather events such as sun, clouds, rain, and snow.

We can separate the datasets produced in indoor and outdoor environments. Some
datasets consist of videos recorded in both environments. Table 11 shows the distribution
of the datasets by recording the environment. In selecting datasets, it is useful to consider
the effects of external factors on the datasets.

Table 11. Based on the recording environment.

Indoor Outdoor

UCF-Crime Avenue
UMN UCF-Crime
Subway Entrance UMN
Subway Exit ShanghaiTech

UCSD Ped1
UCSD Ped2

4.8.2. Based on Color Space

Previous research has demonstrated that, when constructing a three-channel model, it
is crucial to select an appropriate dataset carefully. Specifically, it has been noted that only
the UCSD and Subway datasets are represented in grayscale. In contrast, the remaining
datasets (UMN, Avenue, UCF-Crime, and ShanghaiTech) are represented in the RGB color
space. This is an important consideration when selecting a dataset for use in constructing a
three-channel model, as the dataset’s color space distribution can significantly impact the
overall accuracy and performance of the model. Table 12 shows the color space distribution
of the datasets.

Table 12. Based on the color space.

Grayscale RGB

UCSD Ped1 Avenue
UCSD Ped2 ShanghaiTech
Subway Entrance UMN
Subway Exit UCF-Crime

4.8.3. Based on Ground Truth Labeling

The process of labeling datasets can take various forms, with different approaches
being employed depending on the specific context and requirements of the study. However,
it is generally acknowledged that there are better methods than labeling at the level of entire
clips. This is due to the difficulty of explaining such labeling using real-world examples
and the likelihood of inaccuracies in the resulting data.

A more widely accepted method is frame-based labeling, which provides a more
accurate result by reducing the error rate. In certain cases, anomalies may occur at specific
positions within the analyzed scene. In these instances, labeling at the pixel level may
be employed to capture the anomaly in a particular spatial area of the scene. Table 13
illustrates the various labeling types commonly employed in the field.
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Table 13. Based on ground truth labeling.

Clip-Level Frame-Level Pixel-Level

UCF-Crime Avenue Avenue
UCF-Crime ShanghaiTech
UMN UCSD Ped1/Ped2
ShanghaiTech
UCSD Ped1/Ped2
Subway Entrance/Exit

All these different forms of labeling are called the “ground truth”, which refers to
information that is assumed to be true or correct. The various types of datasets that are
labeled in this way include clip-level (such as UCF-Crime), frame-level (such as UMN,
Avenue, UCF-Crime, ShanghaiTech, UCSD, and Subway), and pixel-level (such as Avenue,
ShanghaiTech, and UCSD).

5. Evaluation of the Performance of Existing Applications

Performance metrics are usually measured at the frame or pixel level concerning the
ground truth data in datasets. If an abnormal event is identified in a frame, it is categorized
as abnormal. The frame-level criterion considers only the entire frame. Instead of merely
determining whether a frame contains abnormal events, the pixel-level analysis seeks to
identify anomalous events within the frame. Therefore, the pixel-level criterion is better
for assessing the quality of an algorithm [86]. In pixel-level evaluations, the locations
of the detected objects are crucial. In rare cases, the detection can be performed at the
clip level. However, this criterion is not preferred because it needs to provide sufficient
evaluation details.

In anomaly detection studies, most models use the Receiver Operating Characteristic
Curve (ROC) and its associated Area Under the Curve (AUC) as metrics. These metrics
can be calculated by using a confusion matrix. Table 14 shows the general structure of the
confusion matrix and related evaluation measures. In addition, as seen in Figure 8, the ROC
curve shows the correlation between the false positive and true positive rates for different
parameter cut-off values. Another metric used in models is the Equal Error Rate (EER).
The EER selects the best threshold on the ROC curve to maximize the TPR and minimize
the FPR. However, according to recent studies [87,88], EER evaluation criteria result in a
severely unbalanced sample of normal and abnormal events. The performance comparison
of framework-level applications using the AUC and EER is summarized in Table 15. The
methods were published between 2016 and 2023.

Table 14. Confusion matrix and related evaluation measures.

Actual Class
True False

Predicted Class
True

True Positives
(TPs)

False Positives
(FPs)

False
False Negatives

(FNs)
True Negatives

(TNs)

True Positive Rate (TPR) = TP/(TP + FN)
False Positive Rate (FPR) = FP/(FP + TN)



Appl. Sci. 2023, 13, 4956 22 of 31

0.80.2 0.4 0.6 10
0

0.2

0.4

0.6

0.8

1

AUC

EER

ROC Curve

False positive rate (FPR)

T
ru

e 
p

o
si

ti
v
e

ra
te

 (
T

P
R

)

Figure 8. ROC curve—AUC.

Table 15. AUC/EER comparison of the accuracies of the various techniques with frame-level criterion.

CUHK
Avenue

Subway
Entrance

Subway
Exit

UCSD
Ped1

UCSD
Ped2

Shanghai
Tech

UCF
Crime

Year Methods AUC EER AUC EER AUC EER AUC EER AUC EER AUC EER AUC EER

2016 SL-HOF+FC [89] - - - - - - 87.4 18.0 95.07 9.0 - - - -
ConvAE [90] 70.2 25.1 94.3 26.0 80.7 9.9 81.0 27.9 90.0 21.7 - - - -

2017 ConvLSTM-AE [91] 77.0 - 93.3 - 87.7 - 75.5 - 88.1 - - - - -
S-RBM [92] 78.7 27.2 - - - - 70.2 35.4 86.4 16.4 - - - -
ST-AE [93] 80.3 20.7 84.7 23.7 94.0 9.5 89.9 12.5 87.4 12.0 - - - -
3D gradients+conv5 [88] 80.6 - 70.6 - 85.7 - 68.4 - 82.2 - - - - -

2018 Baseline [57] 85.1 - - - - - 83.1 - 95.4 - 72.8 - - -
WCAE-LSTM [94] 85.7 - - - - 85.1 - 92.6 - - - - -
NNC [95] 88.9 - 93.5 - 95.1 - - - - - - - - -

2019 TSN [96] - - - - - - - - 92.8 - - - 78.0 -
MemAE [97] 83.3 - - - - - - - 94.1 - 71.2 - - -
sRNN-AE [98] 83.4 - 85.3 - 89.7 - - - 92.2 - 69.6 - - -
Attention [99] 86.0 - - - - - 83.9 - 96.0 - - - - -
AnomalyNet [74] 86.1 22.0 - - - - 83.5 25.2 94.9 10.3 - - - -
BMAN [100] 90.0 - - - - - - - 96.6 - 76.2 - - -
3D ResNet [101] - - - - - - - - - - - - 76.6 -

2020 Dual D-b GAN [102] 84.9 - - - - - - - 95.6 - 73.7 32.2 - -
r-GAN [103] 85.8 - - - - - 86.3 - 96.2 - 77.9 - - -
FFP+MS SSIM+FCN [104] 85.9 20.4 - - - - 84.5 22.3 95.9 11.1 73.5 32.5 - -
Deep AE [105] 86.0 - - - - - - - 96.5 - 73.3 - - -
Siamese CNN [20] 87.2 18.8 - - - - 86.0 23.3 94.0 14.1 - - - -
P w/ Mem [106] 88.5 - - - - - - - 97.0 - 70.5 - - -
Self-reasoning [107] - - - - - - - - 94.4 - 84.1 - 79.5 -

2021 Spatial+temporal [108] 80.3 - 87.3 - 90.8 - - - 84.5 - - - - -
HMCF [109] 83.2 20.2 - - 94.2 12.6 93.5 17.4 93.7 18.8 - - - -
Multi-task L. [110] 86.9 - - - - - - - 92.4 - 83.5 - - -
Decoupled Arch. [111] 88.8 - - - 84.7 - 95.1 - 92.4 - 74.2 - - -
GMM-DAE [112] 89.3 - - - - - - - 96.5 - 81.2 - - -
DMRMs [113] - - - - - - - - - - 68.5 - 81.2 -

2022 Att-b residual AE [16] 86.7 - - - - - - - 97.4 - 73.6 - - -
CR-AE [114] - - - - - - - - 95.6 - 73.1 - - -
EADN [115] 97.0 - - - - - 93.0 - 97.0 - - - 98.0 -
DR-STN [116] 90.8 11.0 - - - - 98.8 2.9 97.6 6.9 - - - -
AMSRC [117] 93.8 - - - - - - - 99.3 - 76.6 - - -

2023 DMAD [118] 92.8 - - - - - - - 99.7 - 78.8 - - -
Adjacent frames [119] 90.2 - - - - - - - 96.5 - 83.1 - - -

Higher AUC and lower EER are better.

For the CUHK Avenue dataset, the prediction-based EADN [115] method had the
highest AUC of 97.0%. The AMSRC method [117] achieved the second-best result with an
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AUC of 93.8%. However, the ConvAE method [90] had the worst result with an AUC of
70.2% and an EER of 25.1%.

For the Subway Exit dataset, the NNC [95] method demonstrated the best performance
with an AUC of 95.1%. The second-best method was HMCF [109] with an AUC of 94.2%.
The worst-performing method on this dataset was ConvAE [90] with an AUC of 80.7%
and an EER of 9.9%. For the Subway Exit dataset, the NNC method [95] showed the best
performance with an AUC of 95.1%. The HMCF method [109] achieved the second-best
result with an AUC of 94.2%. However, the ConvAE method [90] had the worst result with
an AUC of 80.7% and an EER of 9.9%.

For the UCSD Ped1 dataset, the reconstruction-based DR-STN method [116] exhibited
the best performance with an AUC of 98.8%. The second-best method was decoupled
Arch. [111] with an AUC of 95.1%. The worst-performing method on this dataset was
S-RBM [92] with an AUC of 70.2%. For the UCSD Ped2 dataset, the reconstruction-based
DMAD [118] method achieved the best performance with an AUC of 99.7%. The second-
best method was AMSRC [117] with an AUC of 99.3%, and no EER value was reported.
The worst-performing method on this dataset was 3D gradients+conv5 [88] with an AUC
of 82.2%.

For the Shanghai Tech dataset, the self-reasoning method [107] showed the best
performance with an AUC of 84.1%. The multi-task L. method [110] had the second-best
result with an AUC of 83.5%, but the sRNN-AE method [98] had the worst result with an
AUC of 69.6%.

Finally, for the UCF-Crime dataset, the EADN method [115] demonstrated the best
performance with an AUC of 98.0%. However, the 3D ResNet method [101] had the worst
result with an AUC of 76.6%.

The results in Table 15 demonstrate that there is no one-size-fits-all solution to anomaly
detection, and the choice of the method and architecture depends on the specific dataset
and the task at hand. The results also highlight the importance of benchmarking and
comparing methods on multiple datasets to obtain a more complete understanding of their
strengths and weaknesses.

6. Discussion

In this section, we discuss the current developments, existing limitations, and current
challenges, as well as provide insights into future directions.

6.1. Current Developments

Significant advancements have been witnessed in the field of SVAD in recent years
with the use of AI techniques. This sub-section discusses current developments in AI
techniques in SVAD.

UL and SSL algorithms (AE, GAN, etc.) are more successful than SL algorithms (GMM,
HMM, etc.) in SVAD. This is due to the lack of labeled data, the presence of unknown
anomalies, the flexibility to adapt to different situations, and the ability to handle large
datasets. SL algorithms require labeled data for training, making it difficult to apply them in
scenarios where labeled data are scarce. UL and SSL algorithms do not require labeled data
and can detect unknown anomalies, making them more flexible in adapting to different
situations. Additionally, they can handle large amounts of data, making them more suitable
for surveillance video feeds that generate massive amounts of data.

AI techniques, such as CNNs, LSTMs, and GANs, are extensively employed in the
field of SVAD and have demonstrated highly promising outcomes. In particular, GANs
can learn from large datasets and generate new data similar to the original, making them
particularly well-suited to detecting anomalies in surveillance footage where unusual
events may not have been previously observed. This approach, known as generative
modeling, can be more effective than traditional supervised learning methods that rely on
labeled data, which can be scarce and costly to obtain. By training a GAN on a large dataset
of normal activities, it is possible to generate a model that can identify anomalous behavior
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in real-time. These techniques can learn complex patterns and relationships directly from
the data. This allows them to detect subtle anomalies that may be missed by traditional
statistical or classification-based algorithms.

Reconstruction-based (CAE, GAN, etc.) and prediction-based (LSTM, ViT, etc.) algo-
rithms are more effective than statistics-based (GMM, etc.) and classification-based (kNN,
etc.) algorithms in SVAD in terms of their robustness, flexibility, and efficiency. These
algorithms are designed to learn and extract features from video data, making them less
sensitive to irrelevant information and better able to adapt to changing environmental
conditions. In addition, these algorithms are efficient in processing large amounts of data
quickly, which makes them suitable for surveillance applications that require real-time
anomaly detection. On the other hand, statistics-based and classification-based algorithms
may require significant computational resources and may not be as effective at detecting
anomalies in real-time. Overall, reconstruction-based and prediction-based algorithms
offer better performance and reliability in SVAD.

Furthermore, there has been a growing interest in developing real-time anomaly
detection systems that can detect anomalies in surveillance videos in real-time. Real-time
anomaly detection is important for critical applications, such as security and public safety,
where the timely detection of anomalies can prevent serious incidents.

SVAD’s lack of available datasets can be attributed to several factors, including con-
cerns around data privacy, the high cost and time requirements for collecting and labeling
data, difficulties in detecting anomalies in real-world scenarios, and a general lack of stan-
dardization within the field. These factors pose significant challenges for the development
and evaluation of algorithms in SVAD. However, there are initiatives underway to address
these challenges. Some of these initiatives include the creation of privacy-preserving data
collection techniques and standardized datasets for benchmarking.

Determining which dataset is better can be challenging due to the presence of global
and local features that indicate abnormal events. Local features are emphasized in datasets
such as UCSD, ShanghaiTech, and Subway, while global features are more prominent in
UCF-Crime. The ground-truth values of these datasets are crucial for developing high-
performance methods that require low computational complexity and memory require-
ments. It is important to determine the starting point of an abnormal situation, such as
whether it begins with the subject’s entrance or at the time specified by the dataset producer.
For instance, it is worth considering whether the detection of a ball being thrown or the
appearance of a ball on stage signifies the start of an abnormal situation.

Generally, in SVAD datasets, the training data typically contain only normal data,
while the testing data contain both normal and aberrant data. This is due to the low
frequency of abnormal events. Most methods for SVAD datasets are prediction- and
reconstruction-based. However, the content of the training and testing data could be more
clearly defined.

6.2. Limitations and Challenges

The field of SVAD poses several challenges, such as processing vast amounts of video
data, performing real-time analysis, and distinguishing normal from abnormal behavior.
Efficient algorithms that utilize parallel computing and GPU acceleration are necessary to
meet the computational demands of processing large volumes of surveillance video data in
real-time. Additionally, distinguishing normal from abnormal behavior across different
contexts and types is another key challenge in SVAD. Machine learning models can be
trained to identify patterns and features in the video data, enabling them to differentiate
between normal and abnormal behavior.

False detection poses a major obstacle to the effective implementation of SVAD sys-
tems, as it can be triggered by changes in illumination, camera motion, occlusions, and
scene clutter [10]. To mitigate this challenge, a range of techniques can be applied, including
feature extraction, anomaly detection algorithms, and deep-learning-based methods. Addi-
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tionally, strategies such as temporal modeling and background subtraction are employed
to minimize the occurrence of false detections.

The behavior of people and objects can vary significantly, making it challenging to
identify what constitutes an anomaly. For example, a person running in a park is normal
behavior, but the same person running in a shopping mall may be considered abnormal.
Therefore, the detection system must be able to learn and distinguish between different
behaviors to identify anomalies accurately.

Tracking individuals and objects and identifying anomalies in their behavior is a
complex task, particularly in challenging environments. Algorithms may struggle with
accurately tracking and identifying objects, leading to errors and false positives. To achieve
greater accuracy, sophisticated algorithms must be employed to analyze and interpret data.

Imbalanced datasets, where normal activities occur more frequently than anomalous
events, can lead to model bias toward predicting normal activities. Deep learning models
can automatically extract features from video frames and learn to detect anomalies despite
differing lighting conditions, camera angles, and object sizes. Additionally, transfer learning
techniques can adapt models trained on one dataset to another with similar characteristics,
reducing the need for large amounts of labeled data.

Researchers face several challenges when working with SVAD datasets. One major
challenge is the need for ground truth video sequences to analyze the data accurately.
However, creating and annotating these sequences with the required level of detail is a very
time-consuming task. Additionally, there are other obstacles, such as a shortage of training
samples and annotations, a lack of diversity in terms of scenes and viewing angles, the
exclusion of adverse weather conditions and varying illumination, insufficient coverage
of anomaly events, and the limitations of camera devices [120]. These factors hinder the
development of accurate and reliable SVAD analysis models.

Environmental noise and inadequate resilience make it more difficult to distinguish
between normal and abnormal occurrences, resulting in false alarms or the failure to notice
some events. However, deep learning techniques have shown potential in automatically
learning important data features. Feature extraction and ensemble methods have also been
utilized to develop effective anomaly detection systems that consider the challenging and
noisy environments in which they will be utilized.

SVAD involves analyzing features within a video scene to identify patterns and detect
anomalies. However, processing features that do not fit the expected patterns can lead
to unnecessary computation, resulting in slower and less accurate detection. Therefore,
selecting the appropriate features is crucial for effective anomaly detection in videos.

In order to tackle the challenges faced by SVAD systems in real-world scenarios,
researchers need to come up with innovative methods that can enhance their accuracy
and effectiveness. However, it is worth noting that there may be certain challenges and
trade-offs associated with overcoming these challenges. For instance, Tsiktsiris et al. [121]
highlighted that collecting more data or performing further fine-tuning may be necessary
to achieve better performance. Similarly, He et al. [122] identified the primary challenge of
spatially and temporally localizing anomalies in SVAD systems. These studies underscore
the need for ongoing research and development to address the complex challenges involved
in building effective anomaly detection systems.

6.3. Future Directions

Future research problems are selecting the proper video features, selecting the best
classifiers for improved performance in anomaly detection, and creating an appropriate
performance–cost balance.

SVAD has benefited from the successful application of UL techniques. However, to
further enhance the performance of these methods, it may be beneficial to supplement
them with other techniques, such as image processing or SL. By combining these different
methods, we can potentially improve the accuracy and effectiveness of anomaly detection
in videos. Moreover, UL techniques enable machine learning from unlabeled videos,
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eliminating the need for manually tagging significant amounts of data, as required in SL
methods. As future studies focus on training DNNs, it is crucial to prioritize approaches
that require attention from a human.

Research can focus on improving prediction models to capture complex spatiotem-
poral patterns in surveillance videos. This can involve integrating attention mechanisms,
graph-based models, or other innovative methods to enhance accuracy and robustness. An-
other area of study is developing more resilient reconstruction models that can effectively
handle common difficulties such as occlusions and lighting changes. This could entail
incorporating techniques such as adversarial training or domain adaptation to improve the
robustness of the reconstruction process.

In this field, researchers commonly use the “UCSD Ped2” and “CUHK Avenue”
datasets, which were recorded outdoors. However, it is apparent that we need to im-
prove the quantity and quality of datasets that include both synthetic abnormal events
created within specific scenarios and real-world abnormal events captured by actual surveil-
lance cameras. To improve video surveillance, we need higher-resolution datasets and
greater diversity in anomaly detection techniques.

Integrating SVAD with other technologies can further enhance its capabilities. For
instance, combining video analytics with sensor data from sources such as audio, tempera-
ture, or biometric data can provide a more comprehensive and precise understanding of
anomalous events.

Achieving effective SVAD over edge networks is challenging due to the computational
cost of deep learning models. Future directions should focus on optimizing online learning
techniques for edge devices to enable real-time SVAD in resource-constrained environments.

To improve the flexibility and efficiency of SVAD models, they can be made adaptable
to diverse data by incorporating parameters such as object/individual locations, distances,
and motion trajectories into the model’s design. This will enable real-time detection of
anomaly patterns in video frames, including those that have not been seen before.

Incorporating human feedback and expertise is crucial for effective anomaly detection
in human-in-the-loop systems. One possible avenue for future development is the use of
human-in-the-loop surveillance video anomaly detection, which would allow operators to
provide feedback, refine the model, and contribute their domain-specific knowledge. This
approach has the potential to yield more precise and relevant anomaly detection results
that are tailored to specific contexts.

As technology continues to advance, we can expect to see a proliferation of anomaly
detection models designed for specific domains. These models will rely on domain-specific
data to pinpoint unusual patterns and behaviors that may signal potential issues. By
incorporating industry-specific characteristics, these models will offer even greater accuracy,
providing more nuanced insights to support better decision-making and outcomes.

7. Conclusions

In conclusion, this survey article provided a comprehensive overview of the current
state-of-the-art in the field of SVAD and the various AI techniques that have been applied
to this problem. The review highlighted the methods, datasets, challenges, and future
directions explored in previous studies. The need for automated systems for detecting
abnormal events in real-time has been driven by the increasing use of CCTV and other video
recording systems, leading to an overwhelming amount of video data being produced.
The ability to learn from new observations and continuously improve anomaly detection
capabilities is also paramount in video surveillance.

The field of SVAD is expected to see significant advancements in the coming years,
thanks to the rapid progress in AI techniques and the availability of reasonably priced hard-
ware. The survey has shown that prediction-based and reconstruction-based techniques are
at the forefront of AI-based SVAD and are expected to provide improved anomaly detection
capabilities and enable real-time monitoring of large-scale video surveillance systems.
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It is also worth noting that the field of SVAD is still an active area of research, and there
is still much room for improvement. Future research should focus on developing more
robust and efficient algorithms and addressing existing methods’ limitations. Additionally,
more comprehensive and diverse datasets should be used to evaluate the performance of
the proposed methods. Using large-scale datasets with various types of anomalies and
scenarios will help improve the generalization capabilities of the proposed methods.

In summary, this survey article provided an up-to-date overview of the current state-of-
the-art in the field of SVAD and highlighted the most-significant developments, techniques,
and datasets used in this area. Soon, prediction-based and reconstruction-based techniques
will be the trend in AI-based SVAD, providing improved anomaly detection capabilities
and enabling real-time monitoring of large-scale video surveillance systems.
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