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Abstract: As the Internet of Things devices are deployed on a large scale, location-based services
are being increasingly utilized. Among these services, kNN (k-nearest neighbor) queries based on
road network constraints have gained importance. This study focuses on the CkNN (continuous
k-nearest neighbor) queries for non-uniformly distributed moving objects with large-scale dynamic
road network constraints, where CkNN objects are continuously and periodically queried based
on their motion evolution. The present CkNN high-concurrency query under the constraints of a
super-large road network faces problems, such as high computational cost and low query efficiency.
The aim of this study is to ensure high concurrency nearest neighbor query requests while shortening
the query response time and reducing global computation costs. To address this issue, we propose
the DVTG-Index (Dynamic V-Tree Double-Layer Grid Index), which intelligently adjusts the index
granularity by continuously merging and splitting subgraphs as the objects move, thereby filtering
unnecessary vertices. Based on DVTG-Index, we further propose the DVTG-CkNN algorithm to
calculate the initial kNN query and utilize the existing results to speed up the CkNN query. Finally,
extensive experiments on real road networks confirm the superior performance of our proposed
method, which has significant practical applications in large-scale dynamic road network constraints
with non-uniformly distributed moving objects.

Keywords: k-nearest neighbor query; moving object; road network

1. Introduction

Location-based services have become increasingly important in emergencies, such
as COVID-19 or flood disasters, where residents may be confined to their homes or com-
munities [1]. Such services often involve location-based queries, with CkNN (continuous
k-nearest neighbor) queries being among the most important [2]. The CkNN problem in
the road network environment is particularly challenging, but socially and commercially
valuable [3–5]. For example, the Meituan errand service sends information to several
riders closest to the user [6]. In addition, CkNN query technology has also promoted the
improvement of mobile taxi software, such as Didi and Uber, which can send taxi requests
to vehicles close to users [7].

However, several factors make this problem highly challenging. First, the query
object dynamically moves within a large-scale road network, which implies that the query
response time of urban services is affected by the fast-moving objects [8]. This is further
compounded by the fact that objects are continuously on the move [9], thus making the
indexing of moment-to-moment moving objects on the road network a major challenge.
Secondly, there is a substantial volume of concurrent query requests [10]. For instance, in
Beijing, millions of queries are generated every day, and at peak times, tens of thousands
of queries per second are processed. Consequently, the need to process high-concurrency
queries to identify kNN moving objects poses yet another challenge [11]. Furthermore,
the existing research scarcely delves into the impact of the distribution of moving objects
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in the road network on the performance of neighbor queries. In practical scenarios, the
distribution of moving objects in urban environments tends to follow a Zipf distribution;
yet, most of the existing studies have not effectively optimized this situation [12].

To address these challenges, this paper presents a novel index, the DVTG-Index (Dy-
namic V-Tree Double-Layer Grid Index), and a new algorithm, the DVTG-CkNN. The
DVTG-Index introduces two new vertex types, supports dynamic updates of moving ob-
jects, facilitates the allocation of computing resources, and facilitates efficient kNN queries.
The index initially partitions the entire graph recursively into several grid subgraphs based
on the quadtree structure, and subsequently constructs a new grid index to manage these
subgraphs. Active vertices associate moving objects with their corresponding network
vertices on the road network, and boundary vertices enable the querying of the distance
from a point to other vertices in the grid, enhancing computational efficiency.

Our contributions are as follows:
(1) We introduce the DVTG-Index, a scalable, efficient, and adaptable index that

accommodates road network datasets and allows for adaptive grid merging and splitting
for different regions to obtain the appropriate index granularity and low maintenance cost.

(2) We propose a robust update strategy that supports the dynamic update of moving
objects by associating them with vertices to achieve real-time updates of moving objects.
This approach better supports the handling of large mobile objects on large-scale road
networks for mobile updates.

(3) Building on the DVTG-Index, we design a novel kNN search method that leverages
the index’s capabilities to compute k-nearest objects.

(4) We conduct extensive experiments on four real datasets to evaluate our approach’s
efficacy. Our experimental results demonstrate that our approach significantly outperforms
existing baseline methods.

This paper is structured as follows: Section 1 presents an overview of the problem,
while Section 2 reviews the relevant literature. Section 3 introduces the method overview
and relevant definitions in this work. Section 4 details the DVTG-Index’s structure and
Section 5 outlines an efficient kNN search algorithm. Section 6 presents our experimental
results. Section 7 concludes the paper.

2. Related Work

The CkNN query has been an extensively studied research topic, with numerous
theories and algorithms developed to address it. The research at present aims to reduce
the query-processing time on the server side and deliver rapid results to users. However,
because the continuous kNN query involves numerous moving objects, object-by-object
scanning considerably reduces the query-processing performance [13]. To overcome this
challenge and improve query-processing efficiency, location indexing techniques have been
developed and are deemed necessary.

Traditional database indexing sorts the data to store and access records effectively.
However, these methods are not appropriate for frequently changing the data or location
of moving objects due to the high cost of updates [14]. Moving object location indexing
is a challenging research field, with proposed index structures based on spatial, time, or
combined spatial and time indexing technologies. The research at present is still in the
preliminary stage, both domestically and abroad [15].

The spatial index can be divided into categories according to the basic unit of index
structure. Representative indexes include grid, tree-like, and hybrid indexes [16]. In [17],
Yang et al. proposed an efficient distributed solution for kNN queries, which can handle
larger amounts of moving-object data. The proposed solution included a new network-based
index called BGI (block grid index). The BGI is an in-memory index based on a distributed
hierarchical grid with a minimum and maximum predefined number of moving objects per
block. Additionally, Park et al. [18] proposed a DGI (distributed grid index), which builds an
index in the form of a hierarchical grid according to the location of objects. S-GRID (scalable
grid) is also one of the very classic grid indexes that was proposed by Huang et al. [19] to deal
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with the problem of road network indexing. Although these grid-based indexes pre-define
the number of moving objects or layer the grid, as the moving objects and road networks
change, the index cannot rapidly adapt or produce efficient query responses. This limits the
efficiency of these indexes in large, dynamic, road network graphs.

In addition, the most common tree-like indexes are R-Tree, K-D Tree, Z-Tree, and
Quad-Tree indexes. Among them, R-Tree and PMR Quad-Tree [20] indexes have a good
performance for indexing traditional spatial objects. In order to further improve the query
efficiency of kNN, Zhong et al. proposed a balanced search-tree G-Tree (grid tree) index
structure in 2013 [21]. Based on G-Tree, the G*-Tree index improves the query efficiency of
G-Tree by dividing each node into two disjoint regions [22]. This optimization is based on a
simple observation that, during querying, when a region is completely contained within the
query range, other regions that do not intersect with this region can be ignored. Recently,
Bareche et al. [23] proposed the Velocity SpatioTemporal indexing approach. The proposed
structure is based on a selective velocity-partitioning method that reduces the update
cost and improves the response time and query precision. Bilong Shen [24] of Tsinghua
University proposed a new index: V-Tree. It can support a k-nearest neighbor search based
on the road network. Second, it can support the dynamic updating of moving objects. The
V-Tree index’s structure is optimized further, based on G-Tree, to become the kNN query
for moving objects. While these methods have shown a good performance in indexing
traditional spatial objects, they may face several limitations when applied to the query
of moving objects in large road networks. One limitation is that these methods may not
efficiently handle the continuous updates of the location’s information of moving objects,
resulting in high update costs and query latencies. Another limitation is that they may not
consider the road network’s topology, which may result in inaccurate kNN queries and
longer query times. Furthermore, these methods may not take into account the different
speeds and directions of moving objects, leading to inefficient queries and inaccurate results.
Correspondingly, the index proposed in this paper has an efficient update strategy and can
cope with changes in large road networks with low maintenance costs.

There are two problems in the existing study. On the one hand is the question of
applicability. Most of the existing methods are based on Euclidean distance constraints [25],
and it is difficult to solve the problem of the continuous k-nearest neighbor query of moving
objects based on road network constraints [26]; however, the distance between moving
objects in real life is often determined by the length of the road network. Secondly, some
methods are based on the fact that the query point is fixed [27], and only the position of
the moving object changes, and then the continuous k-nearest neighbor incremental query
algorithm of the moving object is designed based on this assumption. Once the position
of the query point changes, the query result needs to be recalculated. Another aspect is
the issue of efficiency. Although some methods can support the k-nearest neighbor query
of moving objects based on the road network, when the road network scale is large, the
number of query calculations significantly increases, resulting in reduced query efficiency,
the poor real-time performance of query results, and insufficient practicability [28]. At
times, the structure of the moving object index is complex, resulting in a large-scale update
of the location of the moving object [29]; the update efficiency of the moving object’s index
structure is low, resulting in a decrease in the accuracy of the query result.

3. Methodology Overview and Problem Definition

In this section, we introduce the system overview and some relevant definitions for
this study.

3.1. Methodology Overview

Unlike some existing methods that use tree-like indexes and create rules to optimize the
search efficiency, we identified some issues with this approach. First, numerous leaf nodes
cannot be efficiently pruned, which leads to numerous unnecessary vertices in these nodes.
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Second, not all leaf nodes in the index are used for location-based services, and some of them
have a minor effect, but still require significant costs for the construction and updates.

Based on the abovementioned problems, our scheme adopted the overall idea of
parallel and balanced computing to build high-quality indexes. As shown in Figure 1, we
first recursively partitioned the whole graph into multiple-grid subgraphs according to the
quadtree structure, and then constructed new grid indices to take over these subgraphs.
The moving object can determine the grid unit to which it belongs according to its position
and compile it into the index of the corresponding grid unit. The granularity of meshing is
an important factor that directly affects the performance of index building and updating
behaviors. If the granularity is too large, there are too many nodes in the grid, and the
function of dividing the units is lost; if the granularity is too small, the index needs to be
frequently updated, which affects its overall performance.
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3.2. Problem Definition

Definition 1. Road Network. In this paper, we abstractly modeled the real road network as a
directed weight graph, G = 〈V, E〉, each road was regarded as an edge of G, and the road endpoints
were regarded as the corresponding vertices of G, where V is the set of nodes on the road and E is
the set of edges on the road. A vertex on the road is vi = (xi, yi) ∈ V, x is the abscissa of the vertex,
y is the ordinate of the vertex; an edge on the road is e = (u, v, w) ∈ E, u is the road. The starting
point of e is the end point of the road, and w is the length of the road. The road network used to
illustrate the concepts in this paper is shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 25 
 

Unlike some existing methods that use tree-like indexes and create rules to optimize 
the search efficiency, we identified some issues with this approach. First, numerous leaf 
nodes cannot be efficiently pruned, which leads to numerous unnecessary vertices in these 
nodes. Second, not all leaf nodes in the index are used for location-based services, and 
some of them have a minor effect, but still require significant costs for the construction 
and updates. 

Based on the abovementioned problems, our scheme adopted the overall idea of par-
allel and balanced computing to build high-quality indexes. As shown in Figure 1, we first 
recursively partitioned the whole graph into multiple-grid subgraphs according to the 
quadtree structure, and then constructed new grid indices to take over these subgraphs. 
The moving object can determine the grid unit to which it belongs according to its position 
and compile it into the index of the corresponding grid unit. The granularity of meshing 
is an important factor that directly affects the performance of index building and updating 
behaviors. If the granularity is too large, there are too many nodes in the grid, and the 
function of dividing the units is lost; if the granularity is too small, the index needs to be 
frequently updated, which affects its overall performance. 

 
Figure 1. Methodology Overview. 

3.2. Problem Definition 

Definition 1. Road Network. In this paper, we abstractly modeled the real road network as a di-
rected weight graph, 𝐺 =< 𝑉, 𝐸 >, each road was regarded as an edge of 𝐺, and the road endpoints 
were regarded as the corresponding vertices of 𝐺, where 𝑉 is the set of nodes on the road and 𝐸 is 
the set of edges on the road. A vertex on the road is 𝑣௜ = (𝑥௜, 𝑦௜) ∈ 𝑉, 𝑥 is the abscissa of the vertex, 𝑦 is the ordinate of the vertex; an edge on the road is 𝑒 = (𝑢, 𝑣, 𝑤) ∈ 𝐸, 𝑢 is the road. The starting 
point of 𝑒 is the end point of the road, and 𝑤 is the length of the road. The road network used to 
illustrate the concepts in this paper is shown in Figure 2. 

 
Figure 2. Diagram of road network. 

Definition 2. kNN Query. The 𝑁𝑁 query problem originated from the post office problem pro-
posed by Knuth in 1973. The problem can be simply described as: given that set 𝑃 in the 𝑁𝑁 -
dimensional space contains 𝑛 data points, find a data point 𝑝 in set 𝑃 such that the distance 

Figure 2. Diagram of road network.

Definition 2. kNN Query. The NN query problem originated from the post office problem proposed
by Knuth in 1973. The problem can be simply described as: given that set P in the NN -dimensional
space contains n data points, find a data point p in set P such that the distance between p and
the query point q is the closest. The kNN(k ≥ 1) query is a generalized form of the NN query.
In this paper, the k-nearest neighbor query is mainly performed on the moving objects in the road
network environment, that is, on the road network G = 〈V, E〉, there is a group of moving objects
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Or(| Or| > k); given a query point q and a positive integer k, find the k moving objects M(q)
closest to the q -way network. In addition:

• |M(q)| = k;
• Mq ⊆ Or;
• ∀o ∈ Or, o′ ∈ O/M(q), Dist(q, o) ≤ Dist(q, o′)

Definition 3. CkNN Query. In our semantics, moving objects move along the edges of the road
network G and periodically report their positions with time interval ∆t. The snapshots ∆t of all
objects are then updated at each time interval. Assuming that the latest snapshot of an object was
created at time point ts and all queries are made at time period (ts, ts + ∆t], the evaluation is first
based on this snapshot. Subsequently, the kNN of each query is periodically updated based on each
new snapshot of the object. We call queries following this semantics CkNN queries.

4. Dynamic V-Tree Double-Layer Grid Index

In this section, we first define the DVTG-Index and discuss how to construct it. Then,
we describe the maintenance strategy, and conclude this section by discussing how to
update the DVTG-Index.

4.1. Building the Index

To build the index, first we divided graph G corresponding to the global road network
into d layers according to the quadtree structure, each layer was marked as Li (i ∈ [1, d]),
and the L1 layer was the top layer. The area was divided into 4 grids of the same size, and
each grid was divided into four grids at the L2 layer. According to this method, recursively
divide until the moving objects contained in the smallest grid do not exceed λ, and the Ld
layer divides the global road network into 4d grids. A grid unit of layer Li is recorded as
gj

i
(

j ∈
[
1, 4j]). As shown in Figure 3, each grid gj

d of the Ld layer covers all the edges and
vertices of graph G in this region. The divided subgraph is divided into a 4d branch tree,
that is, the root corresponds to the whole graph and the leaf matches the smallest subgraph,
that is, the underlying grid subgraph.
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As shown in Figure 3, the second-layer grid index has 4 grid subgraphs, namely,
g1

2, g2
2, g3

2, and g4
2, and the third-layer grid index has 16 grid subgraphs.
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Then, we constructed the DVTG-Index, which replaces the structure of this subgraph
and removes all the subgraphs covered by non-leaf nodes. The DVTG-Index only retains the
complete topology of the original graph. Non-leaf nodes are considered virtual nodes and
await materialization as they are required to provide indexing services. On the grid subgraph
of each leaf node, the shortest distance between several vertices was calculated in parallel,
offline, and used as the basic index material for indexing. Furthermore, we introduced two
special types of vertices and some related concept definitions for each subgraph.

Definition 4. Active Vertex. If the moving object Or is on the vertex va or the edge eb,a and moves
from vertex vb to vertex va, then vertex va is defined as the active vertex and Or is associated with
va. Moving objects: active vertex va saves and maintains a collection of all moving objects associated
with it, denoted as Qa. The vertex set consisting of active vertices in grid gj

i is denoted as Aj
i .

Definition 5. Boundary Vertex. If two vertices va and vb on an edge ea,b are given, they do not
belong to any grid unit of the same layer Li at the same time; then, va and vb are both boundary
vertices of layer i. The vertex set consisting of boundary vertices in grid gj

i is denoted as B j
i .

Definition 6. Path(vu, vw). In a connected path network, there are one or more paths from one
vertex vu to another vertex vw, and the set of all paths is recorded as Path(vu, vw). The elements
in the collection are the edges in the path, which can be expressed as:

Path(vu, vw) =
{
(eu,a, . . . , eb,w), . . . ,

(
eu,x, . . . , ey,w

)}
. (1)

Definition 7. Dist(vu, vw). In a connected road network, there are one or more paths from one vertex
vu to another vertex vw, and the sum of the distances of all paths is recorded as Dist(vu, vw). The
elements in the set are the sum of the distances of the edges in the path, which can be expressed as:

Dist(vu, vw) =
{
(wu,a + · · ·+ wb,w), . . . ,

(
wu,x + · · ·+ wy,w

)}
. (2)

Definition 8. SPath(vu, vw), SDist(vu, vw). In the path set Path(vu, vw) between two vertices,
vu and vw, the path with the shortest side length and distance is called the shortest path, denoted as
SPath(vu, vw), and the distance of this path is denoted as SDist(vu, vw).

Since any path from vertex vu to vertex vw outside the grid unit to which it belongs
must pass through a certain boundary vertex x of the grid unit, Dist(vu, vw) is expressed;
therefore, the shortest path of vu to vw can be expressed as:

SPath(vu, vw) = SPath(vu, x) + SPath(x, vw). (3)

The shortest path distance can be expressed as:

SDist(vu, vw) = SDist(vu, x) + SDist(x, vw). (4)

When there is an active vertex va in the grid, that is, there is a moving object pr
moving towards va, then pr is in Qa. Then, the shortest distance between another vertex vb
belonging to the same grid and moving object pr indexed by va can be expressed as:

SDist(vb, pr) = SDist(vb, va) + δ(pr, va ). (5)

In the underlying grid gk
d, only the boundary and active vertices in the kth grid of its d

level are included. Taking the road network in Figure 3 as an example, when λ = 2, the
grid is divided into the second layer, and the division of the L2 layer graph and the settings
of active and boundary vertices are shown in Figure 4.
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Figure 4. Schematic diagram of active and boundary vertices.

As shown in Figure 4, v1, v8, and v19 are active vertices, v3, v4, v5, v7, v12, v17, and v18
are boundary vertices, and v9, v11, v16, and v20 are both active and boundary vertices.

The DVTG-Index retains the grid subgraph of the leaf nodes; therefore, the grid g
can be used to form a graph G, and each grid subgraph can be expressed as g =

〈
Vg, Eg

〉
.

The grid subgraphs in the DVTG-Index do not overlap each other, and all grid subgraphs
contain all vertices belonging to the graph. Given the two vertices, va and vb, belonging
to the same grid, we used RelSDist(va, vb) to represent the shortest distance between va
and vb within the grid, which was the relative shortest distance. Relatively, SDist(va, vb)
represents the shortest distance between va and vb relative to the whole graph, that is,
the absolute shortest distance. It should be noted that the shortest distance expressed
by RelSDist is only relative to the grid subgraph, not necessarily the shortest distance in
the whole graph. Therefore, RelSDist(va, vb) is not necessarily equal to SDist(va, vb); it
should satisfy:

RelSDist(va, vb) ≥ SDist(va, vb). (6)

To make searching for grids more efficient, we indexed the shortest distance between
the boundary and active vertexes in each grid. This allowed us to access the internal active
vertex and its associated objects through any boundary vertex, which reduced the detection
cost of the grid. We also used active nodes and boundary vertices to help identify the kNN.
To further optimize the index structure, we introduced the concepts of vertex subgraph,
vertex distance matrix, and vertex road network graph. The vertex subgraph only included
active vertices, boundary vertices, and the shortest distance to a leaf node.

Definition 9. Vertex Subgraph. Let vj
i,a and vj

i,b be active and boundary vertices, and the active

and boundary vertices sets in the grid gj
i are marked as Aj

i and B j
i ; the vertex subgraph is recorded

as ChiGj
i =

〈
V j

i , Ej
i , wj

i

〉
, which satisfies:

• V j
i = Aj

i ∪ B
j
i ;

• Ej
i represents the edge between V j

i , then ej
i,x,y is vj

i,a and vj
i,b and other boundary vertices, that

is, ej
i,x,y = SPath

(
vj

i,x, vj
i,b

)
, vj

i,x ∈ V j
i ;

• wj
i represents the distance of side Ej

i , that is, wj
i = SDist

(
vj

i,a, vj
i,b

)
=

min
{
(wa,m + · · ·+ wn,b), . . . , (wa,u + · · ·+ ww,b)

}
.

As shown in Figure 5, v2 is neither an active nor a boundary vertex. When searching
inside the road network, we can prune such nodes; therefore, only active and boundary
vertices are kept when constructing a vertex subgraph, while the edge in the graph is a
virtual edge that represents the shortest route between two points and does not represent
the actual meaning. The weight value of the edge is the distance of the shortest route.
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Definition 10. Vertex Distance Matrix. Each vertex subgraph ChiGj
i needs to maintain a vertex

distance matrix, saving the shortest distance SDist(va, vb) between each active vertex and each
boundary vertex. This distance matrix is recorded as DistMj

i , which satisfies:

DistMj
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)


. (7)

Definition 11. Vertex Elevated Graph. All sub-grids at the bottom layer can form a graph G.
Similarly, all vertex subgraphs form a vertex elevated graph. Let ChiGj

i be the vertex subgraph, and

the vertex elevated graph is recorded as Gv =
{

ChiG1
d , ChiG2

d , . . . , ChiG4d

d

}
.

As the construction of the vertex subgraph is completed, at this time, based on all
the vertex subgraphs in the graph, the vertex elevated graph GV is constructed, and GV
includes all active and boundary vertices in the vertex subgraph.

The constructed vertex elevated graph considerably reduces the number of vertices
and edges, thus providing efficient services for subsequent neighbor queries. Figure 6
presents the pruning process for constructing a vertex elevated graph. Taking the road
network graph in Figure 4 as an example, we set the threshold η to 2, divided the road
network graph into 4 grid subgraphs, reconstructed the active and boundary vertices in
each grid, and then performed pruning. As shown in Figure 4, the original road network
graph has 21 vertices and 32 edges, and the Vertex Elevated Graph after the pruning
strategy has only 14 vertices and 24 edges.

1 
 

 

 
 

Figure 6. The comparison between the vertex subgraph and original road network graph.

We built vertex subgraphs for all underlying grids, which were then continuously
maintained for the real-time reporting of the motion of moving objects, updating active
vertices, boundary vertices, and the vertex distance matrix DistMj

i . However, in fact, we
found that many vertex subgraphs may not be useful for a certain query; however, updating
it incurs a certain maintenance cost. Therefore, after constructing the vertex subgraph
for the underlying grid subgraph, we will continue to scale the relevant vertex subgraph
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according to the movement and distribution of the moving objects to adjust the index
granularities of different regions. The specific maintenance and update mechanisms are
discussed in detail in the subsequent section.

4.2. Update Mechanism of the DVTG-Index

Since the kNN problem we discussed in this study was based on moving objects in the
road network environment, we needed to update the DVTG-Index as the moving objects
frequently change in the road network. The update was divided into two parts: the first
part updates the position of the moving object, that is, it updates the moving object Or; the
second part changes the distribution of the moving objects, active vertices in the grid, and
the division granularities of moving objects. We need to further divide the grid according
to the threshold, so as to build a better vertex subgraph.

4.2.1. Update of Moving Objects

The real-time update of large moving objects is a major feature in the urban road
network environment, and it is also a difficulty in this research scenario. This paper
introduced the concept of the active vertex; therefore, binding the moving object to the
corresponding active vertex can efficiently handle the problem of updating the position of
the moving object. The specific details of the update strategy are:

First, in the road network, the motion scenes of moving objects can be summarized
into the following three situations:

• Add moving object: we added a new object Or on edge eu,v = (u, v, w), and Or
moved towards vertex v, for example, a taxi driver just exited the car or just finished
the last task.

• Delete a moving object: we deleted a moving object Or from the edge eu,v = (u, v, w),
for example, the driver finished a task and left work, or the car broke down and could
no longer carry passengers.

• Update the moving object: the position of the moving object Or changed, which was
the most common situation. We further subdivided it into two cases according to
the variation in moving objects. The first case was that Or was still on the edge eu,v;
however, the distance from the active vertex v changed. In this case, we only needed
to change the δ attribute in Or = (t, (u, v), δ), and the time complexity was only O(1);
the second case was that the side where Or was located changed, for example, Or
moved from side (u, v) to side (v, w). At this time, we only needed to combine the
operations of (1) and (2), delete Or from edge u, and add Or on edge (v, w), that is,
the cross-edge movement of the moving object was realized.

From the analysis above, we only needed to consider the operations of adding and
deleting moving objects.

Add moving object: add moving object Or to edge eu,v = (u, v, w). At present, there
are two cases according to the state of the vertex. (1) If v is an active vertex, you only need
to add Or to the moving object collection Qv maintained by v; (2) if v is not an active
vertex and Qv is an empty set, we first mark v as an active vertex, and at the same time
add Or to the moving object collection Qv maintained by v. Then, judge whether the
number of moving objects in the vertex subgraph where v is currently located is within the
threshold range. If it is within the range, the vertex subgraph does not need to be split or
merged. Then, calculate the shortest distance from this point to other boundary vertices in
the vertex subgraph and update the shortest distance matrix. If not within the threshold
range, iteratively split or merge vertex subgraphs, and then calculate the shortest distance
matrix of the new vertex subgraph.

Remove moving objects: remove Or from edge eu,v = (u, v, w). At this point, two
situations still need to be considered: (1) if the number of moving objects contained in the
moving object set Qv maintained by vertex v is more than 1, then it is only needed to
delete Or from Qv; (2) if there is only one moving object Or in Qv, then we also delete
Or from Qv first, because Qv is empty at this time, that is, no moving object moves to v,
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then v becomes a normal vertex. Then, it is also judged whether the number of moving
objects in the vertex subgraph where v is currently located is within the threshold range,
and corresponding merging and splitting operations are performed.

4.2.2. Index Update

Updates to moving objects cause the number of active vertices within the vertex
subgraph to change. At present, the distribution of moving objects in the city is mostly
a Zipf distribution, not an even distribution; therefore, the number of active vertices in
different vertex subgraphs is quite different, and the corresponding vertex distance matrix
also requires higher calculation and space costs. In order to more reasonably balance the
global computing load, the vertex subgraph needs to merge or split the subgraph according
to the relationship between the number of active vertices of itself and the surrounding
and set thresholds. In this study, the threshold value of number of active vertices va in the
subgraph was set to η.

When adding a moving object, if the number of active vertices in the current vertex
subgraph gi

j is more than η, the subgraph g is split into four subgraphs, and furthermore,
the four subgraphs of g are updated to calculate the corresponding shortest distance
matrix. If the number of moving objects in a certain subgraph still meets the split condition,
continue to recurse the abovementioned operations, layer by layer, until the split condition
is not met.

When deleting a moving object, if the sum of the number of active vertices in the
current vertex subgraph gi

j and the number of active vertices in its three sibling vertex
subgraphs is less than the specified threshold η, merge them into a new vertex subgraph
gi−1

j′ . If the number of active vertices of the parent subgraph gi−1
j′ of gi

j and its three sibling
subgraphs is still less than η, continue to recursively operate layer by layer until the number
of active vertices in the upper subgraph gi

j′ of gd
j (1 ≤ i < d− 1) is not less than η or i = 1.

gi−1
j′ . Save and maintain all the active vertices in the four subgraphs, update the border

vertices, and recalculate the shortest path SPath(vu, vw) between any border and other
vertices; save the shortest distance SDist(vu, vw) between vertices and the vertex distance
matrix DistMj

i .
When the road network map is large enough, there will be a high number of moving

objects that need to be updated at the same time. Therefore, we used the method of
scanning subgraphs to update all the moving objects in batches, and then updated the
vertex subgraphs, which greatly improved the update efficiency of the DVTG-Index.

According to the description of the index update algorithm, if updating the moving
object does not change the attributes of the vertices, the time complexity of updating
is O(1). If the update operation changes the attributes of each vertex and changes the
index structure, it needs to be discussed separately. Since the vertex subgraph needs to
be recursively split or merged every time a moving object is added/deleted to balance
the computational load, the time complexity of each adding/deleting a moving object is
related to the recursive depth of the vertex subgraph. Therefore, it can be observed that
the time complexity of the algorithm is O(log n). Because each operation may cause the
recursion depth of the vertex subgraph to change, the time complexity can only be used as
an approximation.

The index update algorithm can effectively balance the global computing load; how-
ever, it also needs to consider the impact of space complexity, because splitting subgraphs
increases the space usage. We tested this in the experiments in the subsequent section.

With the update of the index of the change in the position of the moving object, taking
the road network in Figure 7 as an example, when there are more moving objects in the grid
subgraph in the lower left corner of the original road network diagram, as shown in Figure 5,
the number of active vertices reaches three, which exceeds the threshold. According to
the index update mechanism, the grid continues to be divided, and then corresponding
pruning is performed to form a new vertex subgraph. The updated vertex elevated graph
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has 17 vertices and 28 edges. Compared with the original road network graph, the number
of the overall vertices and edges is still effectively reduced, and the number of active
vertices in a single vertex subgraph is also more balanced, which reasonably allocates the
computing cost in the subgraph and improves the overall data-processing capability.
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Figure 7. The schematic diagram of index update instructions.

5. DVTG-CkNN Query Algorithm

We discussed the basic concept of the kNN query in the second section, and this section
describes the process of the kNN query algorithm in detail. The kNN query problem that
is usually studied is a single query, that is, given the position of the query point q, from
graph G, find the k moving objects closest to q. However, in daily life, there are often
multiple and continuous queries. In the same location, especially in the downtown area,
there are often multiple query requests. If we regard each query request as a single query, it
produce numerous repeated calculations, which will affect the efficiency of the kNN query.
Therefore, we proposed the DVTG-CkNN algorithm based on the DVTG-Index. For each
first query request, we used the DVTG-kNN algorithm to calculate the initial kNN of query
q. Then, with the movement of the moving object, the kNN of the continuous query request
q was updated round by round in the incremental search mode, and the search range of the
initial query was saved, so that when the position was queried again, effective incremental
calculations could be performed to improve the efficiency of the algorithm.

5.1. Query-Point Processing

Due to the randomness of the query points, we needed to preprocess the query
points. The processing method is similar to the method used for processing moving
objects in Section 4.2.1. We associated the location of query request q with the vertices in
the road network.

In summary, the query point q query moving object problem in the road network was
transformed into a vertex query problem in the road network.

5.2. The First k-Nearest Neighbor Query

According to the above points, we associated the query point with the vertices of the
vertex subgraph, and the query between objects was converted into the query between vertices.
In order to better explain the query algorithm, we first need to define some concepts.

Definition 12. Vertex Queue S. We defined vertex queue S as:

S = {q} ∪
{

v ∈ V
∣∣∣∣ v is a boundary or active vertex
in the vertex subgraph where q resides

}
. (8)

During the search process, the vertices in the processed vertex subgraph are continu-
ously added to S until the algorithm terminates or the graph G is traversed. We can express
this process as follows:

St+1 = St ∪ {v ∈ V|v is a vertex in the processed subgraph at iteration t}. (9)

where St+1 denotes the state of the vertex queue at iteration t.
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Since graph G is a directed and weighted graph, all road networks can be connected
through boundary vertices. The S queue represents the scope of the search map at present.
During the search process, the vertices in the processed vertex subgraph are continuously
added to S until the algorithm terminates or the graph G is traversed.

Definition 13. Query Queue Fq. The query queue Fq stores the n moving objects closest to the
query point q, that is, the final result of the k-nearest neighbor query. In Fq, the road network
distance between the moving object On that is farthest from q and q is denoted by ζ. Therefore, we
can mathematically represent Fq as follows:

Fq = {Oi|i = 1, 2, . . . , n}. (10)

where Oi is the i-th moving object in the queue Fq. The distance between each moving object Oi and
query point q is denoted by SDist(Oi, q). Let ζ be the maximum distance between any moving
object Oi and q. Therefore, we can express ζ as:

ζ = max(SDist(Oi, q)). (11)

When the algorithm ends, the distances from other mobile objects On to the query
point q are greater than ζ, that is:

SDist
(

On
′, q
)
≥ ζ, ∀ On

′ /∈ Fq. (12)

Definition 14. Query Vertex Queue D. The query vertex queue D stores the vertices that have
been determined to have the shortest distance to the query point. Queue D is initially created as
an empty set. The vertices are added to D during the search process as their shortest distances are
determined. Mathematically, we can define D as:

D = {v|v is a vertice that has been determined to have the shortest distance to q}. (13)

Queue D is convenient for subsequent continuous queries, because the boundary
vertices are not updated as the position of the moving object changes. Therefore, the border
vertex data in the queue can still be used again in continuous queries, and the number of
border vertices is higher than that of active vertices; therefore, the repeated traversal of
vertices can be reduced.

Then, we detailed the steps of the first k-nearest neighbor query algorithm:
When the system received a k-nearest neighbor query request (q, k), it first associated

query point q with its nearest vertex v; if v is not an active or boundary vertex of the vertex
subgraph, it means that vertex v is not in the vertex set of the vertex subgraph, and the
distance from vertex v to other vertices in the vertex subgraph is not calculated. Therefore,
we needed to activate v as an active vertex first, add it to the vertex set of the vertex
subgraph, update the index, and obtain the shortest distance between v and any boundary
vertex in the vertex subgraph and the active vertex. If v itself is an active or boundary
vertex in a vertex subgraph, no additional operations are required. The boundary and
active vertices in this vertex subgraph are then added to vertex sequence S.

Then, initialize query queue Fq to be empty, and traverse all vertices in S, find the vertex
v1 closest to vertex v, and start processing vertex v1 (the first vertex to be processed is the
query vertex v itself, because the weight of the road is a positive number and SDist(v, v) = 0;
therefore, there is no need to consider the vertex itself). If v1 is the active vertex, add v1’s
moving object set Qv to Fq, and the distance from the moving object On in the set to the query
point q is SDist(v1, v) + δ; if v1 is a border vertex, it is necessary to expand the search area
and traverse all adjacent border vertices u of v1. If u is in vertex queue S and SDist(u, v1) +
SDist(v1, v) < SDist(u, v), update SDist(u, v) = SDist(u, v1) + SDist(v1, v). If u is not in
vertex queue S or query vertex queue D, add u to S. At this point, the processing of vertex
v1 is completed, and then v1 is deleted from S and added to query vertex queue D. Then,
traverse all the nodes in S again, and continue to process the subsequent vertex closest to
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query vertex v until the algorithm ends early or S is empty (if the algorithm ends early, it
means that there are k or more moving objects in the query queue, and if S is empty, it means
that all the connected graphs have been searched).

If the number of moving objects in Fq is greater than k, more than k moving objects
have been found (because the number of moving objects contained in each active vertex
is different, the number of moving objects saved in Fq will not be exactly k every time),
then sort them according to the road network distance from the query point. Whenever
the subsequent vertex vn is processed, a judgment is made: if SDist(v, vn) ≥ ζ, the
algorithm ends early. Because the Dijkstra-style algorithm searches for vertices in the
order of near to far, if SDist(v, vn) > ζ, the distance from the subsequent active vertex u
containing the object moving to the query vertex SDist(v, u) must be greater than or equal
to SDist(v, vn); therefore, the distance between the object On moving towards u and the
query point must be greater than or equal to SDist(v, u), and thus greater than ζ. From
this, it can be determined that k moving objects in Fq are the k moving objects closest to
q. If SDist(v, vn) < ζ and the processed node is an active vertex, the moving object On in
this point may still be closer to the query point than the moving object in Fq; then, we need
to compare On with the moving object in Fq and update it. The pseudocode of the first
k-nearest neighbor algorithm is shown in Algorithm 1.

Algorithm 1. The first k-nearest neighbor query

Input: q,k // Find the k closest moving objects to the query point q
Output: Fq // Returns the k-nearest neighbor query queue

f unction kNN(q, k)
Associate q with vertex v nearby
add v into GV ;
add v into S;
Fq ← ∅, ζ ← ∞;
D ← ∅;
while S 6= ∅ do

Dist← ∞;
for each vertex u in S do

if SDist(v, u) < Dist then
Dist← SDist(u, v);

if
∣∣Fq
∣∣ = k and

ζ ≤ Dist then
break;

if u is in A then
add u.Qu into Fq
ζ ← min{ζ, max{SDist(On, v)}}

else
for each vertex w in u′s neighbors do

if w ∈ S and SDist(v, w) > SDist(v, u) + SDist(u, w) then
SDist(v, w) = SDist(v, u) + SDist(u, w)

else if w /∈ D then
add w into S

remove u f rom S
add u into D

return Fq

5.3. Continuous k-Nearest Neighbor Query

Since the boundary vertices are only related to the road network itself, as long as the
grid division does not change, the properties of the vertices as boundary vertices will not
change. As the position of the moving object changes, only the active vertices are changed.
Additionally, the number of boundary vertices is far greater than that of active vertices.
Therefore, when query request q has already performed the first k-nearest neighbor query
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operation, we can simplify the continuous k-nearest neighbor query based on the query
vertex queue D. Perform the query from the range that was searched the previous time,
and continue to expand it on the basis of this queue, instead of starting from scratch. The
specific steps of the continuous k-nearest neighbor query algorithm are as follows.

We first associated query point q with the nearest vertex v, similar to the first k-nearest
neighbor value. Then, traverse the vertices in query vertex queue D saved after the initial
k-nearest neighbor query operation; if the vertex v in it was the active vertex at the time
of the last query and is still the active vertex at this time, add the moving objects in the
moving object sequence Qv maintained by v to the new Fq . If v is no longer the active
vertex, proceed to the subsequent node. If v is a boundary vertex, traverse the adjacent
vertices of v to determine whether there is a new active vertex u or a boundary vertex that
does not belong to D. If so, add it to S. If it is an active vertex, judge whether the active
vertex is less than the distance from the last vertex in D to query vertex v, which is the
furthest distance from the query point among the confirmed nodes. If it is less than, then
update v’s mobile object sequence Qv to Fq , delete u from S, and insert it into D.

If the number of moving objects in Fq exceeds k, and the distance from the processed
vertex in D to v is greater than the distance ζ from the moving object farthest from the
query point in Fq to the query point, the algorithm is terminated early. If the algorithm still
cannot end after traversing all the nodes in D, continue to follow the operation of the initial
k-nearest neighbor algorithm to traverse query range sequence S and continue to expand
the search range. The pseudocode of the continuous k-nearest neighbor query algorithm is
shown in Algorithm 2.

Algorithm 2. Continuous k-nearest neighbor query

Input: Or , v // Find the k closest moving objects to the query point q
Output: Fq // Returns the k-nearest neighbor query queue

f unction CkNN(q, k)
Associate q with vertex v nearby
add v into GV
D ← v.D , S← v.S
Fq ← ∅
for each vertex u in D or S do

if u /∈ A ∪ B at this time then
remove u f rom D or S

Dist ← SDist(v, u)
for each vertex u in D do

if u ∈ A then
add u.Qu into Fq
ζ ← min{ζ, max{Dist(p_r, q)}}

else
for each vertex w in u′s

neighbors do
if w ∈ A then

if SDist(u, w) > Dist then
add w into S

else
insert w into D

if
∣∣Fq
∣∣ = k and ζ ≤ Dist then
break

return Fq

5.4. Time and Space Complexity of the DVTG-CkNN Algorithm
5.4.1. Time Complexity

Subsequently, let us analyze the time complexity of the DVTG-kNN algorithm. The
association of a query point with its nearest vertex is a constant-level time complexity.
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The act of updating the vertex subgraph and deriving distances can be viewed as an
operation for each active vertex with a time complexity of O(N), where N is the number
of all vertices indexed at the top level. However, the time complexity of calculating the
distance of each vertex to other vertices is O

(
M2); however, since the shortest distance

between vertices was obtained by distributed computing in our method, M should be the
largest number of vertices in all vertex subgraphs.

Then, the time complexity of enqueuing the vertex is O(1). The time complexity of the
operation of traversing the vertex queue is O(N), where N is the number of vertices in the
vertex queue. The time complexity of finding vertex v is O(log N), and the minimum heap
is used for searching.

For the processing of vertex v, if it is an active vertex, the time complexity of adding its
moving object set to the query queue is O(1); if it is a border vertex, the time complexity of
traversing all its adjacent border vertices is O(K), where K is the degree of each border vertex.

Therefore, the total time complexity is O
(

M2 + N log N + KP
)
, where N is the num-

ber of all vertices in the top-level index, M is the number of vertices at most in all vertex
subgraphs, K is the degree of each border vertex, and P is the number of border vertices.
However, in practice, the time complexity of the kNN algorithm also depends on the value
of k. When k is small, the time complexity of the algorithm is lower; when k is large, the
time complexity of the algorithm is higher. Therefore, choosing an appropriate value for k
has a great influence on the performance of the algorithm, which we tested and proved in
subsequent experiments.

However, the time complexity of DVTG-CkNN is difficult to accurately evaluate
because it depends on the number of active and boundary vertices close to the query point
and the relationship between the vertices. Ideally, the number of active vertices is less than
the number of boundary vertices, and the number of adjacent vertices of each boundary
vertex is also small. In this case, the time complexity of the algorithm can be assumed to be
O(k). However, if the number of active vertices is high and the number of border vertices
adjacent vertices is also high, the time complexity may be high. Therefore, the exact time
complexity of this algorithm cannot be provided, and we tested it in the experiments in the
subsequent section.

5.4.2. Space Complexity

Based on the algorithm’s description, the space complexity of the DVTG-CkNN algo-
rithm can be analyzed as follows:

The space required to store the vertex subgraph, including active, adjacent, and
boundary vertices, can be considered as O(|V|), where |V| is the total number of vertices
in the subgraph.

The space required to store the moving object sets of active vertices, including the
query queue Fq, can be considered as O(|O|), where |O| is the total number of moving
objects in the subgraph.

The space required to store vertex sequence S and query vertex queue D can also
be considered as O(|V|). In addition, the space required to store the shortest distances
between vertices, which are updated during the search, can be considered as O

(
|V|2

)
.

Therefore, the total space complexity of the DVTG-CkNN algorithm can be approxi-
mated as O

(
|V|2 + |O|

)
.

6. Experiment Analysis

In this section, we experimentally evaluated the performance of DVTG-Index and
presented the performance of our proposed DVTG-CkNN algorithm when dealing with
the kNN and continuous kNN queries. To fully evaluate the performance of our method,
we chose three advanced methods, G∗-Tree, V-Tree, and SILC, as benchmark algorithms to
compare to our method.
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6.1. Experiment Settings

This experiment was based on the Java language program, and the IDE program used
IDEA. The computer software/hardware configuration is shown in Table 1.

Table 1. The computer software/hardware configuration.

Software and Hardware Version/Model

Operating system Windows 10 (1902)
CPU Intel Core i7-7700 HQ

Memory 8 GB
Hard disk 1 TB

Java Jdk1.8.2

Additionally, we validated the performance of our query model by simulating a set
of objects moving on a real road network. Therefore, we needed three types of datasets
that were real road network, moving-object, and query-request datasets. This experiment
selected the following three real-world road networks for the experiments: BJ (Beijing), NY
(New York), COL (Colorado), and NW (Northwest USA) [30]. These networks have been
widely used in previous studies, and the number of nodes in the road network ranges from
hundreds of thousands to millions. The specific information is shown in Table 2.

Table 2. Experimental software and hardware configuration table.

Dataset Name Number of Vertices Number of Sides

BJ Beijing 188,229 436,648
NY New York City 264,346 733,846

COL Colorado 435,666 1,056,066
NW Northwest USA 1,207,945 2,840,208

For the BJ road network set, we used a real-world dataset, BJ T-drive, containing actual
taxi trajectories in Beijing from February 2 to August 2008, which included nearly 18 million
GPS trajectories for 10,350 taxis. We used existing methods to map the locations of moving
objects and queries onto road networks [31].

For the other three road network sets, we used the moving-object simulation gener-
ation software invented by Thomas Brinkoff [32] to realize the initial distribution and
update the movement and query requests of moving objects in the road network. We
temporarily set the total number of moving objects as one percent of the number of
vertices, and we use the following three strategies to simulate the starting position and
subsequent trajectories of the moving objects: RD (random distribution), ND (normal
distribution), and ZD (Zipf distribution).

6.2. Baseline Algorithm

We compared the DVTG-Index with three benchmark methods: V-Tree, G*-Tree, and
SILC. These three methods were implemented in this experiment; the implementation of
the first two methods was provided by their authors, and the implementation of SILC as
completed by us. This is how it worked: we started by building an index structure for the
(static) road network. Then, we created a reference index, such as the DVTG-Index, which
saves a list of moving objects from the vertex to the vertex. Similar to our approach, if a
vertex has some moving objects, SILC calls it a POI. Because POIs may contain multiple
moving objects, POIs need to build a list of moving objects. Additionally, when looking for
kNN moving objects, the algorithm will stop. SILC uses a best-first approach to compute
kNN results. We also used this index to keep POIs, calculate top-kNN POIs, and add
moving objects of interest points to the result set.
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6.3. DVTG-Index Experiment Situation

In this section, we conducted experiments by changing the threshold η of the number
of moving objects in the parameter grid; we conducted performance evaluations from two
aspects: the time and space overhead of the index construction and the time and space
overhead of the index update. In order to exclude the influence of other factors, the results
of this experiment are the average values obtained after repeated experiments.

First, we evaluates the characteristics of the DVTG-Index, built a static DVTG-Index,
V-Tree, G*-Tree, and SILC on the datasets BJ, NY, COL, and FLA, and compared the time
cost tc and space cost of building the index mc, as shown in Figure 8. Among them, the
road network set BJ randomly selected the real distribution of taxis at 8:00, 12:00, and 17:00
on February 2, and the road network set NY used three different distribution strategies to
set the starting position of the moving object.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 25 
 

the first two methods was provided by their authors, and the implementation of SILC as 
completed by us. This is how it worked: we started by building an index structure for the 
(static) road network. Then, we created a reference index, such as the DVTG-Index, which 
saves a list of moving objects from the vertex to the vertex. Similar to our approach, if a 
vertex has some moving objects, SILC calls it a POI. Because POIs may contain multiple 
moving objects, POIs need to build a list of moving objects. Additionally, when looking 
for kNN moving objects, the algorithm will stop. SILC uses a best-first approach to com-
pute kNN results. We also used this index to keep POIs, calculate top-kNN POIs, and add 
moving objects of interest points to the result set. 

6.3. DVTG-Index Experiment Situation 
In this section, we conducted experiments by changing the threshold 𝜂 of the num-

ber of moving objects in the parameter grid; we conducted performance evaluations from 
two aspects: the time and space overhead of the index construction and the time and space 
overhead of the index update. In order to exclude the influence of other factors, the results 
of this experiment are the average values obtained after repeated experiments. 

First, we evaluates the characteristics of the DVTG-Index, built a static DVTG-Index, 
V-Tree, G*-Tree, and SILC on the datasets BJ, NY, COL, and FLA, and compared the time 
cost 𝑡௖ and space cost of building the index 𝑚௖, as shown in Figure 8. Among them, the 
road network set BJ randomly selected the real distribution of taxis at 8:00, 12:00, and 17:00 
on February 2, and the road network set NY used three different distribution strategies to 
set the starting position of the moving object. 

    
(a) (b) (c) (d) 

Figure 8. Time and space costs of the DVTG-Index. (a) Time costs on BJ; (b) Space costs on BJ; (c) 
Time costs on NY, COL and NW; (d) Space costs on NY, COL and NW. 

Among them, the construction time of the DVTG-Index was composed of the net-
work construction time, vertex distance matrix calculation time, and vertex elevated 
graph construction time; construction space was composed of the road network set, 
boundary vertices and active vertex sets, vertex distance matrix, and vertex elevated 
graph. As shown in Figure 8a,b, 8:00 and 17:00 in Beijing are the morning and evening 
peak periods, respectively; therefore, there are more moving objects and increased time 
and space factors for the index construction. As shown in Figure 8c,d, the number of ver-
tices and edges of the road network sets NY, COL, and NW increases sequentially. The 
constructed DVTG-Index needs to construct more vertex subgraphs and calculate more 
vertex distance matrices at the same time, so that the memory space occupied by the index 
increases sequentially and the construction overhead time also increases. In addition, dif-
ferent distribution strategies of moving objects also have a certain impact on time and 
space costs. Under the three distribution strategies of RD, ND, and ZD, the time and space 
costs of the constructed DVTG-Index increase in turn. With an uneven distribution, the 
indexed grid requires more merge-up and split-down operations, thus requiring more 
time and space overhead. 

When the index is constructed, the number of grid divisions determines the number 
of grids in the initial index. According to the above factors, if the grid is divided 𝑙 times, 
the number of grids is 4௟. The number of grids determines the size of the grid area and 

Figure 8. Time and space costs of the DVTG-Index. (a) Time costs on BJ; (b) Space costs on BJ;
(c) Time costs on NY, COL and NW; (d) Space costs on NY, COL and NW.

Among them, the construction time of the DVTG-Index was composed of the network
construction time, vertex distance matrix calculation time, and vertex elevated graph
construction time; construction space was composed of the road network set, boundary
vertices and active vertex sets, vertex distance matrix, and vertex elevated graph. As
shown in Figure 8a,b, 8:00 and 17:00 in Beijing are the morning and evening peak periods,
respectively; therefore, there are more moving objects and increased time and space factors
for the index construction. As shown in Figure 8c,d, the number of vertices and edges of the
road network sets NY, COL, and NW increases sequentially. The constructed DVTG-Index
needs to construct more vertex subgraphs and calculate more vertex distance matrices at
the same time, so that the memory space occupied by the index increases sequentially and
the construction overhead time also increases. In addition, different distribution strategies
of moving objects also have a certain impact on time and space costs. Under the three
distribution strategies of RD, ND, and ZD, the time and space costs of the constructed
DVTG-Index increase in turn. With an uneven distribution, the indexed grid requires more
merge-up and split-down operations, thus requiring more time and space overhead.

When the index is constructed, the number of grid divisions determines the number
of grids in the initial index. According to the above factors, if the grid is divided l times,
the number of grids is 4l . The number of grids determines the size of the grid area and
determines how many nodes and moving objects are included in the grid; therefore, we
changed the number of grid divisions l to evaluate the time and space overhead of the
DVTG-Index on each dataset. To exclude the influence of other factors, in this experiment,
we adopted the ZD distribution strategy, and the data shown in the chart are the average of
the results of multiple experiments.

As shown in Figure 9, it can be observed from the experimental results that there
is no positive or negative correlation between the construction time and space costs and
the number of grid divisions l. As the number of grid divisions gradually increases, the
time and space values overhead first decrease and then increase. This is because when the
number of grid divisions is low, the number of grids is low, the area of a single index grid
is large, and the number of active vertices in a single index grid is high, which makes the
calculation time and space overhead of the shortest distance matrix in the grid larger. Due
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to the small number of index layers, the calculation time and space overhead of the shortest
distance matrix account for a large proportion of the total cost; therefore, as the grid is
split, the total time and space costs of the index construction are significantly reduced.
However, when the number of index layers gradually increases to a certain number, the
time to split the index grid down gradually increases, and the number of shortest-distance
matrices increases, which also makes its space cost increase sharply; therefore, the total
time and space overhead of the index construction starts to increase as the number of index
layers increases. In addition, we found that the experimental results of the time and space
overhead of building indexes have similar trends in different datasets; therefore, we can
use the NY dataset to evaluate the index performances in subsequent experiments.
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Then, we conducted comparative experiments for V-Tree, G*-Tree, SILC, and the
DVTG-Index.

As shown in Figure 10, it can be seen from the results in the figure that the construction
time for V-Tree is significantly longer than that of the other indexes. This is because V-
Tree must perform the Floyd algorithm for all subgraphs to calculate the distance matrix.
Although the subgraphs in the upper layer only save the boundary points of the lower
layer, the number of calculations is still very high. However, the DVTG-Index iteratively
merges some useless vertex subgraphs upwards, reducing the number of boundary points
and greatly optimizing the index construction. In addition, with the increase in the road
network, the advantages of our method are more obvious.
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Figure 10. Comparison of construction time and space costs between baseline algorithms and DVTG-
Index. (a) Construction time and space costs on BJ; (b) Construction time and space costs on NY;
(c) Construction time and space costs on COL; (d) Construction time and space costs on NW.

The real-time change in moving objects is one of the difficulties in this study. Our
index associated the moving objects with the vertices of the road network index and
mapped the changes in the moving objects to the update of the index, which better handled
this difficulty. When the moving object started to move on the road network, the index
update performance also directly affected the performance of subsequent k-nearest neighbor
queries. The number of moving objects and the index grid threshold affect the update
performance of the index. Therefore, in this section, we evaluated the impact of various
parameters on the performance of the DVTG-Index update.
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First, we evaluated the impact of the number of moving objects on the index update
time. In the BJ dataset, select 10%, 30%, 50%, 70%, and 100% of all taxis as the number
of moving objects. In datasets NY, COL, and NW, 0.5%, 1.5%, 2.5%, 3.5%, and 5% of the
number of vertices are generated as the number of moving objects, respectively. Among
them, the index grid threshold η is set to 8.

As shown in Figure 11, it can be seen from the experimental results that as the number
of moving objects increases, the updated overhead time also increases. The result is
consistent with the principle of our design; the increase in the number of moving objects
leads to the more frequent splitting and merging of the index grid during the update
process, and the calculation time of the vertex distance matrix also increases accordingly.
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Figure 11. Time cost of updating DVTG-Index w.r.t. the number of moving objects. (a) Time cost on
BJ; (b) Time cost on NY, COL and NW.

Then, we evaluated the impact of index grid threshold η on the index update time.
Among them, in the BJ dataset, the taxi trajectory between 8:00–9:00 on February 2 was
obtained, and in datasets NY, COL, and NW, 5% of the number of vertices was used as the
number of moving objects.

As shown in Figure 12, it can be seen from the experimental results that there is
no positive or negative correlation between the index update time cost and index grid
threshold η. When the threshold is relatively small, as the moving objects change, the index
grid is more likely to be split down or merged up until the number of moving objects in
the grid meets the threshold range, which takes a long time to update the index. As the
threshold gradually increases, the number of moving objects that can be accommodated in
the grid increases, and the time for grid scaling decreases so the total updated overhead time
decreases. However, when the threshold gradually increases to a certain value, the number
of active vertices in a single index grid is also very high, which makes the calculation time
of the vertex distance matrix in the grid increase sharply. This makes the total time cost
of the index update gradually increase with the increase in the threshold. In addition,
the results of different datasets show that there are corresponding optimal thresholds in
different road networks to minimize the update time cost, and the optimal value of the
threshold increases with the increase in the dataset.

Finally, we conducted comparative experiments on the index update performance
of V-Tree, G*-Tree, SILC, and the DVTG-Index. Dataset BJ takes 100% of taxis as moving
objects, 5% of the number of generated vertices in datasets NY, COL, and NW as moving
objects, and ZD as the moving-object distribution strategy.
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Figure 12. Index update time of DVTG-Index w.r.t. η.

As depicted in Figure 13, the empirical results demonstrate that the DVTG-Index
exhibits the lowest and a relatively stable update time cost. This observed performance
improvement of the DVTG-Index over benchmark algorithms is attributed to the reduction
in the number of updated objects by associating moving objects with active vertices,
thereby effectively reducing maintenance costs. As the size of the road network dataset
increases, the comparative advantage of the DVTG-Index becomes increasingly pronounced.
Conversely, the update of V-Tree and SILC requires a high time cost because, in the update
process, they need to frequently traverse all the boundary points in the subgraph to search
for the nearest interest point of the vertex.
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6.4. Experimental Situation of the DVTG-CkNN Algorithm

The main aim of this paper was to solve the CkNN query problem; therefore, this
section is the most important part of our experiment. To evaluate the CkNN query perfor-
mance of our model, we compared our model with state-of-the-art methods. We evaluated
our algorithm by varying the value of k, the number of moving objects, the strategy of
moving-object distributions, and the number of consecutive queries.

First, we evaluated the effect of varying the value of k on the performance of our
algorithm and other benchmark algorithms for kNN queries for datasets BJ, NY, COL, and
NW. We changed the value of k to 1, 3, 5, 10, and 20, respectively, and recorded the overhead
time required for related queries. Other experimental parameters presented continuous
queries as 3, 10% of all taxis as moving objects in the BJ dataset, 2.5% of the number of
vertices as the number of moving objects in the NY, COL and NW datasets, and the moving
objects used the ZD distribution strategy.

As shown in Figure 14, obviously, as the value of k increases, the query times of all
algorithms increase; the average continuous query time of DVTG-CkNN is the shortest
among the three algorithms. Taking the BJ dataset as an example, for k = 5, the average
single query time of DVTG-CkNN is about 79 µs, while the average single query time based
on the G*-Tree is about 259 µs and the average query time based on V-Tree is about 1132 µs.
It can be observed that the larger the value of k, the better the performance effect of the
DVTG-CkNN algorithm than other algorithms. This is because the number of moving
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objects in our index subgrid can be kept within a dynamic balance range, which reduces
the complexity required to expand the search range and shortens the algorithm query time.
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Then, we evaluated the impact of the number of moving objects on the performance
of kNN queries on BJ and COL datasets. In the BJ dataset, we selected 10%, 30%, 50%, 70%,
and 100% of all taxis as moving objects, and in the COL dataset, we, respectively, generated
0.5%, 1.5%, 2.5%, 3.5%, and 5% of the number of vertices as the number of moving objects
and set other experimental parameters k = 5, and the distribution strategy of moving objects
adopted the ZD distribution.

As shown in Figure 15, we can draw the following conclusions. Firstly, as the number
of moving objects increases, the average query overhead time of the three algorithms
decreases. This is because the increase in the number of moving objects increases the
density of the moving objects in the search grid and reduces the range to be searched.
Secondly, the average continuous query time of DVTG-CkNN is the shortest among the
three algorithms; even in the case of the high number of moving objects, DVTG-CkNN still
has a great advantage. As previously designed, the DVTG-CkNN algorithm is based on the
DVTG-Index, which divides the large road network into grids and dynamically merges or
splits them according to the number of active vertices in the grid. This keeps the moving
objects in different grids in a relatively balanced range, which can significantly improve the
efficiency of querying moving objects in large road networks.
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Then, we evaluated the impact of different distribution strategies of moving objects on
the performance of the kNN query using three distribution strategies to generate the number
of moving objects for datasets BJ and NW, respectively. Experiment with other parameters
k = 5, and the number of moving objects is 2.5% of the number of vertices in the dataset.

As shown in Figure 16, we can draw the following conclusions. First, under the three
distribution strategies of RD, ND, and ZD, the overhead times of the three query algorithms
increases in turn. The uneven distribution of moving objects under the three distribution
strategies gradually increases, and the search range gradually increases, requiring more
overhead time. Secondly, the average single query time and average continuous query
time of DVTG-CkNN are the shortest among the three algorithms. Especially under the ZD
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distribution strategy, the performance advantage of DVTG-CkNN is more obvious than
that of the benchmark algorithm. This is because the DVTG-CkNN algorithm is based on
the DVTG-Index, which is designed for unevenly distributed dynamic road networks, and
balances the uneven distribution of moving objects by dynamically dividing the grid.
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Finally, we evaluated the impact of different consecutive query times on the perfor-
mance of kNN queries. We set the number of continuous queries as 1, 3, 5, 10, and 20, and
the moving objects used the ZD distribution strategy. Other experimental parameters were
k = 5, 10% of all taxis as moving objects in the BJ dataset, and 2.5% of the number of vertices
as the number of moving objects in the NY, COL, and NW datasets, and the moving objects
used the ZD distribution strategy.

As shown in Figure 17, the average continuous query time of DVTG-CkNN is the
shortest among the three algorithms. Especially after the number of continuous queries
gradually increases, the performance advantage of DVTG-CkNN compared with the base-
line algorithm is more obvious. This is because the DVTG-CkNN algorithm provides
traversal for subsequent continuous queries through the query vertex queue. The boundary
vertices in the queue are not updated as the position of the moving object changes. There-
fore, the border vertex data in the queue can still be used again in continuous queries, and
the number of border vertices is greater than that of active vertices; therefore, the repeated
traversal of vertices can be reduced.
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7. Conclusions

This paper studied the problem of the continuous k-nearest neighbor query for mov-
ing objects in a road network, and proposed the DVTG-Index, a dynamic multi-layer grid
index, which can index moving objects in the road network and update them in real time.
Secondly, this paper provided a continuous k-nearest neighbor query method for moving
objects in a road network based on the DVTG-Index. DVTG-CkNN can perform efficient
and continuous k-nearest neighbor queries, and the query efficiency reaches the microsecond
level, which is obviously better than the mainstream algorithm used at present for solving this
problem. Finally, we conducted experiments on a real road network dataset. The experimental
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results show that the DVTG-Index and DVTG-CkNN proposed in this chapter present better
performance. Especially in the face of large road network maps and uneven distributions
of moving objects, it has more rapid response capabilities. We also know that our method
presented limitations and deficiencies. The k-nearest neighbor query method proposed in
this paper is based on the optimal condition of single query processing. However, when the
actual platform processed query requests, the sum of all individual optimal query processes
may not be the optimal processing method for the overall situation. In the following stage of
the research, we will focus on the k-nearest neighbor query algorithm with globally optimal
query processing methods, which is of great significance to improve the responsiveness of the
platform, and it also provides a good direction for the follow-up research. At the same time,
in real life, road conditions must be considered. The weight value of the road network should
not only be the length of the road, but should also be added to the road traffic conditions,
and the road traffic cost should be considered as the weight value. Therefore, the future work
can consider optimizing the road network model and enhancing the practicability of the road
network-based k-nearest neighbor query algorithm.
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