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Abstract: The adoption of self-driving technologies requires addressing public concerns about
their reliability and trustworthiness. To understand how user experience in self-driving vehicles is
influenced by the level of risk and head-up display (HUD) information, using virtual reality (VR) and a
motion simulator, we simulated risky situations including accidents with HUD information provided
under different conditions. The findings revealed how HUD information related to the immediate
environment and the accident’s severity influenced the user experience (UX). Further, we investigated
galvanic skin response (GSR) and self-reported emotion (Valence and Arousal) annotation data and
analyzed correlations between them. The results indicate significant differences and correlations
between GSR data and self-reported annotation data depending on the level of risk and whether
or not information was provisioned through HUD. Hence, VR simulations combined with motion
platforms can be used to observe the UX (trust, perceived safety, situation awareness, immersion and
presence, and reaction to events) of self-driving vehicles while controlling the road conditions such
as risky situations. Our results indicate that HUD information provision significantly increases trust
and situation awareness of the users, thus improving the user experience in self-driving vehicles.

Keywords: autonomous vehicles; driving simulator; human-machine interaction; physiological
signal; reliability; user experience; virtual reality

1. Introduction

In recent years, the development of self-driving vehicles has received significant
attention because they have the potential to navigate the roads without human intervention.
Self-driving vehicles offer better driving experiences with increased safety [1] and traffic
efficiency [2]. However, despite the comfort that self-driving vehicles are expected to
provide, consumers are known not to fully trust self-driving cars [3]. For the market to
adopt self-driving technology, drivers must trust that it is safe; thus, knowing the factors
that affect drivers’ trust is crucial.

Additionally, the transparency of the artificial intelligence (AI) model employed is
considered an essential requirement for self-driving vehicles because it significantly affects
drivers’ trust [4]. AI models are widely accepted in self-driving areas because of their high
performance and decision-making efficiency. To reflect transparency features in AI models,
research has been conducted into explainable AIs (XAI) to apprise drivers of the results
of the AI’s decision-making [5,6]. One method for visualizing the decisions made by the
AI in the autonomous vehicle is to use head-up displays (HUDs) [7]. These are displays
that appear in the driver’s forward-looking line of sight while driving, thus, providing
information through a HUD can effectively build the drivers’ trust [8].
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In this study, we chose the level of risk and that of the road information provision
on HUDs as two dimensions, based on previous studies [9,10]. Morra et al. showed
that providing evidence that supports self-driving vehicles’ decisions is important for
cultivating trust [10]. Ajenaghughrure et al. observed changes in trust according to the
degree of risk. Although these factors affect trust in self-driving vehicles, only few studies
have considered both factors in a single scenario. Based on these insights, we developed
realistic driving content in virtual reality (VR) that simulates traffic signals. This allowed us
to expose subjects to a range of risky driving scenarios, including simulated car accidents,
and track their reactions and perceptions of self-driving vehicles under different conditions.
The contributions of this study are as follows: (1) We developed a realistic traffic VR
system that provides an immersive self-driving vehicle experience with synchronized
physical movement to the users. The developed system enables risky simulations which
are impossible to be conducted in the real world, and enables complete control of road
conditions to test the same scenario repeatedly. (2) We observed the UX change as the level
of the information provided and the risk changed using the self-driving VR system. (3) We
observed that the physiological and self-reported annotation data significantly change as
the level of the information provided and the risk changes using the self-driving VR system.
Eight scenarios were developed to observe the effects of two factors(level of risk, and
level of information provision). We conducted experiments on 52 subjects and analyzed
the quantitative and qualitative UX results to provide insights into designing self-driving
vehicle experiences.

To assess trust in self-driving vehicles under these conditions, we considered both
quantitative and qualitative metrics. We collected self-reported questionnaire data and
galvanic skin responses (GSR). By comparing quantitative and qualitative data, we ensured
the use of self-reported measures of valence and arousal. Valence and arousal(VA) are two
commonly used dimensions of human emotion, and we validated whether our self-driving
simulation provides an appropriate sense of emotion to users by observing VA annotation
values. By analyzing the impact of information provision through HUDs at various risk
levels in the VR simulation, we collected insights into how these factors influence the
adoption of self-driving vehicles in the real world.

2. Related Works
2.1. VR Use Cases and Effects in Experiments Related to Autonomous Vehicles (AVs)

Virtual reality (VR) enables a simulated experience that allows users to engage as if
they are in a real environment [11]. Based on this feature, various researches have con-
ducted experiments using VR simulators, including observing pedestrian behavior [12],
safety education [13], advancement of AV safety [14], and communication between AV
and its surroundings [15]. By using VR for AV research, subjects can proceed in a real-
istic environment without exposure to the physical risks in the real environment. Thus,
user behavior observation can be performed in completely controlled scenarios using VR
simulations [14].

Deb et al. evaluated the suggestions made by pedestrians for the external features of
fully autonomous vehicles (AVs) [12]. The study assessed the potential external features of
a self-driving vehicle and identified the ones that would aid pedestrians in comprehending
the actions of the vehicle at a crosswalk, boost their acceptance of self-driving cars, and
affect how they cross the street. Nascimento et al. investigated the training and assessment
of driving algorithms in VR environments [14]. The study aimed to comprehend the use
of VR in boosting the safety of automated vehicles. Colley et al. has seven publications
and preprints that discuss the use of VR in research on AV external communications [15].
Through these studies, it can be confirmed that VR is being used in fields which require
controlled scenarios such as self-driving vehicle studies.
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2.2. Prior Research on the Degree of Risk and the Reliability of Users According to
Information Provision

Previous studies have investigated how risks affect users’ trust before and after inter-
action with AVs. Experiments were conducted under four critical conditions (Very High
Risk, High Risk, Low Risk, and No Risk) based on vehicle safety and integrity levels [9].

Morra et al. studied the virtual reality-driven simulators’ role in trust building and
human–machine interface (HMI) design for AVs [10]. Their research proposed a method to
confirm the user experience in autonomous vehicles (AVs) using continuous and objective
data obtained from physiological signals of the users during their immersion in VR driving
simulations, demonstrating the usefulness of HMI design, specifically in the context of
HUDs for AVs.

2.3. Quantitative Measurement of Valence and Arousal Using Galvanic Skin Response (GSR)

In emotion studies, valence and arousal are the two dimensions commonly used to
represent human emotions. Valence refers to the degree of pleasantness or unpleasantness
in the given emotion. In this study, an emotion with a higher valence value was considered
to be positive. Arousal refers to the level of psychological activation. A higher arousal value
indicates an intense feeling. Using the valence and arousal model, human emotions can be
plotted on a two-dimensional plane, making it easier to assess emotions quantitatively.

Physiological signals were used to measure the valence and arousal values of the
subjects. Typically, GSR measurements are used to infer changes in the emotional state
of an individual because these changes can lead to change in sweat gland activity, which
is reflected in the GSR signal. Several emotion studies have utilized GSR signals for
automatically detecting valence and arousal. Tarnowski et al. invoked emotions by showing
videos and collecting EEG and GSR signal data labeled by valence and arousal, and the
GSR amplitude was correlated with valence and arousal values [16]. Raheel et al. used a
machine learning approach to show the correlation between various physiological signals,
such as EEG, GSR, PPG, valence, and arousal [17].

3. Study Design
3.1. Experimental Environment and Procedure
3.1.1. AV Simulator

For immersive AV simulation, we used a virtual environment based on the Unity
game engine and Oculus Quest 2 as the VR head-mounted display(HMD) as shown in
Figure 1b. The HMD offers 1832 × 1920 resolution per eye, with 113.46 degrees of Field
of View (FoV) and a display refresh rate of 120 Hz. The participants were asked to hold a
VR controller in their hand, which is a joystick to annotate their valence and arousal. The
functionality of the VR controller is discussed in Section 3.2. To create a motion simulator
that reflected the size and movement of a real vehicle, a vehicle mock-up was manufactured
and fixed to a PS-3TM-LP550 motion simulator [18]. The motion platform is shown in
Figure 1a. This product can simulate three degrees of freedom (heave, roll, and pitch). The
payload was 550 kg, the operating range was up to 0.14 m for the heave, the roll value
was from −10.8 degrees to 10.8 degrees, and the pitch range was from −12.1 degrees to
13.1 degrees. The speeds were 0.276 m/s, 18 degree/s, and 22 degree/s for heave, roll,
and pitch, respectively. The corresponding accelerations were 0.4 g, 250 degrees/s2, and
250 degrees/s2, for heave, roll, and pitch, respectively. An aluminum profile-based mock-
up with a width of 1800 mm and a depth of 2500 mm was installed on the motion platform
to produce an autonomous driving simulator almost identical in size to a small car. The
movements of the vehicle in the virtual environment and the real simulator were matched
by obtaining the angular velocity value from the vehicle model in the Unity engine and
simulating it.



Appl. Sci. 2023, 13, 4952 4 of 17

Figure 1. (a) Front view of the Motion Platform. An aluminum profile-based mock-up was built to
give realistic riding experience to the users. PS-3TM-LP550 motion was used to provide realistic
motions of the virtual self-driving vehicle in the VR simulation. (b) Subject on Motion Platform
wearing Oculus Quest 2 VR HMD, controlling the self-annotation panel with the joystick. The HMD
offers a realistic view of the graphical simulations to the users.

3.1.2. Scenario

We provided eight scenarios according to the risk level (No Risk, Low Risk, Medium
Risk, and High Risk) and whether the information was provided (Information Given,
Information Not Given) to the user. Each scenario was approximately 1 min long, and an
event occurred 10 s before the end of the scenario. All subjects were presented with the
same simulated scenario. All the scenarios and the detailed description of each scenario is
shown in Figure 2.

• No Risk—The self-driving vehicle drives normally from the beginning to the end of a
route without being in any danger.

• Low Risk—The self-driving vehicle is not directly impacted. There is a sudden change
in speed due to situations such as a sudden stop by an object appearing on the road.

• Medium Risk—The self-driving vehicle receives a direct weak impact. A minor
accident is caused by another vehicle driving on the road.

• High Risk—The self-driving vehicle is directly impacted. A serious accident is caused
by another vehicle driving on the road. A detailed description of the presence or
absence of information provision of the AR display is as follows:

• Information Given—A state in which the self-driving vehicle displays the information
and the route of the currently detected object on the HUD;

• Information Not Given—A state in which the AV provides no information to the HUD;

Figure 2. Eight scenarios categorized by level of risk and information provision on HUD.

3.1.3. Procedure

Fifty-two subjects with an average age of 21.2 and a standard deviation of 3.49
(M = 21.2, SD = 3.49) were recruited for this study and they received about 15 dollars
after the experiments. Among 52 subjects, 25 were male and 27 were female. Using the
Latin Square design, we randomized the eight scenarios in different orders for each subject
in the experiment. Before boarding the motion platform, the subjects wore the Empatica
E4 sensor and listened to a brief explanation of the progress of the experiment. GSR data
were recorded at a sampling rate of 4 Hz through the E4 Realtime API in each scenario.
After boarding the motion platform, each subject wore a VR HMD and was provided with
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a VR controller. Subjects were asked to self-evaluate their emotions for the experience of
the autonomous vehicle simulation with the VR controller along the two axes: Valence
and Arousal. During the practice scenario, the subjects sufficiently practiced the emotion
annotation and then proceeded to the main experiment. In cases where they experienced
severe motion sickness, the experiments were terminated. The subjects were asked to
complete an interim survey after each scenario; and a post-survey after all scenarios. The
experimental timeline is shown in Figure 3.

Figure 3. Timeline of the Experiment.

3.2. Data Collection and Statistical Analysis

We collected quantitative GSR data, self-reported valence and arousal annotation data,
and qualitative data from a questionnaire. The subjects were asked to annotate valence
and arousal in using the joystick of the VR controller. The subjects are able to move the
black dot shown in Figure 4 (left) with their VR controller. In the front view inside the VR
simulation, a panel consisting of two axes, valence, and arousal, is shown to the subject as
Figure 4 (right). By moving the black dot with the VR controller, subjects are able to inform
about their perceived emotions in real time. To help the subjects when performing the
annotation, we provided labels of emotions in natural language (e.g., Excited, Happy, Sad,
etc.), so the subjects were able to use these cues to directly perceive their feelings without
having to think about valence and arousal.

Figure 4. The front view of the subject and Valence and Arousal Annotation Graph.

3.2.1. Quantitative Measurement

Physiological data provide information on the user’s emotional state, in particular,
GSR data are sensitive to arousal and are important indicators of the user’s arousal state.
GSR data can be separated into skin conduction level (SCL) and skin conductance response
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(SCR). SCL provides an overall emotional state, and SCR provides information on responses
to specific stimuli [19,20]. The magnitude of SCR is related to a perceived threat [10].
Therefore, SCR was used to observe the responses to events. The MATLAB-based software
Ledalab was used to extract the SCL and SCR features from the GSR raw data. Raw GSR
data were pre-processed through an 8 Hz Gaussian Window and adaptive smoothing, and
continuous decomposition analysis (CDA) was conducted to separate the GSR data into
tonic (SCL) and phasic (SCR) elements. We also applied the min-max normalization to the
GSR phasic data to minimize the differences between people. For each participant, the
maximum and minimum values of GSR phasic data during the entire 8 scenarios were
extracted and normalized to a value between 0 and 1 using the following Equation (1).

NormalizedX =
X − Xmin

Xmax − Xmin
(1)

The following GSR data features and self-reported annotation data features were
extracted before and after an event to isolate the data in response to the event. Data analysis
was performed on 45 out of the 52 subjects. Four subjects with abnormal GSR data were
excluded and three subjects were excluded from the analysis because the annotation data
after the event occurred was missing.

• The maximum value of GSR data in the 10 s before and after the event (GSR Max)
• The average value of GSR data in the 10 s before and after the event (GSR Mean)
• The maximum value of GSR Tonic data in the 10 s before and after the event (GSR

Tonic Max)
• The average value of GSR Tonic data in the 10 s before and after the event (GSR

Tonic Mean)
• The maximum value of GSR Phasic data in the 10 s before and after the event (GSR

Phasic Max)
• The average value of GSR Phasic data in the 10 s before and after the event (GSR

Phasic‘Mean)
• The maximum value of arousal data in the 10 s before and after the event (Arousal Max)
• The average value of arousal data in the 10 s before and after the event (Arousal Mean)
• The minimum value of arousal data in the 10 s before and after the event (Arousal Min)
• The maximum value of valence data in the 10 s before and after the event (Valence Max)
• The average value of arousal data in the 10 s before and after the event (Valence Mean)
• The minimum value of valence data in the 10 s before and after the event (Valence Min)

3.2.2. Qualitative Measurement

We surveyed user experiences of each scenario in autonomous driving simulators.
We measured trust, perceived safety, immersion and presence, situational awareness, and
reaction to events using questionnaires to evaluate the scenario experience. A list of
questions is presented in Tables 1–4.

After the subjects experienced all eight scenarios, we investigated whether there was a
difference in experience according to the level of risk and information provision on HUD
(Table 5).

Table 1. Trust [21] and Perceived Safety [22]: Questionnaire list.

Component Item Questionnaire

1 It may be on an autonomous vehicle
Trust 2 Autonomous vehicles are reliable

3 Overall, I trust autonomous vehicles.

4 I felt it would be dangerous to use an autonomous vehicle
Perceived

Safety 5 I felt safe while using the vehicle

6 I believe in this vehicle
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Table 2. Immersion and Presence [23]: Questionnaire list.

Item Questionnaire

1 I felt a sense of being immersed in the virtual environment
2 I did not need to feel immersed in the virtual environment to complete my task
3 I had a sense of presence (i.e., being there)
4 The quality of the image reduced my feeling of presence
5 I thought that the field of view enhanced my sense of presence
6 The display resolution reduced my sense of immersion
7 I felt isolated and not part of the virtual environment
8 I had a good sense of scale in the virtual environment
9 I often did not know where I was in the virtual environment

10
Overall I would rate my sense of presence as: very satisfactory, satisfactory,
neutral, unsatisfactory or very unsatisfactory

Table 3. Situation awareness [24]: Questionnaire list.

Item Questionnaire

1 How changeable is the situation?
2 How complicated is the situation?
3 How many variables are changing within the situation?
4 How aroused are you in the situation?
5 How much are you concentrating on the situation?
6 How much is your attention divided in the situation?
7 How much mental capacity do you have to spare in the situation?
8 How much information have you gained about the situation?
9 How familiar are you with the situation?

Table 4. Reaction to Events [10]: Questionnaire list.

Item Questionnaire

1 The situation was dangerous
2 The event took me by surprise
3 I was able to perceive the potential danger before it affected the vehicle’s performance
4 The interface provided me useful information to foresee the event

Table 5. Post Questionnaire list.

Item Questionnaire

1 In a driving situation without any risk (a scenario in which no accident occurred),
a vehicle in which information was provided on HUD was felt to be safer.

2 In a low-risk driving situation (sudden stop by a pedestrian),
a vehicle in which information was provided on HUD was felt to be safer.

3 In a medium-risk driving situation (direct weak impact by a car coming from behind),
a vehicle in which information was provided on HUD was felt to be safer.

4 In a high-risk driving situation (serious car accident),
a vehicle in which information was provided on HUD was felt to be safer.

5 In the presence of AR information,
the trust in autonomous vehicle increase as the risk level of the scenario increased.

6 In the absence of AR information,
the trust in autonomous vehicle increase as the risk level of the scenario increased.

3.2.3. Statistical Analysis

Repeated analysis of variance (ANOVA) was conducted using JASP to confirm the
significance of the quantitative and qualitative evaluations for all eight scenarios. Post-hoc
comparisons were performed by applying Bonferroni correction. When the p-value was
0.05 or less, a statistically significant difference was determined. Python was used for GSR
and VA data analysis and feature extraction.
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4. Results
4.1. GSR Analysis Data

The features from the GSR data increased as the risk level of the scenario increased,
indicating that the risk scenarios that we implemented were designed properly to invoke
the intended relative level of intense emotions. Thus, we were able to validate that the
scenarios designed with higher risk induced intense feelings in the subjects. We analyzed
the GSR phasic data in the 10 s before and after the event in all eight cases, and extracted the
maximum and mean values . We performed repeated measures ANOVA analysis on these
features for a total of eight scenarios using JASP software. The analysis revealed significant
differences according to the risk level for the two features of GSR Phasic Max and GSR
Phasic Mean as shown in Figure 5: GSR Phasic Max, F(3, 132) = 34.871, p < 0.001; GSR Phasic
Mean, F(3, 132) = 25.567, p < 0.001. We conducted the post-hoc analysis to find the change
in GSR feature values according to the level of risk and information on the HUD. In the case
of GSR Phasic Max, the high-risk condition was significantly higher than the medium-risk
(p = 0.003), low-risk (p < 0.001), and no-risk conditions (p < 0.001). In the case of medium
risk, the low-risk (p < 0.001) and no-risk conditions were significantly higher than that in the
control condition (p < 0.001). In addition, when the AR information was provided, the value
of GSR Phasic Max was slightly higher than that when the information was not provided
(p = 0.350). In the case of GSR Phasic Mean, the high-risk condition was significantly higher
than the medium-risk (p = 0.001), low-risk (p < 0.001), and no-risk conditions (p < 0.001).
The medium-risk condition was significantly higher than the low-risk (p < 0.001) and the
no-risk (p = 0.004) conditions. In addition, when information was provided, the value
of GSR Phasic Mean was slightly higher than when the information was not provided
(p = 0.735). From these results, we can validate the design of the risk scenarios.

Figure 5. A graph that compares the maximum, mean, and accumulation value of GSR phasic data
according to risk level and whether or not information was provisioned through HUD. The use of
asterisks in the figure indicates statistical significance. Two (**) denotes a p-value less than 0.01, while
three (***) asterisks denote p-values less than 0.001, respectively.

We investigated any significant changes in the GSR phasic data before and after the
event. Figure 6 left shows the average GSR phasic data in the 10 s before and after the event
for each case for the 45 subjects. From the graph, we can see that there is a rapid change
in the GSR phasic value due to the event occurrence for high-risky and medium-risky
conditions. In order to compare statistical values, we compared the maximum values
of GSR phasic data, 10 s before and after the event occurred. We also found that there
was a significant increase in the GSR phasic value in the 10 s before the event for 6 cases
(Figure 6 right). A t-test was conducted to confirm the significant relationship between
data before and after the event: high-risk and no-information, t(44) = −6.754, p < 0.001;
high-risk and information, t(44) = −7.481, p < 0.001; medium-risk and no-information,
t(44) = −6.006, p < 0.001; medium-risk and information, t(44) = −6.681, p < 0.001; low-risk
and no-information, t(44) = −2.195, p = 0.033; low-risk and information, t(44) = −2.521,
p = 0.015. In other words, the biometric data showed a rapid change according to our risk
level, which implies that autonomous vehicle research using our motion simulation system
is quite meaningful.
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Figure 6. Left: Average values across all subjects for GSR phasic data from 10 s before and after
the event for the eight scenarios. Right: A graph comparing GSR phasic data before and after the
event. The use of asterisks in the figure indicates statistical significance. A single asterisk (*) denotes
a p-value less than 0.05, while three (***) asterisks denote p-values less than 0.001, respectively.

4.2. Self-Reported Valence and Arousal Data

Through the self-reported VA data, we found that there were significant changes in
participants’ emotions according to the risk level and information provision level. We
analyzed the self-reported VA data in the 10 s before and after the event in eight cases.
The maximum, minimum, and mean values of the VA data were obtained, and analysis
was conducted through repeated measures ANOVA. Figures 7 and 8 show that, according
to the risk level, significant differences were observed for Arousal Max, Arousal Mean,
Valence Min, and Valence Mean: Max Arousal, F(3, 132) = 41.043, p < 0.001; Mean Arousal,
F(3, 132) = 20.057, p < 0.001; Min Valence, F(3, 132) = 29.555, p < 0.001; Mean Valence,
F(3, 132) = 14.482, p < 0.001. A post-hoc analysis was conducted on the risk level and
whether or not the information was provisioned through HUD. In the case of Max Arousal,
the high-risk condition was significantly higher than the medium-risk condition
(p < 0.001), low-risk condition (p < 0.001), and no-risk condition (p < 0.001), and the medium-
risk condition was significantly higher than the no-risk condition (p < 0.001). In addition,
when information was provided to HUD, the value of Arousal Max was significantly lower
than when the information was not provided (p = 0.004). In the case of Mean Arousal, the
high-risk condition was significantly higher than the low-risk (p < 0.001), and no-risk condi-
tions (p < 0.001); and the medium-risk condition was significantly higher than the low-risk
condition (p < 0.001) and the no-risk condition (p < 0.001). In addition, when information
was provided, the value of Mean Arousal was slightly lower than when the information was
not provided (p = 0.018). In the case of valence min, the high-risk condition was significantly
lower than the medium-risk condition (p < 0.001), low-risk condition (p < 0.001), and no-risk
condition (p < 0.001); and the medium-risk condition was significantly lower than the no-
risk condition (p < 0.001); and the low-risk condition was significantly lower than the no-risk
condition (p < 0.001). In addition, when information was provided, the value of Min Valence
was significantly higher than when information was not provided (p = 0.031). In the case of
Mean Valence, the high-risk condition was significantly lower than the low-risk condition
(p < 0.001) and the no-risk condition (p < 0.001), and the medium-risk condition was signifi-
cantly lower than the no-risk condition (p = 0.001). When information was provided, the
value of the Mean Valence was slightly higher than when the information was not provided
(p = 0.074). As we intended from our scenario design, the valence score decreased and
the arousal score increased as the risk level increased. This indicates that the subjects had
negative emotions that were physiologically activated as the intensity of risk increased. In
the case of high-risk conditions, the maximum value of arousal was significantly higher and
the minimum value of valence was significantly lower than in medium-risk, low-risk, and
no-risk conditions. In other words, we could find that the subjects actually had a sudden
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change in emotion for the accident simulation situation. Moreover, there was no significant
difference in VA mean value between medium-risk and low-risk conditions, but there was
a significant difference in VA mean value between low-risk and no-risk conditions. In other
words, we can simulate the different levels of risk through our motion simulation system.
We also found that the level of information provision affected the emotion of participants.
When the information was provided to the HUD, the participants showed low arousal and
high valence. In other words, it was found that providing information to participants in an
autonomous vehicle had a positive effect on participants’ emotions.

We also observed significant changes in VA mean values before and after the event.
A t-test was conducted to confirm the significant relationship between data before and
after the event. In the case of Arousal Mean, the value increased significantly after the
event occurred than before the event occurred in 7 cases: high-risk and no-information,
t(44) = −8.786, p < 0.001; high-risk and information, t(44) = −8.238, p < 0.001; medium-risk
and no-information, t(44) = −7.008, p < 0.001; medium-risk and information, t(44) = −7.561,
p < 0.001; low-risk and information, t(44) = −5.740, p < 0.001; low-risk and no-information,
t(44) = −6.738, p < 0.001; no-risk and information, t(44) = −4.073, p < 0.001; In the case of
Valence Mean, the values after the event significantly decreased compared to that before the
event occurred in 7 cases: high-risk and no-information, t(44) = 5.175, p < 0.001; high-risk
and information, t(44) = 4.462, p < 0.001; medium-risk and no-information, t(44) = 4.430,
p < 0.001; medium-risk and information, t(44) = 5.045, p < 0.001; low-risk and information,
t(44) = 3.137, p = 0.003; low-risk and no-information, t(44) = 3.078, p < 0.004; no-risk and
information, t(44) = 2.706, p = 0.010; Through the above statistical analysis, it was possible
to decipher changes in the participants’ emotions according to the risk level through
simulation, and we observed that there were actually significant changes in the participants’
annotation data and biometric data before and after events.

Figure 7. A graph that compares the maximum and mean value of Arousal data and the minimum and
mean value of Valence data according to risk level and whether or not information was provisioned
through HUD. The use of asterisks in the figure indicates statistical significance. A single asterisk (*)
denotes a p-value less than 0.05, while two (**) and three (***) asterisks denote p-values less than 0.01
and 0.001, respectively.
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Figure 8. A graph comparing Arousal mean and Valence mean data before and after the event.
The use of asterisks in the figure indicates statistical significance. A single asterisk (*) denotes a
p-value less than 0.05, while two (**) and three (***) asterisks denote p-values less than 0.01 and
0.001, respectively.

4.3. Analysis of the Questionnaire Data

Questionnaires on the user experience were completed after each of the eight sce-
narios. For the questionnaire results on trust, perceived safety, presence, situation aware-
ness, and reaction to events, the significance according to risk and information provi-
sion was confirmed through repeated measures ANOVA. The results are presented in
Figures 9 and 10. There was a significant difference for trust, perceived safety, situa-
tion awareness, and reaction according to the degree of risk: trust, F(3, 132) = 26.863,
p < 0.001; perceived safety, F(3, 132) = 13.660, p < 0.001; situation awareness,
F(3, 132) = 45.982, p < 0.001; reaction question 1, F(3, 132) = 141.740, p < 0.001; reac-
tion question 2, F(3, 132) = 92.155, p < 0.001; reaction question 3, F(3, 132) = 20.645, p < 0.001;
and reaction question 4, F(3, 132) = 11.176. In addition, there was a significant differ-
ence in trust, situation awareness, and reaction depending on whether the information
was provided: trust, F(1, 44) = 7.278, p < 0.05; situation awareness, F(1, 44) = 11.272,
p < 0.01; reaction question 3, F(1, 44) = 26.752, p < 0.001; and reaction question 4,
F(1, 44) = 54.092, p < 0.001.

Post-hoc analysis was conducted on changes in trust, perceived safety, situational
awareness, and reaction to events according to the degree of risk and whether the informa-
tion was provided. In the case of a trust, the high-risk condition was significantly lower than
the low-risk (p < 0.001), and no-risk conditions (p < 0.001). In addition, when information
was provided, the value of trust was significantly higher than when it was not provided
please add explanation for the asteriks symbols (p < 0.01). In the case of perceived safety,
the high-risk condition was significantly lower than the low-risk (p < 0.001) and no-risk
conditions (p < 0.001). Moreover, when information was provided, the value of perceived
safety was slightly higher than when information was not provided (p = 0.109). In case of
the Immersion and Presence Questionnaire, there were no significant differences among
the eight cases. However, data show that users had a high sense of immersion and presence
of 4.0 or higher. In the case of situation awareness, the high-risk condition was significantly
lower than the medium-risk (p < 0.05), the low-risk please add explanation for the asteriks
symbols (p < 0.001), and no-risk conditions (p < 0.001), and the medium-risk condition was
significantly lower than the low-risk condition (p < 0.001) and no-risk condition (p < 0.001).
In addition, when the information was provided, the situation awareness was significantly
higher than when the information was not provided (p < 0.001). Through the survey results,
the GSR biometric data, and the self-reported VA annotation data, it was found that the
trust, perceived safety, and situation awareness felt by the subjects changed significantly
according to the risk level. In addition, since the results of the Immersion and Presence
questionnaire were high scores of almost 4.0 on average, we can infer that the subjects felt a
sense of immersion and presence enough for the simulation situation. In addition, when
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the information was provided through HUD, the value of trust and situation awareness
was significantly higher than when the information was not provided, and it was found
that providing information from autonomous vehicles has a positive effect on trust and
situation awareness.

Figure 9. A graph that compares trust, perceived safety, immersion and presence, and situation
awareness questionnaire data according to risk level and whether or not information was provisioned
through HUD. The use of asterisks in the figure indicates statistical significance. A single asterisk (*)
denotes a p-value less than 0.05, while two (**) and three (***) asterisks denote p-values less than 0.01
and 0.001, respectively.

Figure 10. A graph that compares reaction to events questionnaire data according to risk level and
whether or not information was provisioned through HUD. The use of asterisks in the figure indicates
statistical significance. A single asterisk (*) denotes a p-value less than 0.05, while three (***) asterisks
denote p-values less than 0.001, respectively.
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Through the reaction to the events questionnaire, we found that there was a significant
difference in the degree of risk perceived by the subjects according to the risk level and that
the degree of awareness of the upcoming risk significantly increased when information
was provided to HUD. In the case of reaction questionnaire 1, the high-risk condition was
significantly higher than the medium-risk (p < 0.001), low-risk (p < 0.001), and no-risk
(p < 0.001) conditions and the medium-risk condition was significantly higher than the low-
risk (p < 0.05) and no-risk (p < 0.001) conditions and the low-risk condition was significantly
higher than the no-risk condition (p < 0.001). In the case of reaction questionnaire 2, the high-
risk condition was significantly higher than the medium-risk condition (p < 0.001), low-risk
condition (p < 0.001), and no-risk condition (p < 0.001), and the medium-risk condition
was significantly higher than the low-risk condition (p < 0.001) and the no-risk condition
(p < 0.001), and the low-risk condition was significantly higher than the no-risk condition
(p < 0.001). In the case of reaction questionnaire 3, the high-risk condition was significantly
lower than the low-risk (p < 0.001) and no-risk conditions (p < 0.01), and the medium-risk
condition was significantly higher than the low-risk (p < 0.001) and no-risk conditions
(p < 0.001). In addition, when information was provided, the value was significantly
higher than when the information was not provided (p < 0.001). The score of reaction
questionnaire 4 was significantly higher when the information was provided than when
the information was not provided (p < 0.001).

For post-questionnaire 1–4, we confirmed the significance using ANOVA. Except
for the significance between high-risk and no-risk conditions (p < 0.05), there was no
significant difference between risk levels, but the value decreased slightly from question 1
to question 4 (Figure 11 Left): F(3, 176) = 3.727, (p < 0.05). For post-questionnaire 5–6, we
confirmed the significance using the Wilcoxon signed-rank test. The value for question 5
was significantly higher than that for question 6 (Z = 3.677, p < 0.001) (Figure 11 Right).
Through post questions 1–4, we found that the higher the risk, the more the subject felt
safe about providing information to the HUD. In addition, through post questions 5–6, we
found that as the risk level increased, information provided on the HUD increased the trust
in autonomous vehicles, while not information provided on the HUD decreased the trust.
In other words, we could infer that information provided on the HUD had a positive effect
on the user experience of autonomous vehicles.

Figure 11. A graph that compares post-questionnaire data according to risk level and whether to
provide information to HUD or not. The use of asterisks in the figure indicates statistical significance.
A single asterisk (*) denotes a p-value less than 0.05, while three (***) asterisks denote p-values less
than 0.001, respectively.
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5. Discussion
5.1. Risk Simulation Design

Our study aimed to investigate the user experience with regard to different levels of
risk and information provision. We utilized a VR simulation to control the road environment
and simulate risky situations that are impossible to simulate in the real world. Because we
designed the environment and scenario in the virtual simulation, the designed simulation
was able to evoke the intended emotions in the users. To validate this factor, we asked
the subjects to annotate their emotions with valence and arousal values while recording
GSR signals using the Empatica E4 wristband. Physiological signals are commonly used to
sense the current state of human subjects, such as their emotions, and some researchers
have attempted to predict emotions from physiological sensor data [25].

We validated our simulation by comparing GSR and self-reported VA data. We
analyzed GSR signals by extracting the GSR phasic features to quantitatively observe the
emotions of the subjects. The GSR signals showed significant changes before and after the
risk event, which ensured that the designed scenario caused a change in the emotions of
the subjects. In addition, by analyzing the self-reported valence and arousal data, we found
that, as the scenario’s risk level increased, the overall valence score decreased, while the
overall arousal score increased. From these observations, we can conclude that the subjects
felt a strong negative feeling when the risk level was high than when it was low.

5.2. The Effect of Risk Level

Quantitative measurements show that according to the risk level, there are significant
changes in the GSR physiological data and self-reported VA values of users. As reported in
previous studies [10], it was found that the higher the risk level, the higher the GSR phasic
value, and the subjects also reported that their level of arousal was high and the valence was
low. Qualitative measurements show that the risk level is a critical factor in user experience.
We measured user trust, perceived safety, and situational awareness using questionnaires
after each scenario. The overall score of each user experience decreased as the risk level
increased. The immersion and presence were almost equal at all risk levels, indicating
that all scenarios were similarly realistic. Thus, there was no effect on the user experience
owing to differences in the completeness of each VR scenario. The results of reaction
questions 1 and 2 additionally validated our scenario designs. The users felt that the
situation was more danerous and surprising, as we provided scenarios that were intended
to be riskier. Through reaction questions 3 and 4, the users showed significantly higher
awareness of the potential risk. This confirmed that providing road-related situational
information to users continuously improved the perception of road conditions.

5.3. The Effect of Information Provision

To understand the user experience of the simulated self-driving system better, we
conducted post-hoc surveys that inquired about the helpfulness of providing information
directly to the users. Figure 11 shows the subjects’ preferences for the cases where informa-
tion was provided. There was a significant increase in perceived safety when the subjects
were provided with information. Because transparent decision-making is considered im-
portant for building user trust in self-driving vehicles [26], this result shows that visualizing
how the vehicle perceives the road conditions helps improve user experience.

The trust data results follow those of previous studies [10]. Overall, users exhibited
significantly higher trust when information on the road situation was presented on the
HUD. Our results, which were all counterbalanced , emphasize the importance of provid-
ing information since it improved trust in all situations and at every risk level. Because
information provision resulted in increased trust in various levels of risk, explaining the
system’s perception of current road situations is a critical factor for building trust between
the self-driving vehicle and the user. Also, the users showed significantly higher situa-
tional awareness when the information provision using HUDs. Since increased situational
awareness can lead to an increase in the driver’s trust towards self-driving vehicles [27],
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this result emphasizes that providing information about road conditions is crucial for a
better user experience . The self-reported Valence and Arousal data also indicate that the
provision of information through HUD reduces the user’s arousal and changes the valence
to a positive one. In other words, providing real-time surrounding information about
autonomous vehicles, such as traffic environments, can enhance the user experience.

6. Limitations and Future Works
6.1. Limitations

In this exploratory study, we leveraged an immersive virtual reality (VR) simulation
to investigate user experiences in various high-risk scenarios. By analyzing physiological
signals such as heart rate and galvanic skin response as well as self-reported questionnaires,
we demonstrated that our carefully designed VR simulations were capable of evoking
appropriate levels of stress and anxiety in participants as they encountered dangerous
situations. However, the scope of scenarios in our study was limited. We implemented a
single VR simulation for each combination of risk level and information provision, resulting
in a total of eight VR simulations. While our scenarios were designed based on findings
from previous studies [9,10], a more comprehensive investigation would necessitate a wider
range of scenarios in order to fully capture the diverse array of accidents and high-risk
situations that arise in the real world. A larger set of scenarios would allow for a robust
analysis of psychological and physiological responses across different conditions as well as
more nuanced insights into the design of VR systems for research and training purposes.

6.2. Future Works

VR simulation enables the repeated simulation of driving conditions while enabling
intended emotions to be evoked in users. In addition, because VR simulation enables us to
control every variable, it excludes the possible effects of extraneous variables and enables us
to observe clearly the effects of the specified variables. For example in the follow-up study,
additional features such as various accident scenarios, weather and temperature conditions,
and various road scenes can be added in our study. The user study on diverse conditions of
VR scenarios would guarantee more generalized insights into how user experience would
change on various levels of information provision.

Recent studies have used neural networks in detecting user experience. These methods
analyze data such as facial expressions [28–30], physiological signal [31–33], and content-
wise affection analysis [34,35]. The neural network-based analysis directly infers human
experience such as emotion, thus providing more insights toward understanding user
experience. In this study, we utilized GSR signals to analyze the emotional change of the
users while immersed in VR simulations. By introducing neural networks to our study,
fine-grained user experience analysis is possible in addition to statistical analysis of the
GSR signals.

7. Conclusions

In this study, we proposed a motion platform-based VR simulation method to provide
driving situations with different levels of risk and information provision on HUD and
evaluated the user experience based on GSR physiological data, self-reported VA data, and
questionnaires on trust, perceived safety, situation awareness, immersion and presence,
reaction to events, and custom question. The results show that user experience changes
significantly according to the level of risk and information provision on HUD. We showed
that UX evaluation is possible using VR simulations using our methodology. Through
the analysis of GSR physiological data and self-reported valence and arousal annotation
data, we were able to find out how participants actually responded to risk levels. Through
analysis of questionnaire reports, we found that the trust and the situation awareness, which
are crucial factors when accepting the self-driving vehicles, were significantly increased by
presenting the information of road situations on the AR HUDs. Our result emphasizes that
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explaining the perception of the self-driving vehicles towards the on road situations is a
key factor for improving the user experience of the self-driving vehicles.

In future, we plan to conduct simulations including various situations such as diverse
weather and temperature conditions, the number of vehicles on the road, and take-over
request (TOR)related tasks. In addition, we plan to conduct research on situations in which
multiple users can physically interact by taking advantage of our simulator, which can
accommodate two or more people.
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