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Abstract: Watermelon produces many byproducts (watermelon rind and skin) even though those
components contain various bioactive compounds, including citrulline. This study evaluated the
citrulline concentration, total phenolic content, and antioxidant activity (DPPH and FRAP assays) of
different parts of watermelon and investigated the bioavailability of citrulline from different parts of
watermelon using an in vitro human intestinal epithelial Caco-2 cell monolayer model. Solid-phase
extracted watermelon flesh, rind, and skin samples were treated on a Caco-2 cell monolayer for 1,
2, and 4 h. The collected basolateral solution at each time point was analyzed for the percentage of
citrulline transport. Watermelon flesh had the highest citrulline content, but the watermelon skin had
the highest total phenolic content and antioxidant activity compared to other watermelon parts. The
citrulline bioavailability showed greater % transport in watermelon skin than in watermelon flesh,
rind, and L-citrulline standard. It may be due to the different food matrices of watermelon parts. This
suggests that the utilization of watermelon by-products such as skin would help develop value-added
products with better bioavailability of citrulline. However, since this study was conducted with an
in vitro cell model, more extensive research with in vivo studies will be needed.

Keywords: watermelon; citrulline; bioavailability; watermelon flesh; watermelon rind; watermelon
skin; Caco-2 cells

1. Introduction

Watermelon (Citrullus lanatus) belongs to the Cucurbitaceae family and is one of
the most cultivated fruits, with approximately 102 million tons of world production in
2021 [1,2]. Watermelon is composed of flesh, rind, and skin. The flesh is the red pulp; the
rind is the white or light green part between flesh and skin; and the skin is the green peel
surface. The flesh part accounts for 40–50% of a watermelon, and the other 50–60% of the
total mass of a watermelon is the rind and skin part [3,4]. The flesh is generally considered
an edible part, and the rind and skin are discarded as by-products or used as animal
feed [5]. The rind and skin produce an enormous amount of food waste from watermelon
production to watermelon consumption, causing many environmental challenges [6].

Watermelon contains many nutrients and bioactive compounds, including vitamins,
lycopene, citrulline, and phenolic compounds [7]. Due to these bioactive compounds,
watermelon has shown many health benefits such as antioxidant, anti-diabetic, and anti-
cancer effects [8–11]. Although watermelon rind and skin are normally discarded as
by-products, watermelon rind and skin contain similar or higher total phenolic and cit-
rulline content compared to watermelon flesh, showing strong antioxidant activities [12,13].
Thus, there has been increased attention towards the watermelon by-products and their
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utilization [14–16]. Converting watermelon by-products with high bioactive value to value-
added products would benefit functional food industries and the human diet and have a
better environmental impact with less food waste [3].

Citrulline is a non-essential non-proteinogenic amino acid, and watermelon is one of
the rich sources of citrulline [17]. Watermelon rind has especially shown to have greater
citrulline content than watermelon flesh [12,18]. Citrulline is a product of the nitric oxide
(NO) cycle and a precursor of arginine [19]. Since arginine is a conditionally essential
amino acid related to the NO system, citrulline has a potential role in vasodilation and
cardiovascular functions [20–22]. Citrulline also showed hydroxyl radical scavenging
activities [23]. Thus, many studies have been on the therapeutic activities of citrulline in
watermelon [24–26]. However, the bioavailability of citrulline needs to be considered since
it depends on its intestinal absorption and different food matrix [24,27–29]. There have
been some studies on the bioavailability of citrulline in watermelon [27,30,31], but little is
known about the bioavailability of citrulline from different watermelon parts. Therefore,
this study evaluated the chemical composition of different watermelon parts (flesh, rind,
and skin) and investigated the intestinal uptake of citrulline from watermelon flesh, rind,
and skin using the differentiated monolayer human intestinal Caco-2 cell model.

2. Materials and Methods
2.1. Materials

Pre-extracted, dried samples of watermelon flesh, rind, and skin were prepared as
described previously [5]. All media components and reagents were obtained from Gibco®

through Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Citrulline Concentration of Watermelon Flesh, Rind, and Skin
2.2.1. Solid Phase Extraction (SPE)

Solid phase extraction (SPE) was performed on pre-extracted watermelon flesh, skin,
and rind samples before the analysis of citrulline. The pre-extracted watermelon samples
(1 g) were reconstituted in 10 mL of deionized water. Sep-Pak® Vac 20 cc (5 g) cartridges
(Waters Corp., Milford, MA, USA) were activated by washing with 20 mL of 100% methanol,
followed by a 20 mL deionized water wash. The reconstituted aqueous extracts were bound
to the columns, followed by a 20 mL deionized water wash. The remaining was eluted with
10 mL of 100% methanol. The methanol fraction was dried under nitrogen and reconstituted
with 10 mL of deionized water.

2.2.2. Citrulline

Citrulline in watermelon samples was determined using the citrulline assay (Abcam,
Cambridge, UK). Briefly, 50 µL of the sample was mixed with 5 µL of SDS solution and
proteinase K solution in a tube. After 2 h incubation at 37 ◦C, assay reagents were added
and incubated for 30 min at 95 ◦C. After cooling down at 4 ◦C for 5 min, the tube was
centrifuged at 13,000× g for 10 min. The supernatant (200 µL) was transferred to a 96-well
plate, and the absorbance was read on a microplate reader (Synergy HT Multi-Mode
Microplate Reader, BioTek Instruments, Inc., Winooski, VT, USA) at 540 nm.

2.3. Total Phenolic Content and Antioxidant Activity

The total phenolic content in watermelon flesh, skin, and rind samples after SPE was
determined using the modified Folin-Ciocalteu assay in Slinkard and Singleton [32], using
gallic acid as standard. Briefly, samples were diluted 50 times in distilled water. After
putting gallic acid standards and diluted samples (20 µL) in a 96-well plate, 100 µL of 0.2 N
Folin–Ciocalteu reagent and 80 µL of 0.7 M sodium carbonate. The plate was incubated
for 2 h at room temperature. The absorbance was read with a microplate reader (Synergy
HT multimode microplate reader, BioTek, Winooski, VT, USA) at 760 nm. The results were
expressed as milligrams of gallic acid equivalents (GAE) per gram of sample.
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The free radical-scavenging activity of watermelon flesh, skin, and rind samples after
SPE was evaluated using an adapted method of Akkari et al. [33] with 2,2-diphenyl-1-
picrylhydrazyl (DPPH). Trolox was used as a reference standard. Samples were diluted
50 times in methanol. Trolox standards and diluted samples (10 µL) were added with 140 µL
of 0.1 mM DPPH in methanol and incubated for 30 min in the dark at room temperature.
The results were measured at 517 nm. The free radical-scavenging activity was calculated
with the following equation: scavenging effect = [(A0 − A1)/A0] × 100, where A0 was
the absorbance of the control, and A1 was the absorbance in the presence of the sample.
Data were expressed as micromole of Trolox equivalent (TE) per gram of sample, using the
scavenging effect of the Trolox standard curve.

Ferric reduction antioxidant potential (FRAP) of watermelon flesh, skin, and rind
samples after SPE was determined using QuantiChrom™ FRAP Assay Kit (BioAssay
Systems, Hayward, CA, USA). Samples diluted 100 times were mixed with working reagent
and incubated at room temperature for 40 min. The absorbance was measured at 590 nm.
The results were expressed as micromole of ferrous (Fe2+) equivalent per gram of sample.

2.4. Cell Culture and Measurement of Transepithelial Electrical Resistance (TEER)

Caco-2 (ATCC® HTB-37™) human intestinal epithelial cells were purchased from
the American Type Culture Collection (ATCC, Manassas, VA, USA). Caco-2 cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 1% non-
essential amino acids (NEAA), 10% fetal bovine serum (FBS), and 100 U/mL penicillin
and 100 µg/mL streptomycin, named working media (WMEM) in this experiment and
incubated at 37 ◦C in a humidified, 5% CO2 incubator (VWR® Water Jacketed CO2 incubator,
VWR International, Radnor, PA, USA). Cells between passages 24 and 30 were used in the
experiments. Caco-2 cells were seeded onto transwell inserts (polycarbonate membrane,
12 mm i.d., 0.4 µm pore size, Corning Inc., Kennebunk, ME, USA) in 12-well plates at a
density of 1.0 × 105 cells/well. The media was changed every 2 days until the cells were
used for the experiment 21 days after seeding. The integrity of the cell monolayer was
measured by TEER using a Millicell-ERS Volt-Ohm Meter (MD Millipore Corporation,
Billerica, MA, USA) at 21 days post-seeding. When TEER value reached 400 or greater
ohms, the cells were treated with watermelon flesh, rind, and skin samples as well as
L-citrulline standard to measure the rate of transport across the cell monolayer to determine
the bioavailability of citrulline in watermelon from the three parts.

2.5. Cell Viability Assay

The concentration of watermelon flesh, rind, and skin samples for cell treatment
was determined by cell viability assay using the CellTiter 96® AQueous One Solution
Cell Proliferation Assay (MTS assay) (Promega Co., Madison, WI, USA) according to the
manufacturer’s instruction. Caco-2 cells were seeded at a density of 1.0 × 104 cells/well in
96-well plates and incubated in a 37 ◦C, 5% CO2 incubator for 24 h. The cells were treated
with 3 different citrulline concentrations (100, 200, and 300 µM citrulline) of watermelon
flesh, rind, and skin and L-citrulline standard for 4 h. After 4 h, cell supernatant was
replaced with fresh cell culture medium, and 20 µL of MTS reagent was added into each
well. After 1 h incubation, the absorbance was read at 490 nm with a microplate reader.
Cell viability was calculated as the percentage of living cells over control cells.

2.6. In Vitro Bioavailability Assay

Prior to each assay, WMEM in both apical and basolateral chambers of the transwell
were aspirated. To measure the uptake of citrulline from the apical side of the Caco-2
cells, the cells were first deprived of amino acids (AA) in incubation for 15 min at 37 ◦C in
phosphate-buffered saline (PBS). PBS was aspirated, and the cells were rinsed three times
with ice-cold PBS. The treatment (500 µL) was added to the apical chamber, and 1.5 mL of
WMEM was added to the basolateral chamber. The solution from the basolateral chamber
was collected at 1, 2, and 4 h. The collected samples were mixed with 50 µL stop solution
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(25 µL of 100% trifluoroacetic acid and 25 µL of 70% ethanol) and frozen immediately. The
concentration of citrulline in the watermelon flesh, rind, and skin treatments and collected
basolateral solution at 1, 2, and 4 h was measured using a citrulline assay kit (Abcam,
Cambridge, UK), as described in Section 2.2.2.

2.7. Statistical Analysis

All statistical analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC,
USA) with a one-way analysis of variance test (ANOVA) and Tukey’s test. Data were
expressed as means ± standard deviation (SD) for citrulline, TPC, and DPPH assay and as
means ± standard error of the mean (SEM) for cell culture experiments. A difference of
p < 0.05 was considered significant.

3. Results
3.1. Citrulline Concentration of Watermelon Flesh, Rind, and Skin

Citrulline concentration of watermelon flesh, rind, and skin was measured using cit-
rulline assay (Figure 1). The watermelon flesh contained the highest citrulline concentration
(1505 ± 66.9 µM), followed by skin (1113.5 ± 92.8 µM) and rind (780.5 ± 232 µM). Citrulline
concentration in watermelon flesh was significantly higher than in the skin (p < 0.05) and
in the rind (p < 0.01).
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Figure 1. Citrulline concentration of watermelon flesh, rind, and skin. Data are expressed as the
mean ± SD (n = 5). Means followed by a different letter are significantly different (p < 0.05).

3.2. Total Phenolic Content and Antioxidant Activity

The total phenolic content of watermelon flesh, rind, and skin was 12.7 ± 0.5, 2.4 ± 0.4,
and 15.2 ± 0.6 mg GAE/g, respectively (Table 1). Watermelon skin contained the highest
total phenolic content, followed by the flesh and rind. The total phenolic content of the rind
was significantly lower than other parts (p < 0.05). Antioxidant activity of watermelon flesh,
rind, and skin tested with DPPH and FRAP assays showed a similar pattern as the total
phenolic content. As the result of DPPH assay, watermelon skin (31.1 ± 6.2 µmol TE/g)
showed the highest antioxidant activity, followed by watermelon flesh (28.7 ± 3.5 µmol
TE/g) and rind (7.0 ± 2.7 µmol TE/g). The free radical-scavenging activities of watermelon
skin and flesh were significantly higher than the rind (p < 0.05). In FRAP assay, ferric reduc-
tion antioxidant potential of watermelon flesh, rind, and skin was 181.9 ± 7.2, 40.1 ± 9.0,
and 240.0 ± 8.4 µmol Fe2+/g, respectively. Watermelon skin showed significantly higher
FRAP compared to the flesh (p < 0.05) and skin (p < 0.01).



Appl. Sci. 2023, 13, 4882 5 of 10

Table 1. Total phenolic content and antioxidant activity of watermelon parts.

Sample Total Phenolic Content DPPH FRAP
(mg GAE/g) (µmol TE/g) (µmol Fe2+/g)

Flesh 12.7 ± 0.5 b 28.7 ± 3.5 a 181.9 ± 7.2 b

Rind 2.4 ± 0.4 c 7.0 ± 2.7 b 40.1 ± 9.0 c

Skin 15.2 ± 0.6 a 31.1 ± 6.2 a 240.0 ± 8.4 a

Values represent mean ± SD (n = 20 for total phenolic content and DPPH; n = 15 for FRAP). Means within columns
with different letters are significantly different (p < 0.05). DPPH = 2,2-diphenyl-1-picrylhydrazyl; FRAP = ferric
reduction antioxidant potential; GAE = gallic acid equivalent; TE = trolox equivalent.

3.3. Cell Viability of Watermelon Flesh, Rind, and Skin

The cell cytotoxicity of watermelon flesh, rind, and skin on Caco-2 cells was deter-
mined by using MTS assay (Figure 2). Watermelon parts (flesh, rind, and skin) containing
100–300 µM citrulline and L-citrulline were treated onto Caco-2 cells for 4 h. As a result, all
treatments containing 100 µM citrulline did not affect the cell cytotoxicity of Caco-2 cells.
However, the rind with 200 and 300 µM citrulline and skin with 300 µM citrulline showed
significant cytotoxicity compared to the control (p < 0.05). Therefore, watermelon parts with
100 µM citrulline were used as the treatment concentration for in vitro bioavailability assay.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 10 
 

40.1 ± 9.0, and 240.0 ± 8.4 µmol Fe2+/g, respectively. Watermelon skin showed significantly 
higher FRAP compared to the flesh (p < 0.05) and skin (p < 0.01). 

Table 1. Total phenolic content and antioxidant activity of watermelon parts. 

Sample Total Phenolic Content DPPH FRAP 
 (mg GAE/g) (µmol TE/g) (µmol Fe2+/g) 

Flesh 12.7 ± 0.5 b 28.7 ± 3.5 a 181.9 ± 7.2 b 
Rind 2.4 ± 0.4 c 7.0 ± 2.7 b 40.1 ± 9.0 c 
Skin 15.2 ± 0.6 a 31.1 ± 6.2 a 240.0 ± 8.4 a 

Values represent mean ± SD (n = 20). Means within columns with different letters are significantly 
different (p < 0.05). DPPH = 2,2-diphenyl-1-picrylhydrazyl; FRAP = ferric reduction antioxidant po-
tential; GAE = gallic acid equivalent; TE = trolox equivalent. 

3.3. Cell Viability of Watermelon Flesh, Rind, and Skin 
The cell cytotoxicity of watermelon flesh, rind, and skin on Caco-2 cells was deter-

mined by using MTS assay (Figure 2). Watermelon parts (flesh, rind, and skin) containing 
100–300 µM citrulline and L-citrulline were treated onto Caco-2 cells for 4 h. As a result, 
all treatments containing 100 µM citrulline did not affect the cell cytotoxicity of Caco-2 
cells. However, the rind with 200 and 300 µM citrulline and skin with 300 µM citrulline 
showed significant cytotoxicity compared to the control (p < 0.05). Therefore, watermelon 
parts with 100 µM citrulline were used as the treatment concentration for in vitro bioa-
vailability assay. 

 
Figure 2. Cell viability of Caco-2 cells treated with different parts of watermelon samples and L-
citrulline (100–300 µM citrulline). Data are expressed as the mean ± SEM (n = 12). Means followed 
by a different letter are significantly different at the 5% level. CTRL = control; Cit = L-citrulline. 

3.4. In Vitro Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin 
The concentration of citrulline in watermelon flesh, rind, and skin treatments and in 

basolateral solution collected at 1, 2, and 4 h was measured using citrulline assay (Figure 
3). There were no significant differences in the % transport of each treatment among the 
different treatment times. This showed that the absorption of citrulline in different water-
melon parts and L-citrulline were mostly processed in 1 h. The watermelon skin showed 
higher % transport at all time points than L-citrulline. Especially at 1 h treatment, % 
transport was significantly higher in the watermelon skin treatment compared to L-

0

20

40

60

80

100

120

Flesh Rind Skin Cit Flesh Rind Skin Cit Flesh Rind Skin Cit

CTRL 100 µM 200 µM 300 µM

C
el

l v
ia

bi
lit

y 
(%

)

Citrulline concentration (µM)

abcd ab
a

abc
bcd

a

ef
bcd de

ab

g

f

cde

Figure 2. Cell viability of Caco-2 cells treated with different parts of watermelon samples and L-
citrulline (100–300 µM citrulline). Data are expressed as the mean ± SEM (n = 12). Means followed
by a different letter are significantly different at the 5% level. CTRL = control; Cit = L-citrulline.

3.4. In Vitro Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin

The concentration of citrulline in watermelon flesh, rind, and skin treatments and
in basolateral solution collected at 1, 2, and 4 h was measured using citrulline assay
(Figure 3). There were no significant differences in the % transport of each treatment
among the different treatment times. This showed that the absorption of citrulline in
different watermelon parts and L-citrulline were mostly processed in 1 h. The watermelon
skin showed higher % transport at all time points than L-citrulline. Especially at 1 h
treatment, % transport was significantly higher in the watermelon skin treatment compared
to L-citrulline treatment. The highest % transport in each treatment occurred at 1 h for
watermelon skin, at 2 h for watermelon flesh and L-citrulline, and at 4 h for watermelon
rind. Overall, it showed transport of citrulline in all watermelon parts and the standard
ranged from 30.3 to 36.6%.
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4. Discussion

Watermelon (Citrullus lanatus) has many nutritional and beneficial properties. A total
of 71 phenolic and other polar compounds have been characterized in watermelon [34]. One
of those compounds, citrulline, is a non-essential amino acid. Citrulline was first identified
in the juice of watermelon [35,36]. It has been reported that watermelon juice contains
∼2.33 g of citrulline per L of unpasteurized watermelon juice [37]. Citrulline has potent
antioxidant activity and plays an important role in the nitric oxide (NO) system because it
is a precursor of arginine. Citrulline may offer therapeutic strategies for controlling NO
metabolism disorders and improving cardiovascular ability [4,24]. Citrulline has also been
shown to reduce the recovery heart rate and muscle soreness after 24 h [31].

As the attention to food waste and byproducts for being potential biosources increased,
many studies have identified and quantified citrulline content in watermelon rind and
skin as well as watermelon flesh. Jayaprakasha et al. [18] measured the concentration of
L-citrulline in three different varieties of watermelon juice and rinds. In all varieties, rinds
contained higher L-citrulline (13.95–28.46 mg/g dry weight (dw)) compared to watermelon
juice (11.25–16.73 mg/g dw). Ridwan et al. [38] investigated L-citrulline content in water-
melons (flesh and rind) grown and consumed in Malaysia and showed that L-citrulline
content was higher in the rind (45.02 mg/g) than in the flesh (43.81 mg/g) of red watermelon
juice extract and showed similar trends in yellow crimson watermelon juice extract, with
16.61 mg/g in rind and 15.77 mg/g in flesh detected. Casacchia et al. [39] determined bioac-
tive compounds extracted from watermelon pulp and rind with nine different watermelon
cultivars from different origins. The concentration of L-citrulline in fresh rind was signifi-
cantly higher than in fresh pulp except in watermelons from Latina, Italia, and Santana,
Romania, showing up to 2.6 mg/g L-citrulline in fresh watermelon rind. Pp et al. [40] quan-
tified citrulline from the ‘Sugar Baby’ variety of watermelon rinds, and the concentration
of citrulline was 13.36 mg/g dw in the rind and 9.78 mg/g dw in the skin. Tarazona-Díaz
et al. [12] determined the citrulline content in the rind and flesh of five different watermelon
cultivars. Citrulline level in the rind (2.0–7.2 g/kg fresh weight (fw)) was higher than that
in flesh (1.1–4.7 g/kg fw) in all five watermelon cultivars. Akashi et al. [41] investigated
the accumulation pattern of citrulline in mature watermelons. Citrulline showed a bipolar
accumulation pattern in mature watermelon, as the concentration of citrulline was highest
in the outer peels (4.4 ± 0.8 g/kg fw), decreased in inner rinds (2.1 ± 0.94 g/kg fw) and
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peripheral flesh fractions (0.83 ± 0.36 g/kg fw), but increased toward the center of flesh.
Rimando and Perkins-Veazie [4] measured the citrulline level in the flesh and rind of wa-
termelons with different flesh colors (red, yellow, and orange). A higher level of citrulline
was detected in the rind (15.6–29.4 mg/g dw) than in the flesh (7.9–28.5 mg/g dw), but it
was the opposite on a fresh weight basis, showing higher citrulline content in fresh flesh
(1.0–3.5 mg/g fw) than in fresh rind (0.8–1.5 mg/g fw). This can be explained by the higher
moisture level of rind (95%) than flesh (90%). Fan et al. [30] compared the bioactive compo-
nents of watermelon flesh, rind, and seeds and showed that the highest citrulline content
was detected in watermelon rind (19.3 ± 1.1 mg/100 kcal) followed by watermelon flesh
(10.0 ± 1.0 mg/100 kcal) and watermelon seeds (1.4 ± 0.2 mg/100 kcal). These previous
studies reported that watermelon rind has higher L-citrulline than watermelon flesh. The
present study appears to have the opposite results showing the highest citrulline content
in watermelon flesh, followed by the skin and rind (Figure 1). However, the opposite
results can be explained by the word ‘rind’ used in some previous studies [12,18,30,38,39],
because ‘rind’ in these previous studies indicated the white rind and green skin, which are
all byproduct parts other than flesh.

In addition to the citrulline concentration, total phenolic content and antioxidant activ-
ity of watermelon parts were investigated in the present study. Watermelon skin showed
the highest total phenolic content, free-radical scavenging activity, and ferric reduction
antioxidant potential followed by watermelon flesh and skin. These results were consistent
with previously reported studies [42,43]. Green rind (skin) showed the highest total phe-
nolic content (0.7 mg GAE/g), followed by the flesh (0.3 mg GAE/g) and the white rind
(0.2 mg GAE/g), with a similar pattern in DPPH radical scavenging activity [42]. The green
rind (skin) extract treated at 250 ◦C showed the maximum ferric reducing power among the
watermelon flesh, white rind, and green rind (skin) parts [42]. Yusoff et al. [43] extracted wa-
termelon rind using ultrasound-assisted extraction, and it contained 15.1 ± 0.6 mg GAE/g,
showing similar total phenolic content as the present study. Total phenolic content of red-
and yellow-fleshed watermelon rind powders extracted using different solvents (water,
methanol, ethanol, and acetone) reported values 1.1–2.2 mg GAE/g, which was lower
than our result (rind 2.4 mg GAE/g) [44]. However, there were several studies not consis-
tent with the present study [45,46]. The white part of watermelon peels (rind) contained
63.3 ± 1.5 mg TAE (tannic acid equivalent)/g, showing higher total phenolic content than
the red flesh (47.3 ± 0.9 mg TAE/g) [45]. In Neglo et al. [46], watermelon skin showed the
highest total phenolic content (0.087 ± 0.002 mg GAE/g) and DPPH (55.8 ± 2.4 %), but
watermelon rind was higher than the flesh in both total phenolic content and DPPH.

It is important to investigate intestinal absorption of citrulline because the bioavail-
ability of citrulline depends on intestinal absorption and different food matrices [24,27].
There have been several studies on citrulline uptake [27,30]. Bahri et al. [27] investigated
the mechanisms and kinetics of citrulline uptake using a Caco-2 human intestinal epithelial
cell model. They found that citrulline uptake was pH-independent and that the uptake rate
went down without Na+. Fan et al. [30] investigated the concentration of L-citrulline in
plasma over 24 h after watermelon flesh, rind, and seed intake. The maximum concentra-
tion showed between 1 and 2 h after watermelon flesh, rind, and seed intake, especially
watermelon flesh and rind showing significant increase compared to the control (p < 0.05).
However, the transport of citrulline from different watermelon parts in the intestine is
poorly understood. In the present study, the bioavailability of citrulline was slightly greater
in the watermelon skin than in the watermelon flesh and rind (Figure 3). In addition, the
bioavailability of L-citrulline standard was similar or lower than the bioavailability of cit-
rulline in different watermelon parts. This difference may be because the citrulline standard
was not contained within the matrix of the watermelon. Tarazona-Díaz et al. [31] performed
an in vitro intestinal absorption of L-citrulline by using Caco-2 cells, with unpasteurized
watermelon juice, pasteurized watermelon juice, and L-citrulline standard. L-citrulline in
unpasteurized watermelon juice showed higher absorption than in the L-citrulline standard,
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suggesting that the transport and bioavailability of L-citrulline are greater when it was
contained in a matrix of watermelon juice than as a pure compound.

5. Conclusions

In this study, we evaluated the composition of different parts of watermelon and
investigated the bioavailability of citrulline from different parts of watermelon using
an in vitro human intestinal Caco-2 cell monolayer model. Watermelon flesh had the
highest citrulline content, but the watermelon skin had the highest total phenolic content
with higher radical scavenging activity and ferric reduction antioxidant potential than
watermelon flesh and skin. The citrulline bioavailability showed higher % transport in
watermelon skin than in watermelon flesh, rind, and even L-citrulline standard. It may be
due to the different food matrices of watermelon parts. This suggests that the utilization
of watermelon byproducts such as skin would help develop value-added products with
higher bioactive compounds and better bioavailability of citrulline. However, since this
study was conducted with an in vitro cell model, more extensive research with in vivo
studies will be needed.
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