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Abstract: In the last decade, many SAR missions have been launched to reinforce the all-weather
observation capacity of the Earth. The precise modeling of radar signals becomes crucial in order
to translate them into essential biophysical parameters for the management of natural resources
(water, biomass and energy). The objective of this study was to demonstrate the capabilities of two
statistical algorithms (i.e., multiple linear regression (MLR) and random forest (RF)) to accurately
simulate the backscattering coefficients observed over bare agricultural soil surfaces. This study
was based on satellite and ground data collected on bare soil surfaces over an agricultural region
located in southwestern France near Toulouse. Multi-configuration backscattering coefficients were
acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, in co-(abbreviated σ0

HH and σ0
VV)

and cross-polarization states (abbreviated σ0
HV and σ0

VH) and at incidence angles ranging from
24◦ to 53◦. Models were independently calibrated and validated using a ground dataset covering a
wide range of soil conditions, including the topsoil moisture (range: 2.4–35.3%), root-mean-square
height (range: 0.5–7.9cm) and clay fraction (range: 9–58%). Higher-magnitude correlations (r) and
lower errors (RMSE) were obtained when using RF (r values ranging from 0.69 to 0.86 and RMSE
from 1.95 to 1.00 dB, depending on the considered signal configuration) compared to MLR (r values
ranging from 0.58 to 0.77 and RMSE from 2.22 to 1.24 dB). Both surpass the performance presented in
previous studies based on either empirical, semi-empirical or physical models. In the linear approach,
the information is mainly provided by the surface moisture and the angle of incidence (especially
in the case of co-polarized signals, regardless of the frequency), while the influence of roughness or
texture becomes significant for cross-polarized signals in the C-band. On the contrary, all the surface
descriptors contribute in the approach based on RF. In future work, the use of the RF algorithm
developed in this paper should improve the estimation of soil parameters.

Keywords: bare soil; topsoil moisture; surface roughness; soil texture; microwave; TerraSAR-X;
Radarsat-2; multiple linear regression; random forest

1. Introduction

During the last decade, many SAR missions (SENTINEL-1A/B, SAOCOM, ICEYE,
DENALI, SEOSAR. . . ) have been added to the well-known pioneer missions (ERS, Radarsat-
2, RCM, Envisat, TerraSAR-X, Tandem-X, COSMO-SkyMed, Kompsat-5. . . ). Consequently,
access to a wide range of images acquired with different configurations has been facilitated,
which reinforces the need to develop radar backscatter models capable of simulating the
delivered signals in order to estimate the biophysical parameters of the surface. The
analysis and interpretation of SAR signals remain challenging and can lead to conflicting
explanations for our observations of the environment. It is recognized that backscatter
coefficients are sensitive to multiple changes in surface conditions and that the same value
may be the result of extremely different vegetation or soil conditions due to compensation
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and the equifinality effects of surface and radar antenna parameters. For example, a dry
bare soil could have the same backscatter coefficient value as a well-developed wheat
field depending on surface conditions (soil moisture, vegetation water content, roughness,
plant density...) or antenna geometry (frequency, incidence angle, polarization...) [1,2]. To
better understand these effects of equifinality and to better differentiate the contributions
related to the variation in surface states, numerous studies have treated these two entities
separately [3,4].

In periods of bare soil, surface soil moisture, roughness and texture have been identi-
fied as variables whose dynamics influence the intensity of backscattering [5–9]. These three
surface descriptors thus constitute explanatory variables common to many approaches,
with the models being based on relationships determined from in situ datasets (semi-
empirical models [10–12]) or on a physical description of backscatter processes (mechanistic
models [13–18]). In remote sensing, most models used for thematic applications are semi-
empirical or statistical because of their ease of application for large landscapes. Physical
models are currently used for theoretical surface conditions [19–23], where the required soil
characterization or computation time is not feasible at the scale of a territory covered by a
satellite image. They are fundamental to better understanding the different contributors of
the backscattered signal but remain limited to specific cases (a very well-known plot or a
simulated theoretical plot, for example), where scientists have total control over the surface
conditions. With the objective of applying the method over large agricultural surfaces, we
will not consider these physical models and we will concentrate on the most used models
in applied remote sensing.

Approaches based on empirical, semi-empirical or statistical models have varying
levels of complexity and are based on a different number of surface descriptors. Neverthe-
less, these modeling approaches offer limited performance regardless of the tested sensor
configurations, particularly for applications aimed at monitoring agricultural surfaces [24].
In this context, more recent studies have proposed different ways to modify models (i.e., by
recalibration, taking into account biases or even adding empirical relationships to physical
models) and attempted to improve the description of backscatter processes by taking better
account of surface variables [24–30]. As models often present limitations in the represen-
tation of surface roughness, modifications were proposed that aimed at improving the
formalism and extending the field of validity [24] in order to make it possible to apply the
approaches to the high values observed in the agricultural context [31–33]. These modeling
efforts have obviously been accompanied by a reduction in dispersion and bias, resulting in
an overall increase in performance. Nevertheless, the correlation levels obtained between
the satellite-derived backscattering coefficients and the predicted values are often mixed
(with values between 0.05 and 0.85, depending on the modeling approach and satellite
configuration), as are the errors made in the estimation of backscattering coefficients (with
values close to 1 dB in rare cases).

Statistical approaches present a tangible alternative to those used in previous studies,
offering precise performance even when processes are complex and multifactorial. Of-
ten used with SAR data for classification purposes [34–37], statistical algorithms can also
constitute one of the links in the chain of methods to provide estimates of surface mois-
ture [38–43], roughness [38,44,45] or texture [46]. In most of these approaches, the statistical
algorithm is considered an inversion tool, trained on a synthetic database derived from
the models discussed above [38–42]. The limits of the representativeness of the models are
then reflected in the estimation of the surface parameters, as evidenced by the performance
levels. Only a few studies have avoided the use of backscattering models by training and
validating the statistical approach directly on an in situ dataset [47–51].

In this context, the originality of our study is the estimation of backscattering coeffi-
cients using two statistical approaches, multiple linear regression (MLR) and random forest
(RF), to simulate the backscatter coefficients acquired in the X- and C-bands in HH, VV and
VH polarization states in bare ground agricultural areas. This paper is structured as follows:
First, the study site, ground measurements and satellite data are described (Section 2).
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The methodology description presents the two statistical algorithms and steps required to
estimate microwave signals and to analyze the importance of the input variables (Section 3).
The results are analyzed considering the overall performance and the importance of the
explanatory descriptors. The main findings are discussed and compared with previous
studies concerning the modeling of backscattering coefficients or signal analysis (Section 4).

2. Materials
2.1. Study Area

The study area (defined as the super site in Figure 1) is located in southwestern
France in the Midi-Pyrénées region, covering a surface area of approximately 420 km2. The
landscape is characteristic of ‘Garonne’s terraces’, with the presence of hills and alluvial
plains. The surveyed plots (37) are flat in the east (with slopes mostly less than 1◦) and
more marked in the west (with slopes nearing an average of 4.5◦). They have very different
shapes and sizes, with areas between 2 and 38 hectares (11 hectares on average over the
area). The study site is subject to a temperate climate, characterized by a marked seasonality.
During the year 2010, the annual cumulative rainfall exceeded 600 mm, with high variability
between months (e.g., 20% of annual rainfall recorded in May). Temperatures varied from
a mean of 3.5 ◦C in January to 22 ◦C in July. The study area is highly anthropized, with
90% of the area dedicated to agriculture and 57% of the area allocated to seasonal crops.
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Figure 1. Location of the study site (super site) in southwestern France. The network of the 37 surveyed
fields (white polygons) is superimposed on a color-composed TerraSAR-X image acquired in StripMap
mode in HH polarization (red: 23 November 2010; green: 16 August 2010; blue: 20 May 2010).

During the agricultural season, bare soil conditions are mainly observed during spring
and autumn, as illustrated in Figure 2. The first period is observed during the months
of April and May; the plots dedicated to summer crop cultivation (i.e., maize, soybean
or sunflower) are tilled, and different surface states succeed each other until planting.
The second period of tillage occurs between the months of October and November, and
different roughness levels are then observed, corresponding to the soil preparation before
the sowing of winter crops (i.e., wheat and rapeseed), stubble disking or harrowing in order



Appl. Sci. 2023, 13, 4893 4 of 19

to manage the crop residues and mold the first centimeters of the plot, or deep plowing to
overcome densely packed soils. A network of surveyed plots has thus been determined
in order to characterize the strong heterogeneity as well as the important dynamics of the
surface variables.
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Figure 2. Relative number of bare soil plots (%) during the field campaign.

2.2. In Situ Data

The main characteristics (i.e., dates, range and mean values) of topsoil moisture (TSM),
soil texture and surface roughness measurements collected in bare soil conditions are
summarized in the Table 1. The protocols and the mean features of the collected soil
descriptors are described hereinafter.

Table 1. Overview of the measurements collected on the network of plots. Surface roughness is
divided into perpendicular ( ) and parallel (||) measurements compared to the row direction.

Soil Variable Measurement Values

Descriptor Name (Unit) Date [Min–Max] Mean

Topsoil Moisture (% m3.m−3) 20 February 2010 [24.0–32.9] 28.9
27 February 2010 [20.1–25.2] 23.3

5 March 2010 [21.2–31.0] 27.0
16 March 2010 [11.8–23.7] 17.9
26 March 2010 [11.5–25.6] 20.8
8 April 2010 [6.7–24.6] 15.9

14 April 2010 [3.5–18.9] 11.2
1 May 2010 [25.8–31.2] 28.7

10 May 2010 [20.0–24.1] 21.8
20 May 2010 [12.5–15.5] 14.0
29 July 2010 [7.0–17.0] 11.1

17 August 2010 [2.7–10.8] 5.9
30 August 2010 [2.5–6.0] 3.8

15 September 2010 [2.4–6.4] 4.2
4 October 2010 [7.0–16.3] 11.2

12 October 2010 [21.3–31.3] 25.5
18 October 2010 [9.8–21.9] 14.5
22 October 2010 [7.7–17.8] 12.1

2 November 2010 [18.1–29.2] 23.3
12 November 2010 [22.6–35.3] 26.6
24 November 2010 [22.0–29.6] 26.3

Soil Texture Clay (%) Once during [9–58] 24
Silt (%) the experimental [22–77] 52

Sand (%) period [4–53] 24
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Table 1. Cont.

Soil Variable Measurement Values

Descriptor Name (Unit) Date [Min–Max] Mean

Surface Roughness hrms (cm) [0.6–7.9] 2.2
lc (cm) After each [1.9–18.5] 7.7

|| hrms (cm) tillage event [0.5–5.6] 1.5
|| lc (cm) [1.1–14.9] 4.4

2.2.1. Topsoil Moisture

The spatial variability in the topsoil moisture (0–5 cm) was measured quasi-synchronously
with satellite acquisitions (i.e., time differences between in situ measurements and satellite
acquisitions of less than one day for 77% of cases for TerraSAR-X acquisitions and 81% for
Radarsat-2) by using portable probes (ML2x from ThetaProbe). The first protocol aims at
determining a calibration relationship for the conversion of the probe’s signal, delivered in mV,
to volumetric moisture expressed in cubic meters of water per cubic meter of soil (m3.m−3) or
percentage (%). The sampling method consisted of synchronously performing measurements
with the probe and sampling the soil in the same location. The soil sample was used to
estimate the volumetric moisture, with the water content of the sample being determined by
weight. The sample was weighed, dried for at least 48 h at 105 ◦C and then weighed again.
The resulting calibration function is given by Equation (1) [52]:

TSM(%) = 0.04 × mV + 0.08
(

R2 = 0.75, RMSE = 4.1%, n = 403
)

, (1)

The monitoring of soil moisture in the study area was then performed using similar
portable probes to those used for the calibration step. The measurements were collected
every 10 or 20 m along transects ranging from 40 to 640 m (depending on the size of the plot).

The time course of soil moisture measurements collected in bare soil conditions is
presented in Figure 3. The average and standard deviation values of topsoil moisture were
derived from measurements collected during the 21 dates of observation. The measure-
ments cover a wide range of values, as shown by the average values, which vary between
3.8% (observed during the summer months, after the harvest of the winter crops) and
29.8% (observed during the rainy period in February and May). At the end of the year (in
November), the values are comparable to those collected in February (almost 27%). The
variability in topsoil moisture values is much more important during the first months of
the year (from February to April). The regular measurements of topsoil moisture allow the
collection of data in varying conditions (i.e., dry to wet soil), as highlighted by values at
the plot spatial scale, ranging from 2.4 to 35.3%.
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2.2.2. Soil Texture

The samples (146) were collected along the same transects used for the measurements
of topsoil moisture. Each measurement ‘point’ consisted of 16 core samples within a circle
with a 15 m diameter and a depth of 25 cm. The number of ‘points’ measured in each plot
ranged from 2 to 8 and is a function of (i) the length of the transect and (ii) the analysis of
surface moisture measurements. The plots showing specific soil moisture profiles; namely,
a trend or different levels of values along the transect were intentionally oversampled. The
‘Lara Europe Analyses’ laboratory obtained the fractions of clay, silts, sands and gravels.

The fractions of clay, silt and sand are presented within the United States Department
of Agriculture (USDA) classification system (Figure 4). This classification is divided into
12 classes of texture, 7 of which are assigned to the measurements. The samples are mostly
in the silty loam class (with 77 samples), followed by loam (20), silty clay loam (16), clay
loam (15), clay (10), silty clay (5) and sandy clay loam (3). With fractions between 9 and
58% for clay, between 22 and 77% for silt and between 4 and 53% for sand, the observed
contents cover approximately half of the range of each component. On average, the texture
is composed of 52% silt and 24% clay and sand, illustrating the dominance of the silt
fraction within the study area. Moreover, 95% of samples have a sand content of less than
40%, and more than half of the points have a clay content that does not exceed 20%.
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Figure 4. Surface texture measurements (black dots) displayed on the United States Department of
Agriculture (USDA) classification system with the following classes: clay (Cl), silty clay (SiCl), sandy
clay (SaCl), clay loam (ClLo), silty clay loam (SiClLo), sandy clay loam (SaClLo), loam (Lo), silty loam
(SiLo), sandy loam (SaLo), silt (Si), loamy sand (LoSa) and sand (Sa).

2.2.3. Surface Roughness

The surface roughness was measured using a 2 m long needle profilometer after
each tillage event. Tillage was either plowed, stubble-disked, harrowed, prepared cloddy
or prepared smooth. The profilometer is composed of 201 needles spaced 1 cm apart.
These needles replicate the micro-relief of the ground by landing on the surface, and a
photograph records the soil profile. For each change in the surface state, two profiles
were collected parallel to the direction of the tillage of the plot, and two others were
collected perpendicularly.
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Pairs of pictures were digitized and associated to obtain 4 m long profiles. The first-
order trend was removed to subtract the effect of the local slope due to non-parallelism
between the soil and the profilometer. A statistical description of the roughness is provided
by the root-mean-square height (hrms). The dependence between two successive points
of the roughness profile was estimated through the exponential or Gaussian correlation
function, defining a distance for which the correlation between points no longer exists, or
the correlation length (lc).

The values of hrms and lc, derived from parallel and perpendicular profiles and
grouped into four categories according to tillage practices, are presented in Figure 5.
The values are highest in the perpendicular direction, as evidenced by the average hrms of
2.2 cm (vs. 1.5 cm in the parallel direction) or lc of 7.7 cm (vs. 4.4 cm). The ‘plowed’ surface
state presents the highest values of hrms (with averages of 3.4 and 4.4 cm in the parallel and
perpendicular directions) and differs from other levels of roughness. It represents 11% of
the collected profiles and is associated with high variability, as evidenced by the values of
the coefficients of variation between 25 and 45%, depending on the parameter (hrms or lc)
and the direction considered. The ‘stubble disked’ and ‘harrowed’ surface states represent,
respectively, 14 and 23% of the collected profiles. They are associated with fairly close hrms
values, with an average of 1.5 and 1.8 cm in the parallel direction and 2.7 and 2.4 cm in the
perpendicular direction. They are therefore difficult to separate, especially as they have
high dispersion, with coefficients of variation greater than 30%. The ‘prepared’ surface
states account for more than half of the roughness measurements (25% for the ‘cloddy’
state and 27% for ‘smooth’). They are associated with fairly close hrms values, less than
2 cm on average. The lc values are more mixed, with greater averages for the ‘smooth’ state
compared to ‘cloddy’ (with 4.4 vs. 2.5 cm in the parallel direction and 8.5 vs. 6.0 cm in the
perpendicular direction).
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TS-X Spotlight 
5 March 2010; 21 May 2010; 18 August 

2010 
D 53.3 1.5 HH 
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Figure 5. Scatter plot between roughness parameters (root-mean-square height (hrms) and correlation
length (lc)) derived from parallel (a) and perpendicular (b) profiles. Roughness states are grouped
into four categories according to soil practices (plowed, stubble-disked, harrowed, prepared cloddy
and prepared smooth).

2.3. Microwave Satellite Data

The German and Canadian satellites, namely, TerraSAR-X and Radarsat-2, respec-
tively, provide microwave data. They carry SAR instruments that operate in the X-band
(f = 9.65 GHz, λ = 3.1 cm) and in the C-band (f = 5.405 GHz, λ = 5.5 cm). The satellite
acquisitions are planned in order to constitute the maximum number of pairs of images
presenting the two frequencies in close intervals of time. Throughout the agricultural
season, 27 images in the X-band and 21 in the C-band were collected on plots presenting
bare soil conditions (Table 2).
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Table 2. Mean features of the TerraSAR-X and Radarsat-2 acquisitions.

Mission Mode Acquisition Date (mm, dd, yy) Pass
Incidence
Angle

(◦)

Pixel
Size
(m)

Polarization
States

TS-X Spotlight 15 March 2010 D 28.7 2 HH
TS-X Spotlight 14 April 2010 A 32.3 2 HH
TS-X Spotlight 8 April 2010; 30 April 2010; 29 August 2010 A 45.5 1.75 HH
TS-X Spotlight 5 March 2010; 21 May 2010; 18 August 2010 D 53.3 1.5 HH

30 September 2010; 11 September 2010;
22 September 2010

2 November 2010; 13 November 2010; 24 November 2010

TS-X StripMap 21 February 2010; 26 March 2010; 9 May 2010;
20 May 2010 D 27.3 2.75 HH

16 August 2010; 29 September 2010; 10 October 2010
21 October 2010; 12 November 2010; 21 November 2010

TS-X StripMap 15 September 2010 A 31.8 2.75 HH
TS-X StripMap 27 February 2010; 31 July 2010 D 41.7 3 HH
RS-C FQ5 5 March 2010; 24 November 2010 A 24.3 5 Full
RS-C FQ6 21 October 2010; 14 November 2010 D 25.6 5 Full

RS-C FQ10 26 February 2010; 15 April 10; 9 May 2010;
30 September 2010 A 30.0 5 Full

RS-C FQ11 26 March 2010; 17 August 2010 D 31.1 5 Full

RS-C FQ15 15 March 2010; 8 April 2010; 2 May 2010; 30 August 2010;
17 October 2010 A 35.1 5 Full

RS-C FQ16 20 May 2010; 31 July 2010; 11 October 2010 D 36.2 5 Full
RS-C FQ20 3 November 2010 A 39.9 5 Full
RS-C FQ21 20 February 2010; 16 March 2010 D 40.8 5 Full

TerraSAR-X images are acquired in HH polarization using two beam modes (SpotLight
(SL) and StripMap (SM)) and are characterized by a pixel spacing ranging from 1.5 to
3 m [53]. They are mainly acquired at incidence angles of 27.3◦ and 53.3◦ (11 and 10 images,
respectively), although a third part of the images is associated with intermediate incidence
angles (28.7◦, 31.8◦, 32.3◦, 41.7◦ or 45.5◦). Radarsat-2 images are acquired in the full
quad-polarization mode (FineQuad-Pol), which provides images in HH, VV, HV and VH
polarizations, with a pixel spacing of ~5 m [54]. They are acquired with eight different
incidence angles, ranging from 24◦ to 41◦. All radar images were calibrated and geo-
referenced using ortho-photos (with a resolution of 50 cm) provided by the French National
Geographic Institute [53,55].

3. Methods

The present work addresses the estimation of backscattering coefficients at the
spatial scale of the plot. The steps implemented in the estimation of backscattering
coefficients are illustrated in the following synopsis (Figure 6). Microwave satellite
images are first processed to obtain backscatter coefficients at the plot scale (process-
ing steps described in Section 2.3). The backscattering coefficients are then estimated
using the two statistical algorithms described below (i.e., multiple linear regression or
random forest). These algorithms were implemented by considering all collected soil
measurements, allowing the analysis of variable importance.
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3.1. Multiple Linear Regression

The studies carried out on the interpretation of the dynamics of the backscatter coeffi-
cients, as well as on their modeling, showed that the radar signals observed in bare soil
conditions depend on several variables. For each of the satellite configurations studied
in this paper, multiple linear regression was performed. This method aims at estimating
the linear relationship between the backscatter coefficients (variable to be predicted, or
Y) and the surface descriptors, classically considered explanatory variables in modeling
approaches (explanatory variables, or X1, X2, . . . , XN). The significance of the multiple
linear regression coefficients was determined, along with their corresponding p-values.
The surface and satellite descriptors were retained in the algorithm when the p-value was
below the significance level of 0.05 for a considered explanatory variable (which allows the
null hypothesis to be rejected and the hypothesis of a non-zero correlation to be accepted).

3.2. Random Forest

The relationships between surface descriptors and backscatter coefficients may be more
complex and non-linear, and the effects between explanatory variables on the dynamics
of satellite signals can be combined. In this multifactorial context, an algorithm such as
random forest appears to be appropriate [56], particularly when non-linear behaviors
exist. Estimates of the target variable are obtained as follows: an ensemble of independent
trees is constructed from a subset of bootstrap samples derived from the original dataset
and aggregated through the weighted mean of the ensemble of estimates, providing an
estimate of the targeted variable. The bootstrap aggregating procedure (also called bagging)
provides a number of benefits, including reduced overfitting, the low influence of noise
on the data and the high stability of the results. Furthermore, the algorithm provides a
measure of the relative importance of the predictive variables, which can be used to rank,
to select or to understand the influence of the considered explanatory variables [57].
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3.3. Statistical Model Setup and Accuracy Metrics

Regardless of the considered statistical algorithm, the backscattering coefficients were
first estimated by considering the following explanatory variables: the incidence angle for
the SAR images; the topsoil moisture; the fractions of clay, silt and sand for the texture; and
the standard deviation of roughness heights and the autocorrelation length collected in the
directions parallel and perpendicular to the tillage orientation for the surface roughness.
Regardless of the considered SAR signal configuration, the dataset was randomly divided
into a training set and a test set, each containing half of the data. The statistical algorithms
were calibrated on the training set and validated on the independent test set, repeating
the procedure ten times. The average values of the coefficient of correlation, root-mean-
square error and bias were finally derived from the comparison between the observed and
estimated values of the backscatter coefficients (Equations (2)–(4)).

r =
COV(o, p)

σoσp
, (2)

RMSE =

√
∑n

i=1(pi − oi)
2

n
, (3)

Bias =
1
n

n

∑
i=1

(pi − oi), (4)

where n is the number of observed values, o is the observed value, p is the predicted value,
COV is the covariance, and σo and σp are the standard deviations of observed and predicted
data, respectively.

The values of the multiple linear regression parameters are summarized in Appendix A
for each studied satellite configuration, and the trained random forest models are available
by request from the authors or can be downloaded by following the link provided in the
section “Supplementary Materials”.

4. Results and Discussion
4.1. Overall Performance of the Statistical Approaches
4.1.1. Multi-Incidence Estimates of X-Band Backscattering Coefficients

The values of backscattering coefficients estimated in HH polarization using the MLR
or RF algorithm are compared to those derived from the TerraSAR-X images (Figure 7).
The independent subsets of samples used for the training and validation phases are
distinguished (in gray and black, respectively) and associated with their corresponding
statistical indices. Regarding MLR, the estimates of the backscatter coefficients are
based on the incidence angle and the topsoil moisture, which are the only explanatory
variables among those tested to present p-values lower than 0.05. All surface and satellite
descriptors were retained for the RF algorithm. Higher accuracy is observed for estimates
based on RF compared to the performance obtained with MLR, as highlighted by the
values of correlation of 0.86 and 0.77 (values obtained with the validation subset of
samples). A more in-depth analysis of the validation subset shows that backscattering
coefficients are estimated without any bias (values close to 0), with a high level of
correlation (values greater than 0.75) and with an acceptable level of error (values of
RMSE less than 1.3 dB), regardless of the considered statistical algorithm. Such a level
of performance surpasses the results obtained in the same study site using Oh’s and
Dubois’ semi-empirical models [10–12,30]. As detailed in the following Section 4.1.3,
these performance metrics are also superior to those obtained using a dataset collected at
other study sites used to test or to develop modified versions of Oh’s and Dubois’ models.
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Figure 7. Comparison between simulated and observed backscattering coefficients in the X-band
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estimates obtained on the training subset, while the black dots come from the validation subset.

4.1.2. Multi-Incidence and Multi-Polarization Estimates of C-Band Backscattering
Coefficients

The results obtained in the C-band are presented in Figure 8, distinguishing the
performance associated with each state of polarization. As in the previous section, the
results obtained with MLR are based on variables with significant p-values. For signals ac-
quired in co-polarization states (i.e., HH and VV), the estimates are based on the incidence
angle and topsoil moisture, while for cross-polarization states, the following descriptors
have p-values less than 0.05: the topsoil moisture, the fraction of clay, the standard devia-
tion of roughness heights and the autocorrelation length collected in the direction parallel
to the tillage orientation regarding the surface roughness. As previously mentioned, all
the surface and satellite descriptors are considered for RF. Compared with the X-band
results, the levels of accuracy are lower, with correlation values of 0.65/0.73, 0.65/0.71 and
0.58/0.70 for the two tested algorithms (i.e., MLR/RF) and for the HH, VV and VH polar-
izations, respectively (focusing on validation performance). The estimates are characterized
by a near-zero bias, regardless of the considered configuration. Statistical models associated
with co-polarizations (i.e., HH and VV) have similar levels of error, with RMSE values
between 1.53 and 1.75 dB (Figure 8a–d). The error is slightly higher with cross-polarization
(VH), with values of 2.22 dB for MLR (Figure 8e) and 1.95 dB for RF (Figure 8f) (com-
parable results are obtained with HV polarization, not shown here). Moreover, the RF
algorithm provides results with higher stability, as evidenced by the quasi-similar levels of
the statistical indices between the training and validation phases, while the performance is
slightly degraded with MLR. Such behaviors have already been pointed out in previous
studies [58,59], with RF algorithms being associated with high predictive ability (showing a
high level of performance in the multifactorial context in modeling non-linear relationships)
and results with high stability (a characteristic mainly explained by the bootstrap aggregat-
ing procedure). As previously stated for the X-band, the results obtained in the C-band in
the HH polarization state can be compared with those obtained with semi-empirical models
on the same dataset [30]. The performance associated with the initial models proposed by
Oh et al. [11] and Oh [12] or Dubois et al. [10] is lower than that obtained with the two
statistical algorithms, as evidenced by the values of correlation (between 0.31 and 0.44) or
corresponding errors (between 2.27 and 3.66 dB). After the improvement procedure (taking
into account biases with regard to surface descriptors), the accuracy of the semi-empirical
models is close (r = 0.65, RMSE = 1.74 dB) to that obtained with MLR but remains lower
than that obtained with RF (r = 0.73 and RMSE = 1.60 dB for RF).
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4.1.3. Evaluation of the Statistical Algorithms Compared to Models Developed in the
Literature—Which Approach to Retain?

This section compares the performance obtained in this paper to that obtained in
previous studies [24,29,30,60–63]. It focuses on statistical criteria (i.e., correlation coefficient
and RMSE) obtained for satellite signals acquired in the X- and C-bands in HH, VV and
VH polarization states (Figure 9). The studies used in the comparison of performance
with the models developed in this work did not all use the same performance evaluation
statistics. Indeed, some of them used only the correlation coefficient, while others used
only the RMSE. Figure 9 summarizes the statistical performance obtained for each model
used for the comparison (r and/or RMSE) for the four satellite configurations analyzed in
the present study. It is important to note that these performance measures were obtained
from the original datasets used to build the models, unlike the previous parts, where the
models were evaluated on the dataset used in this study.
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Semi-empirical models tested on different study sites present error levels ranging
from 2.3 to 4.7 dB in the X-band (and correlations close to 0.58) and from 2.3 to 4.4 dB in
the C-band (and correlations between 0.31 and 0.44). The results of the signal estimations
acquired with HH polarization show similarities, namely, lower error levels for the models
proposed by Oh [11,12] compared to the performance associated with the Dubois model [10].
Concerning the other polarization states (i.e., VV or VH), fewer studies show error levels
ranging from 2.4 to 2.8 dB. Physical approaches do not offer any improvement in the
estimation of radar signals. Their performance appears limited, as evidenced by the error
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levels in the X- and C-bands, with values from 3.5 to 11.7 dB and 3.3 to 26.7 dB, respectively,
and correlations less than 0.35.

Given these results, in order to overcome the limitations displayed by these models,
different approaches have been proposed, such as the semi-empirical calibration of the IEM
model [25–28], the recalibration of the initial equations of the models or the reduction in
different biases of semi-empirical models [24,29,30]. These changes are accompanied by a
decrease in estimate dispersion, which is accompanied by a higher level of performance.
The IEM model corrected for roughness bias has, for example, lower error levels in the X- or
C-band (with values between 1.8 and 3.2 dB and between 1.9 and 3.1 dB, respectively). The
same applies to approaches that aim at modifying semi-empirical models, with error levels
in X- or C-band between 1.4 and 1.9 dB and between 1.7 and 2.2, respectively. Nevertheless,
these approaches remain limited, and the levels of precision of the statistical approaches
(presented in this study) exceed those obtained with semi-empirical (i.e., Oh’s [11,12] and
Dubois’ [10] models, results presented in [30]) or physical (i.e., IEM [13], results presented
in [24]) models implemented at the same study site (results presented in the two previous
sections). This raises the question of the initial formalism of the models and the question
of the representativeness/quality of the ground measurements. Indeed, models adjusted
for different biases should have a performance at least equivalent to that of statistical
approaches. At this stage, the modified models are in a deadlock, having extracted as much
information as possible from the biases toward the input variables.

4.2. Importance of the Soil Descriptors and Incidence Angle in Backscattering Estimates

In the case of MLR, the models rely on a limited number of explanatory variables,
especially in the case of signals acquired with co-polarization. For the X-band, incidence
angles and TSM account for 59.2 and 40.8% of the explained variance, respectively. Regard-
ing the C-band, the variance explained by TSM is more important, with 77.1 and 79.7% for
HH and VV polarizations, respectively (the variance explained by the incidence angle is
22.9 and 20.3%, depending on the considered polarization). Finally, for the C-band in the
cross-polarization state, the proportion of variance explained by TSM reaches 86.3%; the
clay fraction, the standard deviation of roughness heights and the autocorrelation length
collected in the direction parallel to the tillage orientation regarding the surface roughness
account for 3.6, 8.5 and 1.6%, respectively.

The relative importance of the descriptors used as input variables of RF algorithms for
the estimation of backscattering coefficients is presented in Figure 10. The general trends in
the level of importance of the variables for the tested satellite configurations are relatively
close (absolute levels are, however, specific to the considered frequency and polarization)
and appear consistent with previous studies dealing with the analysis of microwave signals
observed over bare agricultural soils.

Regardless of the microwave wavelength considered, the topsoil moisture is the
most significant surface descriptor. The importance of this variable in the estimation of
backscatter coefficients is the highest in the case of the C-band, with values ranging from
44.0 to 46.7% for the various polarizations (Figure 10). For the X-band, the importance level
associated with surface moisture is 38.8%.

For the other variables, the order and level of importance vary with the considered
satellite configuration. The effect of the incidence angle is the highest in the case of the
X-band (importance of 39.9%, Figure 10), with a level close to that of the surface humidity
(38.8%). This importance of the incidence angle is lower in the case of the C-band, with
an average level close to 20% for co-polarizations. In the case of cross-polarization, the
importance of the incidence angle is the lowest, exceeded by topsoil moisture, roughness
and texture, whose levels reach 44.0, 27.7 and 18.0%, respectively. This difference between
polarization states is consistent with various studies that show a low angular sensitivity
in the case of signals acquired with cross-polarization [2,64–66]. Conversely, the large
difference between signals acquired in the same polarization state (i.e., HH) in the X- and
C-bands regarding the effect of the incidence angle should be interpreted with caution.
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Indeed, images acquired in the X-band are mainly acquired at 27.3 and 53.3◦, therefore
displaying a maximum angular difference of ~26◦. In the C-band, this difference is smaller
(close to 16◦), limiting the comparison of the importance of the incidence angle between
signals acquired at different frequencies.
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The four components of roughness considered in the approach have a higher im-
portance in the C-band, with levels of 23.5% for HH, 19.9% for VV and 27.7% for VH
polarization, compared to 15.1% for the X-band (Figure 10, topmost values). This lower
importance of roughness in signals acquired in the X-band is also highlighted in vari-
ous other studies; the sensitivity to surface roughness thus increases with the considered
wavelength [9,67]. Among the four components considered in this study, the levels of
importance of hrms are slightly higher than those associated with lc (averages of 6.5 and
4.8%, respectively). Regardless of the considered satellite configuration, the two roughness
variables derived from the profiles measured in the parallel direction are associated with
levels of importance higher than those measured in the perpendicular direction (averages
of 7.0 and 4.3%, respectively).

Finally, the texture components show limited importance, which reaches 18.0% in the
case of the C-band with VH polarization. This level is lower for signals acquired with HH
polarization, that is, 6.2% and 9.2% for the X- and C-bands, respectively. The values of
importance associated with the clay content are higher (mean of 7.2%) than those of the
sand content (5.3%), regardless of the satellite configuration considered. The moderate
influence of texture on signals acquired in the X- and C-bands is thus consistent with the
results presented in [68], with the effects of the fractions of sand, silt and clay being more
pronounced on signals acquired at lower frequencies (e.g., in the L-band).

5. Conclusions

This study aimed at modeling the backscattering coefficients observed at the plot spa-
tial scale with different viewing configurations (regarding the frequency, polarization and
incidence angle) over bare agricultural surfaces. The two statistical algorithms developed
in this study (i.e., multiple linear regression and random forest) present a higher magnitude
of performance than those in previous studies (based on different modeling assumptions,
that is, semi-empirical or physical), with higher accuracy in the X-band (correlation of
0.86 and RMSE of 1.03 dB) compared to that obtained with the different polarizations in
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the C-band (correlations greater than 0.58 and RMSE less than 2.22 dB). These two models
are not influenced in the same way by surface descriptors. In the linear approach, the
information is mainly carried by the surface moisture and the angle of incidence (especially
in the case of co-polarized signals, regardless of the frequency), while the influence of
roughness or texture becomes significant for cross-polarized signals in the C-band. On the
contrary, all the surface descriptors contribute information in the approach based on RF,
with the algorithm giving access to more complex relations. Overall, the RF algorithm is
the most robust and reliable for simulating all radar configurations (from the band and
polarization perspectives). Both surpass the performance presented in previous studies
based on either empirical, semi-empirical or physical models.

The analyses carried out in this study highlight the importance of topsoil moisture in
the dynamics of backscattering coefficients, opening the way to a new perspective on its
estimation from SAR images.

Supplementary Materials: Random Forest modeling was performed using R software. For each of
the tested configurations, the trained models are available on request from the authors. They can
also be downloaded at https://www.mdpi.com/article/10.3390/app13084893/s1, where a sample
formatted data matrix of the input file and an RDS file per configuration are available.
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Appendix A

The values of the multiple linear regression parameters are listed in Table A1 for the
analyzed satellite configurations.

Table A1. Summary of the values of multiple linear regression parameters for relationships obtained
in the X-band in the HH polarization state and in the C-band in HH and VV polarization states
considering the incidence angle and the topsoil moisture.

Band Polar. States Inc. Ang. TSM Cte

X HH −0.100 11.025 −7.220
C HH −0.163 15.941 −6.030
C VV −0.147 15.372 −6.575

The backscattering coefficients can be estimated using Equation (A1) and the parame-
ters corresponding to the chosen satellite configuration.

σ◦FreqPol = X1 × PInc.Ang. + X2 × PTSM + Cte, (A1)

where Freq is the considered band, Pol is the polarization state, X1 is the incidence angle,
X2 is TSM, and P is the corresponding parameter.

https://www.mdpi.com/article/10.3390/app13084893/s1
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Table A2. Summary of the values of the multiple linear regression parameters for relationships
obtained in the C-band in HV and VH polarization states considering the topsoil moisture, the
fraction of clay, the standard deviation of roughness heights and the autocorrelation length collected
in the direction parallel to the tillage orientation regarding the surface roughness.

Band Polar. States TSM % of Clay Hrms Par.

X HH −0.100 11.025 −7.220
C HH −0.163 15.941 −6.030
C HV 20.215 −8.211 0.742

The backscattering coefficients can be estimated using Equation (A2) and the parame-
ters corresponding to the chosen satellite configuration.

σ◦FreqPol = X1 × PTSM + X2 × P% o f Clay + X3 × PHrms Par. + X4 × Plc Par. + Cte, (A2)

where Freq is the considered band, Pol is the polarization state, X1 is TSM, X2 is the fraction
of clay, X3 and X4 are the standard deviation of roughness heights and the autocorrelation
length, both collected in the direction parallel to the tillage orientation regarding the surface
roughness, and P is the corresponding parameter.
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58. Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.

Remote. Sens. 2016, 114, 24–31. [CrossRef]
59. Fawagreh, K.; Gaber, M.M.; Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng.

2014, 2, 602–609. [CrossRef]
60. Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J.

Remote Sens. 2006, 27, 3831–3852. [CrossRef]
61. Baghdadi, N.; Saba, E.; Aubert, M.; Zribi, M.; Baup, F. Evaluation of radar backscattering models IEM, Oh, and Dubois for SAR

data in X-Band over bare soils. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1160–1164. [CrossRef]
62. Choker, M.; Baghdadi, N.; Zribi, M.; El Hajj, M.; Paloscia, S.; Verhoest, N.E.C.; Lievens, H.; Mattia, F. Evaluation of the Oh, Dubois

and IEM backscatter models using a large dataset of SAR data and experimental soil measurements. Water 2017, 9, 38. [CrossRef]
63. Rahman, M.M.; Moran, M.S.; Thoma, D.P.; Bryant, R.; Sano, E.E.; Holifield Collins, C.D.; Skirvin, S.; Kershner, C.; Orr, B.J. A

derivation of roughness correlation length for parameterizing radar backscatter models. Int. J. Remote Sens. 2007, 28, 3995–4012.
[CrossRef]

64. Fieuzal, R.; Baup, F. Estimation of leaf area index and crop height of sunflowers using multi-temporal optical and SAR satellite
data. Int. J. Remote Sens. 2016, 37, 2780–2809. [CrossRef]

65. Ulaby, F.T. Radar Response to Vegetation. IEEE Trans. Ant. Propag. 1975, 23, 36–45. [CrossRef]
66. Ulaby, F.T.; Bradley, G.A.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture:

Part II—Vegetation-covered soil. IEEE Trans. Geosci. Electron. 1970, 17, 33–40. [CrossRef]
67. Brisco, B.; Brown, R.J.; Snider, B.; Sofko, G.J.; Koehler, J.A.; Wacker, A.G. Tillage effects on the radar backscattering coefficient of

grain stubble fields. Int. J. Remote Sens. 1991, 12, 2283–2298. [CrossRef]
68. Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Lil-Kun, W. Microwave dielectric behavior of wet soil—Part 1:

Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 1985, 23, 25–34. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5589/m11-065
https://doi.org/10.1109/TGRS.2009.2035497
https://doi.org/10.5589/m04-004
http://nest.array.ca/web/nest
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1198/tast.2009.08199
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1080/21642583.2014.956265
https://doi.org/10.1080/01431160600658123
https://doi.org/10.1109/LGRS.2011.2158982
https://doi.org/10.3390/w9010038
https://doi.org/10.1080/01431160601075533
https://doi.org/10.1080/01431161.2016.1176276
https://doi.org/10.1109/TAP.1975.1140999
https://doi.org/10.1109/TGE.1979.294626
https://doi.org/10.1080/01431169108955258
https://doi.org/10.1109/TGRS.1985.289497

	Introduction 
	Materials 
	Study Area 
	In Situ Data 
	Topsoil Moisture 
	Soil Texture 
	Surface Roughness 

	Microwave Satellite Data 

	Methods 
	Multiple Linear Regression 
	Random Forest 
	Statistical Model Setup and Accuracy Metrics 

	Results and Discussion 
	Overall Performance of the Statistical Approaches 
	Multi-Incidence Estimates of X-Band Backscattering Coefficients 
	Multi-Incidence and Multi-Polarization Estimates of C-Band Backscattering Coefficients 
	Evaluation of the Statistical Algorithms Compared to Models Developed in the Literature—Which Approach to Retain? 

	Importance of the Soil Descriptors and Incidence Angle in Backscattering Estimates 

	Conclusions 
	Appendix A
	References

