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Abstract: The facility location problem (FLP) is a complex optimization problem that has been widely
researched and applied in industry. In this research, we proposed two innovative approaches to
complement the limitations of traditional methods, such as heuristics, metaheuristics, and genetic
algorithms. The first approach involves utilizing crowdsourcing through video game players to
obtain improved solutions, filling the gap in existing research on crowdsourcing for FLP. The second
approach leverages machine learning techniques, specifically prediction methods, to provide an
efficient exploration of the solution space. Our findings indicate that machine learning techniques
can complement existing solutions by providing a more comprehensive approach to solving FLP and
filling gaps in the solution space. Furthermore, machine learning predictive models are efficient for
decision making and provide quick insights into the system’s behavior. In conclusion, this research
contributes to the advancement of problem-solving techniques and has potential implications for
solving a wide range of complex, NP-hard problems in various domains.

Keywords: optimization; facility location problems; genetic algorithms; predictive models

1. Introduction

Given the ubiquity of computationally hard, complex, or difficult problems, using
human insight and intuition allows us to improve the traditional algorithmic methods [1,2].
In this work, we applied this concept to the optimization problem known as the facility
location problem (FLP), utilizing video games as the means to gather human input on
instances of it.

The FLP consists of, given a set of demand centers and potential locations for opening
facilities, choosing a subset of the potential locations. Opening each facility has a cost
associated, and servicing demand centers from faraway facilities is costly as well. Strategies
may vary from having few facilities that service distant demand centers to having numerous
facilities that service demand centers from short distances. The subset must be chosen to
minimize the total cost. This problem has been proven to be NP-hard [3].

The utilization of crowd computing techniques is employed as a method to gather
large amounts of human input for problem instances. Crowd computing is defined as
a strategy that allows a collective group of individuals, rather than solely computers,
to perform productive computations and aggregate the results in order to solve a problem.
A comprehensive discussion about the understanding of crowdsourcing in science was
proposed by Lenart-Gansiniec et al. [4] since it is a topic that is relevant for generating
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scientific knowledge and has been used to solve problems for business, the public, and
non-governmental sectors.

The FLP is a common issue that frequently occurs in the fields of logistics and oper-
ations research. Despite its ubiquitousness, the complexity of the problem often renders
obtaining optimal solutions for substantial instances within practical time limits challeng-
ing. For this reason, these problems are often tackled with heuristics [5], meta-heuristics,
or stochastic approaches [6]. In particular, problems where a robust solution is needed—one
that can endure a disruption and remain efficient—have been approached with genetic
algorithms [7,8]. The aim of this study is to demonstrate the feasibility of incorporating
human intuition and insight into solving complex problems such as the FLP, which fre-
quently arise in logistics and operations research. The goal is to reduce transportation
costs, enhance robustness in FLP, and allocate resources effectively. However, the task
of acquiring knowledge from human participants is challenging due to the difficulty in
articulating the thought processes that lead to a conclusion. People may have an intuitive
sense of the solution to a particular problem instance, but their thought processes are not
easily expressed in a concrete algorithm or heuristic. To address this challenge, a video
game was employed to gather potential solutions from human participants. This game
presents participants with multiple instances of optimization problems, aiming to aggregate
their strategies into a unified algorithm or heuristic.

The objective of this study is to demonstrate the feasibility of a hybrid human–
computer approach in addressing challenging problems. A comparison between the
results of this hybrid approach and traditional algorithmic methods, specifically genetic
algorithms, was made concerning the facility location problem. No prior expertise or
training is required for the human participants since the proposed video game is designed
to be accessible to the general public. This study includes the design and implementation
of a video game specifically for the FLP, as well as the data analysis and interpretation of
the results obtained from individuals playing the game.

While the widespread distribution of the game is not within the scope of this work,
the game’s design is intended to be suitable for such an objective, including the aim of
increasing player engagement and gather more data per player. The design of the video
game was intended to fulfill dual purposes, including providing basic training on the
concepts of the problem and collecting candidate solutions. A critical aspect of the game
design was that no prior knowledge or training was required to play and progress. This
design choice was made for several reasons: to eliminate the costs and time associated
with training participants beforehand; to ensure a broad distribution of the game to a large
audience, which would be challenging to train individually; and to prevent the infusion of
our own ideas, strategies, and assumptions related to the problem into the players since
their unaltered perceptions and intuitions were the primary objective.

In the existing literature, various approaches have been proposed to solve the FLP
problem, including the use of heuristics, metaheuristics, and genetic algorithms [7–11].
Among these, genetic algorithms are the most widely used method. However, the computa-
tional resources and execution time required to apply genetic algorithms can be substantial.
The optimization problem of the FLP is known to be NP-hard, making it challenging to
determine the optimality of the solutions obtained from these algorithms. Thus, there is
a need for alternative methods that can reasonably approximate the solutions obtained
from various sources, thereby reducing the computational resources and time required
for problem-solving.

In addition, we aim to obtain approximate solutions for the Pareto front, where
gaps exist in the solution space explored by genetic algorithms. To achieve this, various
predictive models were employed. The calculation of the Pareto front through genetic
algorithms is a computationally intensive task, which can result in the intractability of
combinatorial optimization problems. This is due to the need to search through all possible
combinations to find the solution with the minimum value. However, genetic algorithms
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may often become trapped in a local optimum, which may also be dominated by a previous
solution on the Pareto front.

The obtained experimental results demonstrate that reasonable approximations of
the Pareto front generated by genetic algorithms can be obtained. However, despite being
sophisticated solutions, they may not cover all points in some cases. To address this
limitation, it is necessary to provide decision makers with tools or methods that present a
complete set of solutions for the Pareto front for a given dataset of interest. To achieve this,
we complemented the incomplete solutions generated by genetic algorithms by utilizing
machine learning principles, specifically by applying various predictive models. The results
indicate that reasonable solutions can be obtained, but the precision of the approximations
depends on the performance of the predictive model used. This study utilized cubic splines,
exponential regressions, K-nearest neighbors (KNN), and multiple imputations by chained
equations (MICE) as machine learning principles.

This paper makes the following contributions:

1. A video game through which the general public can learn about a multi-objective
optimization problem, namely the FLP. While playing, people learn about multi-
objective optimization.

2. The use of crowd computing as a means to collect solutions to complex problems.
These crowdsourced solutions complement the coverage of popular methods, such as
genetic algorithms.

3. Fast and efficient machine learning principles based on predictive models comple-
menting the genetic algorithm, even for large instance problems. Decision makers
who require immediate solutions can benefit from these approximations.

The organization of this work is structured as follows: Section 2 provides the necessary
background information relevant to the problem being addressed, as well as the datasets
utilized in the experiments. Section 3 discusses the relevant previous work. Section 4
outlines the implementation of the proposed video game. Section 5 presents the use of
machine-learning-based predictive models. The analysis of the results is presented in
Section 6. Finally, the conclusion and recommendations for future research are included in
Section 7.

2. Background

The facility location problem is a combinatorial optimization problem pertaining to
operations, distribution, and logistics. The problem involves finding the optimal placement
of facilities in a set of demand centers to minimize the total cost. The demand centers
represent locations with varying degrees of demand for a service, and facilities must be
placed at these locations to service the demand. The cost of operating a facility depends
on the distance between the facility and its corresponding demand center, as well as the
fixed cost of operating the facility. A solution to the FLP is a set of facility locations that
minimize the total cost, where each demand center can have at most one facility within it.

Examples of the FLP can be found in various real-world scenarios. For example, in the
context of city management, the FLP can arise in the placement of fire department facilities,
where they must consider the costs of maintaining equipment, firefighters, and the response
time. In this case, the demand centers can be the neighborhoods within the city, each with a
different demand value corresponding to the neighborhood’s population. Another example
is the arrangement of networked sensors in a space to minimize the number of sensors
required while maximizing the coverage area [12,13].

Formally, the FLP can be defined as three distinct multi-objective optimization prob-
lems [7], where:

D: Set of all demand centers;
F: Set of all candidate facilities;
G: Set of open facilities;
W: Set of open facilities that did not fail;
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P(W): Power set of W;
fi: Cost of opening a facility at location i;
cij: Cost of assigning demand center j to facility i;
yi: Binary decision variable that indicates whether facility i is open;
xij: Binary decision variable that indicates whether location j is assigned to facility i;
uij : Binary decision variable that indicates whether location j is assigned to facility i
after failures have occurred;
vi: Binary decision variable that indicates whether open facility i has failed.

1. First subproblem:

(a) minimizey ∑
i∈F

fiyi;

(b) minimizex ∑
i∈F

∑
j∈D

djcijxij.

The first objective function minimizes the cost of opening facilities, and the second
objective function minimizes the total distance without failures. These two objectives
allow decision makers to understand the impact of one objective on another (i.e., how
opening more facilities reduces the total distance).

2. Second subproblem:

(a) minimizev ∑
m∈G

fmvm;

(b) maximizeu ∑
k∈W

∑
j∈D

djckjukj;

(c) subject to:

i. ym − vm ≤ k;
ii. vm ∈ {0, 1}∀m ∈ G;
iii. ukj ≤ xkj∀k ∈W, j ∈ D;
iv. ∑

k∈W
ukj = 1, ∀j ∈ D.

The first objective function minimizes the number of facilities that fail. The second
objective function maximizes the distance after failures. Constraint i ensures that only
open facilities can fail. Constraint ii ensures that v is a binary decision variable. Con-
straint iii ensures that demand centers are reassigned to open facilities, and constraint
iv ensures that demand centers are reassigned.

3. Third subproblem:

(a) minimizex ∑
i∈F

∑
j∈D

djcijxij;

(b) minimizeu ∑
k∈W

∑
j∈D

djckjukj.

The first objective function minimizes the distance before failure and the second
objective function minimizes the distance after failure.

Datasets

The primary inputs for the FLP problem are the set of demand centers and candidate
facilities. The data sets used in this study include the Swain and London datasets (referred
to as the benchmark in the FLP literature), which are depicted in Figures 1 and 2, respec-
tively. The coordinates of the demand centers are displayed in each figure, with the size
of each point proportional to the demand value. Each point also signifies the potential
location to open a facility. The weighted Euclidean distance was used to calculate the total
distance between a demand center and an open facility.

The Swain dataset, comprising 55 nodes with location coordinates and user population
data, has been a valuable resource for researchers in the transportation network optimiza-
tion domain. This dataset, which provides an approximation of air traveler distribution
based on origin and destination data in the Washington, DC area during the 1960s [14],
has been utilized in recent studies to carry out simulations and solve the FLP. The Swain
dataset has been a popular choice among researchers due to its ability to support a search
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tree guided process, making it well-suited for benchmarking and evaluating algorithmic
solutions to the FLP. For instance, Church et al. [15] recently used the Swain dataset in
proposing several approaches to address the p-median problem, comparing their results
to the Swain dataset. The continued use of this dataset in recent research highlights its
enduring value and utility in the scientific community.

x

y

Figure 1. Swain’s data set is one of the most used sets in the literature and benchmarks.

y

x

Figure 2. London data set is one of the most used sets in the literature to represent problems with
large instances of facilities.

The use of Swain and London datasets is still relevant in ongoing research due to
several reasons. First, these datasets serve as benchmark problems in optimization and ma-
chine learning, allowing researchers to evaluate and compare the performance of different
algorithms and models. The Swain dataset in particular has been used to study several
optimization problems, such as facility location, clustering, and graph partitioning.

Second, the Swain dataset is a well-known benchmark problem in the field of commu-
nity detection, which is the task of identifying densely connected subgraphs in a network.
This problem is of great importance in various applications, such as social network analysis,
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epidemiology, and transportation planning. Due to its large size and heterogeneous struc-
ture, the Swain dataset provides a realistic testbed for community detection algorithms.

Third, the Swain dataset, as well as the London dataset, is often used in transportation
planning research to model the flow of people and goods between different locations.
Despite being based on data from the 1960s, these datasets still provide valuable insights
into the fundamental principles of transportation systems and can be used to develop and
test new models and algorithms.

The Swain (Figure 1) and London (Figure 2) datasets remain relevant in ongoing
research due to their importance as benchmark problems in optimization, community
detection, and transportation planning. Their use allows researchers to develop and
evaluate new algorithms and models and to gain insights into the underlying principles of
complex systems.

The Swain and London datasets were utilized in our study due to their ability to
provide simulations of populations with varying levels of demand and population density.
These datasets contain location coordinates denoted by ‘x’ and ‘y’ values, which can be
substituted with actual geospatial data such as building, hospital, or park locations for
analysis. Additionally, the datasets include a ‘weight’ field that represents population
density, with higher weights indicating a greater population concentration in a given
demand center. We utilized Euclidean distance calculations to simulate travel costs for
individuals or groups seeking to access facilities located within demand centers.

3. Related Works

This research proposes the application of video games as a means of solving opti-
mization problems in a non-monetary context, where participant motivation is driven
by entertainment value. To ensure the reliability and validity of user inputs, controlled
playtests were conducted, and game levels were designed to be brief in duration, thus
minimizing the required participation time for each dataset while maintaining user engage-
ment. The optimization problem was presented in the context of a game and a tutorial
was provided to reduce the cognitive load required for understanding the problem, further
enhancing player engagement.

In this section, we provide a summary of the concepts of human-based computation,
video games with a purpose, and crowdsourcing, as these techniques were combined in
the current work.

3.1. Human-Based Computation

In the literature, previous research has been conducted to address the integration of
human and computer interaction in solving various optimization problems. For instance,
the capacitated vehicle routing with time windows problem has been explored through
the use of an interactive graphical interface [2]. Additionally, studies have been conducted
to evaluate the effectiveness of combining the strengths of both the human and computer
participants [16]. Results have shown that a combination of human and computer agents
in teams is more effective than a team of only humans in military command and con-
trol tasks [17]. Interactive genetic algorithms have been applied to information retrieval
problems [18] and in software design [19].

Compared to the interface-based approach, using a video game has several advantages.
Implementing the interface-based approach requires the user’s training, which acts as the
guide and operator of the algorithm. This requirement limits the pool of potential subjects.
On the other hand, a video game, with its level-based structure, eliminates the need
for training and reduces the cognitive load on the player. The player’s sole focus is on
progressing through the levels of the game without the added responsibility of directing
the algorithm.
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3.2. Crowd Computing

Crowd computing, also known as citizen science, is a novel approach that leverages
the abilities of ordinary individuals to solve diverse problems. This concept is characterized
by the gathering of vast amounts of data, their analysis, and the processing of information
to identify effective solutions to these problems [20–22]. Crowd computing is similar to
cloud computing, as it seeks to be an accessible, dynamic, and available computational
resource. However, it differs from cloud computing in that it utilizes human cognitive
abilities rather than central processing units to carry out its computations.

We acknowledge that crowd computing and cloud computing are two different
paradigms for solving optimization problems. Although both approaches utilize a large
number of computers for computation, they have fundamental differences. Crowd com-
puting involves leveraging human intelligence to solve complex problems that cannot be
addressed by computers alone. This approach requires the recruitment of a large number
of individuals who perform small tasks that are then combined to solve a larger problem.
Crowd computing is typically used for tasks that require human interpretation and pro-
cessing of data, such as image labeling, data entry, and transcription. In contrast, cloud
computing involves the use of a network of computers to provide on-demand computing
resources for data storage, data processing, and software development. The data and
applications are stored on remote servers, which can be accessed over the Internet. This
approach is suitable for tasks that require large-scale computation and data processing.

The motivation of a large number of participants to solve complex problems is often
incentivized through the provision of monetary rewards. However, negotiating appropriate
compensation, promoting collaboration among participants, and effectively managing
communication between workers and organizers can pose challenges [23]. For instance,
mobile crowd-sensing applications have faced reluctance from participants due to perceived
high energy and bandwidth consumption costs [24].

Aside from monetary compensation, entertainment can also motivate individuals to
participate in crowd computing. Problem-solving tasks, particularly in the form of puzzle
games, can be intellectually challenging and provide a sense of satisfaction upon completion.
Studies have demonstrated that incorporating puzzle elements into computer-based tasks
can engage young people more productively with technology [25].

It is proposed that framing complex computational problems as engaging puzzle
games can result in developing a crowd-computing platform capable of massive data acqui-
sition. The motivation for participation in such games is often entertainment, and several
examples of popular crowdsourcing games exist, such as Trivia Crack, King of Thieves,
and Super Mario Maker by Nintendo. These games often induce player engagement
through social pressure to try the game, as evidenced by their commercial success.

It has been observed that various phenomena can be conceptualized as implementa-
tions of the principles of crowd computing, including the popularity of social news websites
such as Reddit and Digg [26], the analysis of semantic meaning derived from crowdsourced
tags assigned to books [27], and the influence that audience participation has on the cre-
ation, dissemination, curation, and financing of music [28]. Crowds can be utilized for both
formulating features and as sources of data for machine science applications [29].

The quality of contributions by participants in crowd computing poses a challenge,
particularly when untrained individuals generate data. To determine the most appropriate
data to be taken into consideration, a ranking system based on weights can be implemented,
where the data submitted by participants with the highest classification are assigned greater
weights. Alternatively, a voting system can be established, where a group of scientists
assigns scores to the data. This approach generates profiles of the skills of each scientist
based on dimensions such as accuracy, completeness, reputation, relevance, and others [30].
The trustworthiness of a participant’s rating can be established by evaluating the objectivity
of participants and the degree of consensus among them [31]. The integration of conflicting
preferences of participants in solving problems can be facilitated through the use of social
choice theory, enabling the selection of a single solution from a set of candidates [32].
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In the context of control systems with significant safety considerations, such as the
operation of heavy machinery, physiological data can be utilized to estimate the operator’s
mental workload, thereby providing insights into the operator’s mental state during the
task of collaboration with a computer [33]. This information can be used to determine if a
task is overly simple or excessively challenging for a particular participant.

Recent works have developed new ways of solving allocation problems with crowd-
sourcing and gamification techniques. For instance, Allahbakhsh et al. [34] presented a
solution to solve the p-median problems using crowdsourcing and gamification techniques.
They developed a crowdsourced game called SolveIt, which employs the wisdom and
intelligence of the crowd to solve location allocation problems. SolveIt uses the attention
technique by showing the winner’s name on the scoreboard and a competition technique to
increase players’ motivation. They proposed a graph data model to represent the location
allocation problems. They asked a group of 40 students at the University of Zabol to
participate in the game and solve the proposed problems. The contributions received from
the crowd were compared to those obtained from a specific implementation of genetic
algorithms, which was used as the gold standard.

Jiang et al. [35] focused on the problem of multiple cooperative task allocation (MCTA).
They used real-life relationships among users on the social network and proposed group-
oriented cooperative crowd-sensing to solve the MCTA problem. They covered the so-
lutions via group-oriented cooperation with three phases while achieving a good task
cooperation quality. In phase 1, they selected a subset of users on the social network as
initial leaders and directly pushed sensing tasks to them. For phase 2, they used the leaders
to search for their socially connected users to model groups. Phase 3 presented the process
of group-oriented task allocation for solving the MCTA problem.

Moreover, a crowdsourcing strategy and the quantum have also been utilized. For in-
stance, Minghui Xu et al. [36] used quantum crowdsourcing schemes, in which the welfare
of the requestor or worker can be maximized because quantum players share the ex-
tended strategy space and the addition of entanglement offers a new method of depicting
fine-grained relationships between players. To address problems of task allocation, they
presented a quantum game model for quota-oriented crowdsourcing games.

3.3. Games for Solving Problems

Games with a purpose have been developed to utilize individuals’ problem-solving
skills for addressing computationally challenging problems [37]. These games focus on
various domains, such as biology, biochemistry, and linguistics. An example of such a game
is BioGames [38], which is an image-matching game that trains its players to recognize
malaria-infected red blood cells. This not only provides an engaging training program for
student medical personnel but also serves as a means for crowdsourcing labeling data to
train machine learning algorithms. The results of BioGames demonstrate the potential of a
crowd of untrained individuals to achieve a disease diagnosis with an accuracy comparable
to that of an expert.

The game Phylo [21] leverages the concept of color matching to facilitate the optimiza-
tion of nucleotide sequence alignment, thus minimizing the number of mutations needed
to produce a different species from an ancestor. This process enables the generation of
phylogenetic trees, thereby providing deeper insights into the evolutionary relationships
between species with sequenced DNA. The problem of multiple sequence alignment has
been shown to be NP-complete [39]; however, Phylo serves as an example of how such
problems can be transformed into engaging games.

Foldit [40] and EteRNA are two games designed to facilitate the discovery of protein
folding and RNA folding mechanisms, respectively. After acquiring a basic understanding
of the rules, non-expert players can predict the folding of complex molecules. The players
of EteRNA vote on each other’s predictions, which are later synthesized and evaluated for
accuracy. Foldit allows players to automate their common sequences of actions through
a feature called recipes, and through observing these recipes, new strategies have been
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discovered that improve the performance of existing algorithms [20]. This demonstrates
the potential of crowd computing to uncover new algorithms and heuristics for complex
problems. Foldit further encodes and conveys the insights gained by players by providing
them with a scripting language.

EyeWire [41,42] is a game aimed at mapping the outlines of neurons in 3D space from
2D images obtained from a retina. The player is tasked with tracing the path of a neuron in
3D space by following the edges of the 2D images. The game complements algorithmic
approaches by directing the player’s focus to areas where the algorithm is uncertain, thereby
facilitating the generation of complete maps of neurons and their connections from images.
EyeWire represents a successful example of human–computer cooperation in solving a
problem, utilizing the strengths of each in areas where the other is ineffective.

Google Image Labeler (GIL), which is based on the game called ESP [43], employs a
strategy of using human players to label images obtained from the web. The gameplay
involves two players, who are unable to communicate with each other, attempting to
propose matching labels for an image. When both players agree on the same label, it is
then utilized as metadata to enhance the image search service of the company. Similar to
GIL’s goals and gameplay, TagATune [44,45] aimed at obtaining metadata for audio files,
such as the genre, type of instruments being played, and gender of the vocalists. Both GIL
and TagATune incorporate a multiplayer component to increase their entertainment value
and attract more players, which also serves as a validation mechanism. With the players
incentivized to agree on a label but unable to communicate except through the game’s
mechanics, poor solutions can be easily detected and disregarded, whether submitted
intentionally or not.

The focus of several games, including JeuxDeMots [46], OnToGalaxy [47], Verbosity [48],
Phrase Detectives [49], and ZombiLingo [50], is on establishing relationships between
words and acquiring common sense knowledge of them. Additionally, entries on WikiData,
a database supporting Wikipedia and other WikiMedia services, can be augmented, cleaned
up, and edited through playing WikiData: The Game.

In a study, it was found that transforming a path-finding problem for the real-time
control of robotic arms into a maze-like interactive interface could improve the operator
performance [51]. This approach framed the problem in the configuration space of the
robot, rather than physical space, allowing the human operator to find a path between two
points while avoiding obstacles.

4. Game Implementation Details
4.1. Programming Language and Deployment

The FLP model was implemented as a video game using the Python programming
language and the Kivy framework. Kivy was selected for its support for multiple plat-
forms, including all major operating systems, and its hardware-accelerated OpenGL-based
rendering system. The game was playtested on an iPad Air 2 running iOS 9.3, as the
game’s interface was designed primarily for direct manipulation through a touchscreen.
Although Python is not a language directly supported for development on iOS, Kivy allows
for deployment onto iOS devices. This was achieved by including custom Python code
into an XCode project using tools provided by the Kivy project, which was then compiled,
packaged, signed, and copied onto the development device for execution. The successful
submission of Kivy-based games to the Apple App Store demonstrates that they can be
used as a distribution method.

4.2. Facility Location Problem Game Design

Similarity with the genetic algorithm (GA) approach: the design and functionality
of the first game are based on the study presented in [7]. The authors utilized genetic
algorithms to solve three distinct optimization problems within the context of the FLP.
These sub-problems encompass:
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1. A minimization of the cost associated with opening facilities and the cost of distances
between facilities and demand centers. This represents a multi-objective formulation
of the FLP.

2. Determining the worst possible failure combination; that is, the set of opened facilities
that result in the greatest total distance in case of failure. This sub-problem aims to
evaluate the proposed solutions from the previous step and assess their performance
in the context of the robust facility location problem (RFLP).

3. Finding optimal solutions to the RFLP, which involves balancing between the solu-
tion’s optimality in the absence of any facility failures and its optimality after facility
failures have occurred. This multi-objective optimization problem provides decision
makers with options for determining the appropriate trade-off for a particular domain.

The game design includes two stages that parallel the breakdown of the FLP problem.
Each stage is represented by a category of levels played in consecutive order, with each
level corresponding to a single instance of the problem. The following are the two stages of
the game:

1. Proposed Solution to Instances of FLP: The players are tasked with proposing a
solution, which consists of a set of facilities to be opened, for instances of the FLP.

2. Improvement in Total Cost: The players are presented with solutions provided by
other players and are asked to improve the total cost by choosing a set of open facilities.
In this stage, the game provides a starting point for the players.

The first stage aims to capture the players’ initial impressions and immediate intu-
itions regarding the best solution for each particular instance. It is equivalent to conducting
a global search with low granularity to identify interesting neighborhoods in the solu-
tion space.

The second stage of the game explores solution space in more detail by presenting play-
ers with solutions obtained from previous iterations of stage one and previous playthroughs
of the game. This stage aims to identify small incremental changes to existing solutions
that reduce the total cost. The design of this stage is based on the concept of a local search
with high granularity around the solutions obtained in previous iterations.

Up to this point, the game has gathered data on potential solutions to the FLP. These
data include information on the impact of failures on candidate solutions as well as new
assignments of demand centers to facilities made to counteract such failures. Figure 3
shows the user interface of the FLP video on an iPad Air 2. The FLP is modeled as a multi-
objective optimization problem in the GA approach, reflecting the trade-off between having
more facilities open versus the distance from demand centers to facilities. However, in the
game, a single cost is associated with opening a facility to compute a total cost for each
solution candidate. This implicit assumption of the equivalent cost may bias the players’
solutions and make them focus on minimizing the total cost through a fixed number of
open facilities. To counteract this potential bias, some levels feature a randomly chosen
limit on the number of facilities that can be opened, encouraging the players to explore
the entire solution space. This distinction between separate stages allows for cooperation
between the GA approach and the game, as the crowdsourced results from the game can
be incorporated into the algorithm.
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Figure 3. FLP video game showing the user interface.

1. In designing the user interface (UI) for the game, it was decided to maintain ab-
straction and avoid referencing specific real-world elements in the representation
of demand centers, facilities, weights, and assignments. This approach was cho-
sen to allow the game to remain independent of the various domains in which the
problem instances may arise. The use of metaphors, while effective for datasets that
share similar structures with a given domain, may not be applicable to datasets that
differ significantly.
To achieve this, the problem instance is displayed using only basic geometric shapes.
The distance between demand centers is depicted as the Euclidean distance between
the shapes. The weight parameter is indicated through color, and the assignment is
shown with straight lines.
The FLP is visualized on a two-dimensional white canvas where the demand centers
are represented as circular spots with their locations specified by the dataset. The fa-
cilities are displayed as black squares inscribed in circles representing the demand
centers. The demand centers are all depicted in a blue hue, with the saturation of
the blue color varying depending on the weight of the demand center, with lighter
blue representing a low demand and darker blue representing a high demand. The as-
signment between a demand center and a facility is represented by a straight line
connecting the two, with the color saturation reflecting the cost of the assignment,
which is a function of the distance between the center and the facility, and the demand
center’s weight; see Figure 3. The borders of unassigned demand centers blink to at-
tract the players’ attention, and failed facilities are indicated by blinking, highlighting
their former presence as a facility at that location.
The interface for the game’s first and second stages requires the player to make
a binary decision for each demand center as to whether to open a facility or not.
The player may select a demand center without a facility by tapping it, and deselect a
demand center with a facility by tapping it again. This design is intended to resemble
the behavior of checkbox controls commonly found in graphical user interfaces.
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For stages featuring failed facilities, the player is required to allocate demand centers
to facilities manually. To achieve this, the player must initiate a tap-and-drag operation
from the facility to the demand center, establishing a connection between the two.
During this process, the player’s finger or cursor movement is accompanied by a line
connecting the facility to the finger or cursor, visually indicating the extension of the
facility’s coverage to new demand centers.

2. Gameplay: The solution approach to the FLP involves the utilization of a video game
consisting of multiple levels that are sequentially presented to the player. These levels
are either intended to instruct the player on the mechanics of the game or to provide a
real dataset for the player to generate solution candidates for the FLP. The FLP datasets
are characterized by a set of demand centers, each described by their spatial location
on a two-dimensional plane and the magnitude of their demand, represented by a
weight. At certain levels, the player may interact with solution candidates generated
by other players, which may include an assignment of facilities to demand centers,
a mapping of demand centers to facilities, or a set of failed facilities.
The tutorial levels conclude when the player successfully executes the action that the
game is instructing. On the other hand, the conclusion of a dataset level is limited
by a time constraint since it is not feasible to determine the optimal solution for an
arbitrary dataset without solving the underlying optimization problem.
The implementation of fast-paced gameplay with rapidly changing levels serves
several purposes. Firstly, crowd-sourced activities tend to yield better results when
kept concise. Secondly, the game’s design maximizes the computation performed
by each player by exposing them to as many distinct datasets as possible in a lim-
ited time frame, leading to a wide range of solutions for a single instance. Finally,
the progression of levels in the game provides a sense of reward for the player, pre-
venting frustration that might arise from being stuck on a level with limited room
for improvement.
The presentation of the stages in a sequential manner allows for a natural progression
of gameplay and the introduction of new mechanics that build upon the concepts and
elements of the previous stages.

5. Machine Learning Principles Based on Predictive Methods

In this section, we present an overview of genetic algorithms. The implementation of
the algorithms developed by Hernandez et al. in Python is provided, as described in their
publication [7]. The authors utilize multi-objective evolutionary algorithms (MOEAs) to ad-
dress the optimization challenges posed by the facility location problem (FLP). MOEAs are
particularly suitable for dealing with optimization problems that exhibit non-continuous,
non-convex, and non-linear objectives and constraints. They are also useful in combinato-
rial optimization problems where optimal solutions may not be guaranteed and the solution
space is vast [52]. MOEAs can achieve near-optimal solutions by efficiently exploring only
a portion of the solution space. These algorithms are based on the evolutionary process,
where the most advantageous traits of a population are identified and utilized to produce
the next generation of descendants that are better than their predecessors.

The authors Hernandez et al. [7] utilized two multi-objective evolutionary algorithms
(MOEAs)—NSGA-II and MOPSDA—to solve the optimization problems of the FLP. These
algorithms are advantageous in combinatorial optimization problems due to their ability to
explore the solution space and find near-optimal solutions efficiently. The evolutionary algo-
rithms are based on the principle of genetic inheritance, where the best traits of the popula-
tion are passed on to the next generation to create offspring with improved characteristics.

In the implementation, a chromosome was utilized to represent the decision variable
y, where the ith position yi of the chromosome represents the opening or closing of the ith
distribution center. The chromosome length is equal to the number of distribution centers.
Each chromosome was evaluated based on two objectives: the number of facilities and
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the total distance. These objectives were used to generate solutions for the Pareto set by
allowing the two algorithms to explore different parts of the solution space.

In order to predict the solutions to incomplete algorithmic problems, we will analyze
various predictive models, which are foundational to machine learning. These models
include cubic spline interpolation, exponential regression, k-nearest neighbors (KNNs),
and multiple imputation by chained equations (MICE).

Cubic spline interpolation involves constructing a piecewise polynomial function of
the third order that passes through all of the discrete points obtained through the genetic
algorithm. The purpose of this method is to estimate a continuous function that fits the
given data points as closely as possible. Exponential regression is a statistical method that
involves finding an exponential function that best fits the data obtained. This method aims
to model the relationship between the dependent and independent variables in the data.
KNN is a non-parametric method used for classification and regression. It classifies a new
data point based on its k-nearest neighbors in the training data. The prediction for the new
data point is based on the majority class or mean of the k-nearest neighbors. MICE is a
method used for imputing missing values in a dataset. It involves using regression models
to estimate the missing values and then combining the results from multiple imputations
to produce a single set of estimates.

Regarding the machine learning methods for estimating missing values in the solution
space of the Pareto set after resolving the facility location problem (FLP), we consider an
input feature ‘x’ consisting of ‘n’ facility allocations and an output target ‘y’ comprising
‘m’ distances between the facilities and the demand locations. The output targets contain
missing values, which can be imputed using machine learning techniques such as KNN
and MICE. These methods leverage the available data to estimate the missing values in the
output target ‘y’, enabling an accurate and comprehensive characterization of the Pareto
set’s solution space.

Note that the classification of methods such as cubic splines and exponential regres-
sion as machine learning methods is a topic of ongoing discussion among researchers.
While some argue that they do not meet the criteria for machine learning methods due to
their univariate interpolation nature, others contend that they do satisfy the fundamental
principles of machine learning. At the core of machine learning is the creation of models
that can learn from data to make predictions or decisions. This involves exposing the
model to a large dataset, enabling it to identify patterns and relationships that may not be
discernible to humans. Once the model has been trained, it can be utilized to predict or
classify new instances. Although methods such as cubic splines and exponential regression
do not involve the use of sophisticated mathematical models or complex algorithms, they
still utilize data to interpolate missing values or data points. They can learn from the
data to identify underlying patterns or trends, facilitating accurate approximations of the
underlying function. In our study, cubic splines and exponential regression were classified
as machine learning techniques due to their capacity to forecast data in the FLP and their
potential applicability to analogous problems.

5.1. Cubic Spline Interpolation

Cubic spline interpolation aims to provide accurate approximations with low-degree
polynomials when the number of data points is large to avoid oscillations and excessive
fluctuations in the interval. This is achieved by dividing the interval into subintervals and
constructing a piecewise approximation using several cubic polynomials.
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Suppose that we have n data; that is, (x1, y1), (x2, y2), . . . , (xn, yn) with x1 < x2 <
· · · < xn. The interpolating polynomial is as follows:

P(x) =


p1(x), x ∈ [x1, x2]

p2(x), x ∈ [x2, x3]
...

pn−1(x), x ∈ [xn−1, xn]

(1)

where pi(x) is of the form ai + bix + cix2 + dix3 with ai, bi, ci, di constants; that is, a polyno-
mial of degree less than or equal to three, corresponding to the interval [xi, xi+1]. In addition,
P(x) satisfies the following conditions:

• Continuity; that is,

pi(xi+1) = yi+1 = pi+1(xi+1) ∀i = 1, 2, . . . n− 2.

• It is twice differentiable (class C2); that is

p′i(xi+1) = p′i+1(xi+1) ∀i = 1, 2, . . . n− 2.

p′′i (xi+1) = p′′i+1(xi+1) ∀i = 1, 2, . . . n− 2.

• p1(x1) = y1 y pn−1(xn) = yn.
• The second derivatives at their boundary are zero; that is, p′′1 (x1) = 0 y p′′n−1(xn) = 0.

Suppose that, with the genetic algorithm, we obtain n data, with n < number o f instances.
The idea is to obtain the missing data using an interpolating (dashed) polynomial.

It is worth noting that the spline interpolation does not provide control over the
slope of the curves between subintervals. Hence, if the points obtained through the genetic
algorithm vary, it can result in a complete change in the interpolation curve. To mitigate this
limitation, exponential regression was utilized. This approach leads to a slight improvement
in the Pareto front solutions as it results in fewer dominated solutions compared to those
obtained through cubic spline interpolation.

5.2. Exponential Regression

Exponential regression is a type of statistical analysis used to model the relationship
between an independent variable (x) and a dependent variable (y) when the relationship
between the two is non-linear. The exponential function is defined as y = ae(bx), where “a” is
the amplitude of the curve and “b” is the exponential growth rate.

Exponential regression involves determining the best-fit parameters, denoted by a and
b, for a set of data points through a number of techniques, such as the least squares method
or maximum likelihood estimation. The exponential regression method can then be used
to predict future values of the dependent variable using new values of the independent
variable once the best-fit parameters have been determined.

6. Experimental Results

Our experiments were divided into three distinct parts. In the first part, we presented
the results obtained by using genetic algorithms alone. In the second part, we demon-
strated the improvement in the solution space achieved through the implementation of
a crowdsourcing approach presented as a video game compared to the results obtained
through genetic algorithms alone. Finally, in the third part, we demonstrated the efficacy of
using predictive models to complement the Pareto solution space obtained through genetic
algorithms; see Figure 4 for details.
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In order to ensure a statistically significant sample size for our experiments, we
conducted 20 iterations of the experiment. The sample size was determined using Cochran’s
sample size formula [53]:

n =
t2 pq
d2

n =
(1.282)2(0.5)(0.5)

(0.145)2 = 19.54 ≈ 20

The statistical sample size was determined using Cochran’s sample size formula,
with a selected alpha level of 0.05 in each tail, resulting in a value of 1.282. This provides a
confidence interval of 80%. The estimate of variance, calculated as (p)(q), was 0.25, assuming
an equal probability for a player to provide good or bad results. The acceptable margin of
error for the portion being estimated was set to 0.145, which the researcher was willing to
accept as a 14.5% error. As a result, we conducted 20 iterations of the experiment to obtain
a statistically significant sample.
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Figure 4. Experimental setup for solving the FLP and for complementing genetic algorithms.

In order to ensure a statistically significant sample, we conducted 20 runs of the genetic
algorithms for both the Swain and London datasets. Additionally, we recruited 20 different
players to solve each problem once, resulting in a total of 20 executions of the experiment.
This approach was taken to ensure that the results were reliable and statistically valid. In the
context of the current investigation, a total of 20 game players, consisting of both graduate
and undergraduate students, were recruited as participants. The undergraduate cohort
was characterized by a diverse range of academic pursuits, spanning multiple disciplines,
such as computer science, mathematics, biology, social sciences, and law, among others.
The age range of undergraduate participants was 19 to 23. In addition, graduate students
from two distinct programs, namely computer science and applied mathematics, were
also included in the study. The age range of graduate participants was between 30 to
35 years. The experimental tests were administered in a face-to-face format, during which
the participants were instructed to follow the guidelines provided by the video game
without any verbal clarification. This approach was chosen to ensure the replication of the
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user experience of a game obtained through digital distribution. Subsequent to each play,
the video game automatically recorded and stored the resulting data in a private cloud.

On the other hand, both statistical and machine learning models offer several advan-
tages that we leveraged in this work, such as:

• Statistical and machine learning models only need to be executed once, signifi-
cantly reducing the time required to generate a response that can be analyzed by
decision makers.

• Both statistical and machine learning models can be tuned/adjusted to obtain precise
approximations.

• It is not necessary to dedicate significant computing time to obtain good approximations.
• Human intervention is minimal, as only an expert is required to execute and obtain

the approximations.

These advantages allowed us to efficiently generate accurate approximations with
minimal human intervention, making our approach a practical and effective solution for
decision-making processes. It is noteworthy that the human subjects in the study could
play the video game without the need for prior training or knowledge of the underlying
problems, and they did not experience any stress during the experiment. The participants
were requested to engage in gameplay during their allocated break-time for school activities.

6.1. Solving the FLP Using Genetic Algorithms

The genetic algorithms used for solving the problems presented in Section 2 are
parameterized as follows: a random seed is initially generated, and half of the problem
instances are assigned to the MOPSDA algorithm, while the other half is assigned to the
NSGA-II algorithm. The population size is set to 100, and the number of generations is fixed
at 100. The number of runs is also set to 5. These multi-objective evolutionary algorithms
(MOEAs) are used because they can handle non-continuous, non-convex, and/or non-linear
objectives/constraints, as well as problems where the objective function is not explicitly
known. The NSGA-II and MOPSDA algorithms are utilized to obtain near-optimal solutions
by efficiently exploring a fraction of the entire solution space. The MOEAs are based on
the process of evolution, where the best traits of a population are identified and used to
generate the next generation or replace the population.

To solve the first subproblem of Section 2, the optimal Pareto set is approximated
using both NSGA-II and MOPSDA, and the resulting Pareto sets are merged into one.
The decision variable y is represented using a chromosome, where position i has the bit yi.
The chromosome length is equal to the number of distribution centers (|F|), and element yi
is equal to 1 if the facility is open, and 0 otherwise. Each chromosome is evaluated using
two figures of merit: one to obtain the number of facilities and the other to obtain the total
distance (Figures 5 and 6).

5 10 15 20 25 30 35 45 50 55

0

2,000

4,000

6,000

Facilities

D
is

ta
nc

e

Figure 5. Computed Pareto set for the Swain dataset using genetic algorithms.
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Figure 6. Computed Pareto set for the London dataset using genetic algorithms for a large instance
problem.

We chose the optimal solutions obtained from 20 independent runs of the genetic
algorithms illustrated in Figure 5. This figure depicts the Pareto set obtained for the Swain
dataset and presents a reasonable representation of the Pareto set. However, the genetic
algorithms fail to find solutions for all possible instances. This results in three potential
approaches to addressing the missing solutions. The first option is to re-run the genetic
algorithms (as we carried out 20 times). Nevertheless, this is computationally expensive
and consumes substantial resources (approximately 30 min for the Swain dataset and 3.5 h
for the London dataset). The second option involves utilizing a crowdsourcing approach,
as proposed, to fill the gaps left by the genetic algorithms. Finally, as demonstrated in the
following sections, the third alternative uses machine learning for predictive purposes as a
more efficient and timely solution to fill the gaps.

We chose the optimal solutions obtained from 20 independent runs of the genetic
algorithms illustrated in Figure 6. This figure depicts the Pareto set obtained for the London
dataset and highlights the incompleteness of the solutions found by the Pareto set. Further-
more, NP-hard problems can become computationally intractable for larger instances of the
FLP or other complex problems. As a result, it is imperative to have alternative approaches,
such as the one proposed in this study, to estimate the solutions that would be obtained
after multiple iterations of the genetic algorithms. This is particularly relevant for larger
instances of NP-hard problems, as they require increased computational resources.

The Pareto set is defined as the set of solutions that cannot be improved in at least
one dimension without worsening in another dimension. However, in some cases, the re-
lationships between different solution dimensions may not be monotonic; that is, there
may be solutions that are not strictly dominated but do not belong to the Pareto set.
In these non-monotonic situations, solutions may not have a clear order among themselves,
making the identification of the Pareto set more challenging. Additionally, a simple post-
processing of the output of the genetic algorithm may not be sufficient to resolve these
non-monotonic situations.

One way to address non-monotonic situations is through the use of genetic algorithms
that employ more advanced techniques, such as neighborhood search, parameter adapta-
tion, and diversified selection. These methods can help to identify non-monotonic solutions
and resolve the problems that arise in these situations, yet this is beyond the scope of this
paper. Here, we focused on the process of finding efficient solutions that complement those
found by genetic algorithms.

6.2. Crowdsourcing the FLP in Video Game Plays

The results obtained through the implementation of the genetic algorithms reveal the
existence of gaps in the solution space. This is due to the lack of agreement between the
two utilized genetic algorithms (MOPSDA and NGSA) in determining the optimal solution,
as they both tend to converge toward local minima. The incompleteness of the solutions for
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various Pareto front instances is therefore considered as a drawback. To mitigate this issue,
a re-execution of the genetic algorithm could be performed with the hope of obtaining
solutions for the missing data, although there is no guarantee that the algorithm would be
able to fill in the gaps in subsequent runs.

To address the aforementioned problem, the FLP was modeled as a video game and
crowdsourced to a number of individuals. The contributions obtained from the crowd were
found to be adequate in filling in the gaps left by the genetic algorithms. The results of this
approach are presented in the following figures.

The FLP is a type of optimization problem that involves multiple objectives. The solu-
tion to this problem involves finding a set of solutions, called the Pareto set, which cannot
be improved in one objective without negatively impacting another objective. To evaluate
the quality of the solution, the aggregate data from players is measured based on how
closely it approximates the Pareto set as determined by alternative methods. The opti-
mal responses used in our analysis were selected from a dataset containing results from
20 different players, as illustrated in the accompanying Figure 7. The selection process
involved choosing the most accurate and reliable responses, ensuring that our analysis
was based on high-quality data. As can be observed from the figures, the results obtained
through crowdsourcing—that is, through the engagement of individuals playing a video
game modeling the FLP problem—are comparable to those obtained through sophisticated
optimization tools such as genetic algorithms. Figure 7 demonstrate that gamers follow the
trend in the Pareto front. When they play optimally, they effectively enhance the results
obtained through genetic algorithms. Furthermore, the intuition and perspective of gamers
enable them to make trade-offs between short-term benefits and long-term goals, thus
contributing to better solutions.
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Figure 7. The Pareto set after solving the FLP complemented via crowdsourcing for: the Swain
dataset (left), and the London dataset (right).

The biggest advantage of crowdsourcing can be observed in problems with a high
number of facilities, as is the case for the London dataset. In this instance, the genetic
algorithms generated significant gaps in the solution space, whereas crowdsourced solu-
tions matched and even improved upon the solutions generated by genetic algorithms.
Re-executing the genetic algorithms to fill these gaps would consume a substantial amount
of computational resources, in addition to the time required for the genetic algorithms to
generate the complete Pareto front. The re-run of the genetic algorithm for the London
dataset is estimated to take approximately two to three hours, without any guarantee of
filling the previously encountered gaps.
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However, a limitation of the crowdsourcing approach is that it is challenging to
objectively quantify the duration required to construct and design video games. While
an adept individual possessing programming skills and familiarity with multi-objective
optimization problems (MOPs) may complete the coding process within a few weeks,
an unskilled individual could require several months. Despite this, after the game has been
constructed and developed, it can be conveniently adapted for other relevant datasets and
utilized as a simulation model capable of swiftly responding to emergency scenarios.

The interaction between humans and computers in carrying out crowdsourcing ac-
tivities can complement the Pareto search space, as the solutions obtained by the crowd-
sourcing approach can be superior to those generated by genetic algorithms in many cases,
as shown in Figure 7. To further enhance the quality of solutions, a hybrid combination
of crowdsourcing and genetic algorithms could be explored, leveraging the strengths of
both approaches. Our empirical study indicates that crowdsourcing can offer a sufficient
number of solutions to fill the gaps presented by genetic algorithms. Additionally, the use
of machine learning techniques could provide insights into the heuristics employed by
users to solve computationally challenging problems. As a proposed future direction,
we suggest that combining the best solutions from crowdsourcing with those generated
by genetic algorithms could reduce the convergence time or improve the quality of the
solutions. However, we must acknowledge that reducing the convergence time of genetic
algorithms lies beyond the scope of this work.

The crowdsourcing-based approach has a drawback in that not all user responses
carry significant value. Moreover, some players may not comprehend the video game
instantly, especially those without engineering or mathematical backgrounds, resulting
in suboptimal solutions for multi-objective optimization problems (MOPs). The research
was conducted in a university setting with a diverse audience, thereby leading to a lack
of expertise in MOPs. However, despite these limitations, we observed a statistically
significant enhancement in the solutions, even though not all players contributed with
high-quality answers.

6.3. Solving the FLP Using Predictive Models

The third alternative is to use predictive methods to estimate the solutions for in-
complete data. Given a dataset with gaps or missing information, this approach aims
to approximate the solutions that would have been obtained after multiple iterations of
the algorithms.

One of the critical considerations for researchers, corporations, and decision makers
is the time required to solve complex problems. For instance, in the case of an emergency
situation (such as a natural disaster), decision makers must respond quickly and make
decisions on the placement of shelters (facilities) while taking into account the proximity of
the affected population to ensure their safety.

The use of machine learning techniques has demonstrated the capability of generating
approximate or comparable results to those produced by sophisticated methods such
as genetic algorithms, as evident from Figures 8–11. Implementing predictive machine
learning models can provide a significant advantage for decision makers in emergency
situations, as they enable an almost instantaneous reaction. In the context of the present
study, this means that decision makers can quickly allocate refugee facilities to attend to
people affected by emergencies within a city or state. The only prerequisites for such rapid
responses are the availability of relevant data and the execution of fitting curves or machine
learning models. The decision makers can then visualize the Pareto front produced by the
various predictive methods, as depicted in Figures 8–11, and determine the most suitable
solution based on the circumstances.

Figures 8 and 9 present the results of the complete Pareto front achieved through the
utilization of interpolation techniques such as cubic splines and exponential regression,
respectively. It can be observed that the utilization of exponential regression leads to a
more accurate approximation of the Pareto front compared to cubic splines. This is due to
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the fundamental nature of the regression method, which aims to fit the data trend in the
most optimal manner. Conversely, the cubic splines technique necessitates the solutions
to pass through the given points, which results in more oscillatory solutions and a higher
number of dominated solutions.

0 10 20 30 40 50 60

Facilities

0

1000

2000

3000

4000

5000

6000

D
is

ta
n

c
e

GA - exponential regression

0 50 100 150

Facilities

0

1

2

3

4

5

6

D
is

ta
n

c
e

×10
5 GA - exponential regression

Figure 8. The Pareto set after solving the FLP complemented via exponential regression for: the
Swain dataset (left), and the London dataset (right).
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Figure 9. The Pareto set after solving the FLP complemented via cubic spline for: the Swain dataset
(left), and the London dataset (right).

Figures 10 and 11 present the results obtained through the utilization of k-nearest
neighbors (KNNs) and multiple imputation by chained equations (MICE), respectively.
KNN is a supervised machine learning algorithm primarily used for solving classification
and regression problems, whereas MICE is a statistical method for dealing with missing
data. The results obtained through both methods may be similar as they employ similar
strategies, such as using the values of similar observations or utilizing a model to predict
missing values based on the available data.
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Figure 10. The Pareto set after solving the FLP complemented via KNN for: the Swain dataset (left),
and the London dataset (right).
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Figure 11. The Pareto set after solving the FLP complemented via MICE for: the Swain dataset (left),
and the London dataset (right).

As depicted in Figure 11, the multiple imputation by chained equations (MICE)
method utilizes a statistical model to generate several imputed datasets, which are then
combined to produce a continuous curve. On the other hand, as shown in Figure 10, the k-
nearest neighbors (KNNs) algorithm imputes missing data based on the information of its
nearest neighbors, which results in a steeper or "noisier" curve due to the non-parametric
nature of the algorithm.

7. Conclusions

In this paper, we used some known machine learning techniques that can be used as
predictive models to make predictions about future events or outcomes based on historical
data. One of the main advantages that we found after using machine learning for prediction
was that we could handle large and complex datasets efficiently. In addition, our findings
show that, as new data become available, we can easily provide decision makers with
useful information. However, it is worth noting that the accuracy of predictions made
using machine learning models can vary depending on the quality and relevance of the
training data (in our case, truncated datasets), as well as the specific algorithm used.

We acknowledge that there exists a broader range of machine learning techniques that
could be utilized in the present study, such as random forest, support vector machines,
and decision trees. However, we must note that the successful implementation of these
techniques requires a set of features and output values. In contrast, the current study
only contains one input feature and one output value, with missing data in some cases.
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Therefore, to ensure the appropriate selection of machine learning techniques, a thorough
investigation was undertaken to identify approaches that were suitable for the specific case
at hand. Furthermore, it should be emphasized that the utilization of techniques that require
multiple features and outputs may lead to model overfitting, as well as an increased com-
putational complexity, resulting in a poor model performance. Thus, the use of appropriate
techniques is crucial for the development of accurate and reliable predictive models.

We plan to analyze and extract the players’ strategies in future work. We believe
that doing so can allow for more efficient solutions. Our purpose is to have enough
knowledge of people gathered to implement hybrid approaches, i.e., a combination of
human–computer interactions, where some parts of an NP-hard problem would be solved
using algorithms and other parts of the problem using human knowledge.
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