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Abstract: This work demonstrates the application of an electronic nose (e-nose) for discrimination
between authentic and adulterated honey. The developed e-nose is based on electrodes covered
with ionogel (ionic liquid + gelatin + Fe3O4 nanoparticle) films. Authentic and adulterated honey
samples were submitted to e-nose analysis, and the capacity of the sensors for discrimination between
authentic and adulterated honey was evaluated using principal component analysis (PCA) based on
average relative response data. From the PCA biplot, it was possible to note two well-defined clusters
and no intersection was observed. To evaluate the relative response data as input for autonomous
classification, different machine learning algorithms were evaluated, namely instance based (IBK),
Kstar, Trees-J48 (J48), random forest (RF), multilayer perceptron (MLP), naive Bayes (NB), and
sequential minimal optimization (SMO). Considering the average data, the highest accuracy was
obtained for Kstar: 100% (k-fold = 3). Additionally, this algorithm was also compared regarding its
sensitivity and specificity, both being 100% for both features. Thus, due to the rapidity, simplicity,
and accuracy of the developed methodology, the technology based on e-noses has the potential to be
applied to honey quality control.

Keywords: electronic nose; sensors; honey quality control; honey adulteration; multivariate analysis;
machine learning

1. Introduction

Honey is a natural sweet substance produced by honeybees (Apis mellifera) from plants’
nectar or secretions of their living parts. This animal product is used in various applications,
such as in natura; in sweeteners, phytotherapeutics [1], medicines [2], and cosmetics (for
improving moisture, cleansing, miscibility, and spreadability) [3]; and as a food indus-
try additive (antioxidant, enzymatic inhibitor, clarifying, and anti-browning agent) [4,5],
among others [6]. In general, honey’s composition and physicochemical and organoleptic
properties vary according to its botanical origin (the types of flowers used by the bees), ge-
ography and climate, processing, and storage [7]. Regarding chemical composition, honey
is a mixture of sugars (mainly fructose, followed by glucose and sucrose), amino acids,
proteins, enzymes, organic acids, carotenoids, vitamins, antioxidants, phenolic, minerals,
trace elements, and volatile organic compounds (VOCs) [7,8]. Focusing on the latter group,
hundreds of different compounds have been identified in the volatile fraction of honey,
among them being aldehydes, ketones, carboxylic acids, alcohols, hydrocarbons, terpenes,
benzene, pyran, and derivatives [9,10].

Due to its natural scarcity, increased demand, high production cost, and commercial
value, honey has been one of the most adulterated products worldwide. Nowadays, the
decrease in the global honeybee population due to environmental pollution and the spread
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of insect diseases have further reduced honey availability, encouraging some producers
to adulterate their products to obtain a more significant income [11]. Several types of
adulteration are possible, such as direct incorporation of foreign substances into honey,
blending with lower-cost honey types, or indirect adulteration of honey through bee feeding
with industrial sugars [12]. In this sense, to reduce deliberate adulteration and incentivize
good practice standards, the quality control of honey is a fundamental step.

However, due to the heterogeneity of samples, with parameters varying considerably
among honey types, and the addition of adulterants with physical-chemical properties
similar to authentic honey, the quality control of this product involves several tests and
a series of steps, which can take from hours to days and add substantial costs to the
production chain [13].

Analytical methods used in food adulteration studies are often based on identifying
and quantifying specific markers, such as some classes of compounds (carbohydrates,
polyphenols, fatty acids). Usually, the techniques to unravel adulteration, such as chro-
matographic analysis, electrophoretic methods, spectroscopic methods, immunoassays,
and isotope ratio mass spectrometry, require complex sample pretreatments, laborious,
and time-consuming procedures; expensive analytical instrumentation; and specialized
professionals [11,12,14–16]. According to the Codex Standard for Honey, for adequate
honey quality control, the main parameters to be evaluated are sugars (fructose, glucose,
and the ratio between them), moisture and water activity, free acidity and pH, ash and
electrical conductivity, color, and 5-hydroxymethylfurfural (5-HMF) content [13,17].

E-noses are a device that mimics the human nose, recognizing gas patterns (smell)
and relating to a known sample. In this equipment, gases or vapors interact with sensors,
leading to variations in the system’s physical properties according to the atmosphere’s
composition to which the sensor is exposed. By studying the variations in these properties
through mathematical/statistical tools, it is possible to evaluate the sensor’s performance
in identifying or distinguishing VOCs and even in quantifying certain species present in
the given sample. Among the advantages of using an e-nose, the low cost of manufacture
and operation, easy handling, and low response time have been highlighted [18].

Due to the presence of volatile species and its characteristic olfactory pattern, studies
on the characterization of honey with e-noses have been described. There are several
works in which e-noses have been used to differentiate between honey according to botanic
and geographical origins [19–21], which may also be useful for fraud prevention, since
mislabeling is also common.

Focusing on adulteration by the addition of components different than honey, Subari
et al. studied a method for discrimination between pure Tualang honey and adulteration
induced with sugar solutions (from beetroot and sugarcane), reducing the concentrations
of pure honey gradually (80%, 60%, 40%, 20%, and 0%). Two techniques were applied,
an e-nose and infrared spectroscopy. The data generated by the two techniques were pre-
processed using the relative responses or the normalized data and evaluated using different
multivariate analyses. Using the merged data from the e-nose and infrared spectroscopy,
followed by linear discriminant analysis (LDA), the authors achieved an accuracy of 92.2%
for the proposed methodology [22].

Zakaria et al. demonstrated the ability to discriminate and classify honey of different
botanical origins, sugar syrup, and adulterated samples using a combination of an e-nose
and an electronic tongue (e-tongue). The authors highlighted the importance of data
curation using different classifiers to assign samples correctly. Since the nature of the
data from the e-nose and e-tongue was non-linear, the probabilistic neural network (PNN)
classifier performed better [23]. Other studies have corroborated these findings, drawing
attention to the potential of the e-nose [24] and the e-tongue to detect frauds and other
features in honey and emphasized the importance of choosing the correct data treatment
method to enhance the sensitivity and specificity of the method [22–24].

This work demonstrates the application of the e-nose for discrimination between
authentic and adulterated honey. Honey samples of different botanic origins (eucalyptus,
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orange, and wild plants) were obtained from Brazilian producers. The samples were
evaluated using conventional techniques (humidity, acidity, diastase enzyme, Lund reaction,
Fiehe and Winckler tests), and adulterated samples were related to frauds commonly
practiced in the market (addition of different vegetal sugars). The developed e-nose is
based on interdigitated electrodes covered with ionogel (ionic liquid + gelatin + Fe3O4)
films and on the variation of the sensor’s conductance according to the sample to which it is
exposed. Based on conductance data, two strategies were evaluated for the discrimination
between authentic and adulterated honey, graphic discrimination (PCA) and machine
learning (automated classifiers), the latter being more efficient due to the possibility of
automating the treatment of data, reducing subjectivity, and improving the predicting
capacity. In this sense, due to the fast response (19 min) and simplicity (non-destructive
analysis and without any sample treatment) of the developed methodology, the technology
based on the e-nose can be applied to honey quality control.

2. Materials and Methods
2.1. Reagents and Honey Samples
2.1.1. Reagents

The ionic liquid 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA, purity > 98%)
and bovine skin gelatin type B were acquired from Sigma Aldrich (St. Louis, MO, USA).
Tetrahydrate iron (II) chloride (FeCl2·4H2O, purity > 99%) was obtained from Vetec (Duque
de Caxias, RJ, Brazil). Iron (III) chloride hexahydrate (FeCl3·6H2O, purity ≥ 99%) was
obtained from Acros Organic (Geel, Antwerp, Belgium). Ammonium hydroxide and or-
ganic solvents were purchased from Labsynth (Diadema, SP, Brazil). The interdigitated
electrodes were manufactured by Micropress S.A. (Sao Paulo, SP, Brazil) with a 0.6 cm2

interdigitated area, 200 µm of spacing between the copper digits, and 100 µm of spacing
between the nickel digits covered with 0.05 µm of gold.

2.1.2. Honey Samples

All honey samples were from Brazil and obtained after routine analysis from the
Laboratory of Inspection of Animal Products and Food Quality Control of the Faculdade
de Medicina Veterinária e Zootecnia. Six samples were authentic honey (TH): eucalyptus
(TH 1 and TH 6), orange (TH 2 and TH 3), and wild plants (TH 4 and TH 5). Eleven samples
were adulterated honey (AH): eucalyptus (AH 1), orange (AH 2, AH 3, AH 4, AH 5, AH 9,
AH 10, and AH 11), and wild plants (AH 6, AH 7, and AH 8).

The determination of which honey was adulterated was performed using official
methods according to the Brazilian normative. Honey samples whose values disagreed with
at least one of the following parameters were considered adulterated: humidity (≥20%),
acidity (≤50 mEq·kg−1), the presence of diastase enzyme, the presence of albuminoid
substances (Lund reaction, ranging from 0.6 to 3.0 mL), the presence of 5-HMF (Fiehe test),
and the quantification of 5-HMF (Winckler’s method, ≤50 mg·kg−1) [17].

2.2. Synthesis of Ionogel and Sensors Assemble

The synthesis and characterization of the material used in this work are described
elsewhere [25].

2.2.1. Fe3O4 Nanoparticles

For the synthesis of Fe3O4, 6.0 g of FeCl3·6H2O was dissolved in 100 mL of distilled
water (solution A) and 2.7 g of FeCl2·4H2O was dissolved in 11 mL of distilled water
(solution B). Solutions A and B were mixed and mechanically stirred under a nitrogen
atmosphere until homogenization. Next, 19 mL of ammonium hydroxide aqueous solution
(25%) was quickly added to the previous mixture, which was allowed to react for 5 min.
Stirring was discontinued, and the Fe3O4 particles were separated with magnetic decanta-
tion. The bare particles were washed with water several times and dispersed in water at a
final concentration of 78 mg/mL.
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2.2.2. Ionogel Preparation

The preparation of ionogel followed the procedure described elsewhere with modifica-
tions [25,26]. Briefly, for undoped ionogel (without particles), 30 mg of bovine skin gelatin
was added to 75 µL of EMIMDCA, followed by 40 µL of distilled water. The mixture was
kept in an ultrasonic bath for 15 min and stored for subsequent use. For doped ionogel,
rather than 40 µL of distilled water, the same volume of Fe3O4 suspension was used at
different concentrations. The composition of ionogel used in each sensor is presented in
Table 1.

Table 1. Sensor identification and synthesis description according to components and their amounts.

Sensor
Identification EMIMDCA (µL) Bovine Skin Gelatin

(mg)
Fe3O4 Concentration
(mg·mL−1)

A-1 75 30 0
A-2 75 30 25
A-3 75 30 50
A-4 75 30 75

2.3. Sensor Assembly and the e-Nose

The sensor was prepared by depositing 40 µL of ionogel on the active part of an
interdigitated electrode, followed by spin coating at 10,000 rpm for 5 s. Next, the freshly
prepared thin film was dried in a desiccator under vacuum (550 mmHg) for 15 h.

Concerning the e-nose and software for data acquisition, the system used in this work
was the same as previously described [27]. Briefly, the software controls the solenoid valves
(SVs) and acquires data. For evaluating the changes in the conductance of the electrode
according to the sample, SV1 and SV3 are opened and SV2 is closed; thus, gas passes
through the sample chamber and goes to the sensor chamber (exposure). In contrast, for
removing the sample VOCs (recovery), valves are set in the inverse way: SV1 and SV3 are
closed, and SV2 is opened (Figure 1).
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Figure 1. Schematic representation of the e-nose.

For measurements, a vial containing 5 mL of honey was put inside the sample chamber
of the e-nose. The samples were kept at 30.0 ± 0.1 ◦C using a water bath, and the airflow
was 0.5 L·min−1. No further sample treatment was needed. Conductance data were
acquired during 7 cycles of exposure (10 s) and recovery (150 s). The whole analysis took
18.7 min.
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2.4. Data Processing

Graphical analysis and PCA calculations were performed using Origin software (Ori-
gin Lab, Northampton, MA, USA). Weka software (University of Waikato, New Zealand)
was used to evaluate the classifiers.

3. Results and Discussion
3.1. Data Acquisition

The samples were analyzed using the sensor array, ionogel doped with different
concentrations of bare Fe3O4 nanoparticles. As an example, the conductance data obtained
for a given sample (authentic honey 5) by the sensors is shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 12 
 

 
Figure 1. Schematic representation of the e-nose. 

For measurements, a vial containing 5 mL of honey was put inside the sample cham-
ber of the e-nose. The samples were kept at 30.0 ± 0.1 °C using a water bath, and the airflow 
was 0.5 L·min−1. No further sample treatment was needed. Conductance data were ac-
quired during 7 cycles of exposure (10 s) and recovery (150 s). The whole analysis took 
18.7 min. 

2.4. Data Processing 
Graphical analysis and PCA calculations were performed using Origin software 

(Origin Lab, Northampton, MA, USA). Weka software (University of Waikato, New Zea-
land) was used to evaluate the classifiers. 

3. Results and Discussion 
3.1. Data Acquisition 

The samples were analyzed using the sensor array, ionogel doped with different con-
centrations of bare Fe3O4 nanoparticles. As an example, the conductance data obtained for 
a given sample (authentic honey 5) by the sensors is shown in Figure 2. 

 
Figure 2. Data of conductance × time for the sensor array. The inset indicates the determination of
peak height and baseline.

Comparing the curves in Figure 2, it is possible to note that in general, increasing the
concentration of Fe3O4 led to a decrease in the signal amplitude, which is consistent with
our previous work [25]. The peak height and baseline signal (inset Figure 2) were used to
calculate the relative response (RR; Equation (1)) of the sensors in each of the cycles. The
data of RR obtained for the sensors during each cycle are presented in Table S1.

RR = (peak height − baseline)/baseline (1)

3.2. Data Processing
3.2.1. Graphic Discrimination

Principal component analysis (PCA) is one of the simplest and most widely used
multivariate analysis method, an orthogonal vector transformation based on variance crite-
ria, usually applied in dimension reduction and discrimination analysis [28,29]. From the
data contained in Table S1, it was possible to calculate the correspondent PCA (Figure S1),
which presents huge information and an overlapping region between authentic and adul-
terated honey. To facilitate the visualization and discussion, the average values of RRs were
calculated (Table 2) and used as input variables for the PCA calculation.
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Table 2. RRs average data samples for each sensor.

Sample * A1 A2 A3 A4

TH 1 0.075 0.062 0.060 0.052
TH 2 0.058 0.051 0.047 0.043
TH 3 0.059 0.064 0.048 0.045
TH 4 0.050 0.042 0.052 0.046
TH 5 0.082 0.063 0.088 0.051
TH 6 0.075 0.062 0.096 0.048
AH 1 0.076 0.074 0.111 0.052
AH 2 0.077 0.086 0.122 0.058
AH 3 0.068 0.090 0.123 0.054
AH 4 0.068 0.081 0.104 0.050
AH 5 0.077 0.104 0.136 0.063
AH 6 0.107 0.154 0.199 0.085
AH 7 0.093 0.135 0.168 0.071
AH 8 0.074 0.112 0.200 0.076
AH 9 0.070 0.092 0.117 0.067
AH 10 0.070 0.109 0.127 0.066
AH 11 0.064 0.093 0.119 0.067

* TH = authentic honey; AH = adulterated honey.

The PCA biplot obtained for the sensor array is shown in Figure 3. In this biplot, it is
possible to note 4 vectors, corresponding to sensors, and 17 square dots, related to samples.
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average RR data.

In this condition, the variance achieved in PCA was 96.1%, distributed among the two
components, PC1 (86.6%) and PC2 (9.5%). The clusters corresponding to authentic and
adulterated honey were well defined, and no intersection was observed. In a simplified
way, the biplot can be interpreted as follows: the closer the dot is to the vector endpoint,
the more significant (higher value) it is for that sensor. For example, from Table 2, sample
AH 6 presented the highest values for all sensors and its correspondent dot was closest to
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the vectors’ extremities. However, the points referring to TH 2 and TH 4 were the farthest
and opposite from the vectors’ ends; thus, these samples presented the lowest values for
these variables, which agrees with the individual analysis of the data in Table 2.

In this sense, from e-nose data and their correspondent PCA, it is possible to note that
in general, for adulterated honey, there was an increase in RR values and, thus, to infer that
the developed sensors are sensitive to the adulterating compounds used to defraud honey
or their by-products, such as 5-HMF. However, additional studies need to be conducted to
confirm this hypothesis.

3.2.2. Machine Learning Classification

Despite the graphical analysis being a valuable alternative for discrimination of the
clusters, this task becomes difficult in systems with a large amount of data and containing
overlapping regions. Thus, to optimize and automate the treatment of data, reduce subjec-
tivity, and increase the efficiency in the prediction of the results and the robustness of the
method, the use of machine learning algorithms for the autonomous classification of the
samples is more suitable [30].

In this analysis, the following classifiers were used: instance based (IBK), Kstar, Trees-
J48 (J48), random forest (RF), multilayer perceptron (MLP), naive Bayes (NB), and sequential
minimal optimization (SMO) [31,32].

These algorithms were selected since they are based on different approaches. IBK
and Kstar are based on the K-nearest-neighbor algorithm. These kinds of algorithms use
the proximity between the data to classify or group them. The main advantage is that
they are non-parametric; thus, they do not need a complex data preparation procedure.
J48 and RFs are based on the decision tree algorithm, which uses a set of simple decision
rules inferred from the data. This type of algorithm, in addition to being non-parametric,
can consider numerical and categorical data. However, they perform well on relatively
unbalanced data sets. The MLP classifier is a type of neural network used to solve problems
in which the data are not linearly separable or have complex relationships [33,34]. NB is
an algorithm based on Bayes’ theorem that consists of conditional probability and takes
the input attributes as independent of each other, thus simplifying the calculations and
consequently the algorithm implementation [35]. Finally, SMO is an algorithm for solving
the quadratic programming problem that arises in support vector machines (SVMs); the
latter is a function-based algorithm that uses a hyperplane to separate data from different
classes. This hyperplane is chosen considering the closest points between the classes and
seeks to maximize the distance between them [36].

In this sense, based on the RR data for each cycle (Table S1) and considering different
values of k-folds for the cross-validation (3, 5, and 10), the accuracy values of the different
classifiers were determined and varied from 85.7% to 97.5% (Figure 4). The highest values
were obtained for IBK (94.9%, 93.3%, and 97.5% for k = 10, 5, and 3, respectively) and
Kstar (95.8%, 96.6%, and 96.6% for k = 10, 5, and 3, respectively). Thus, IBK and Kstar
were selected as classifiers for evaluating the average of RRs (Table 2) in the same way as
done previously (IBK* and Kstar*). Considering the average data of the measures taken
for each sample, for both classifiers, the accuracies reached 100% for at least one k value,
IBK* (94.1% for k = 10 and 3 and 100% for k = 5) and Kstar* (100% regardless of the k); in
other words, in this case, these classifiers were able to attribute correctly as authentic or
adulterated honey all samples considered.

Another way of evaluating the ability of the e-nose-based methodology to discriminate
between authentic and adulterated honey is through sensitivity and specificity parameters.
Sensitivity is the number of true-positive samples that the applied method identifies, while
specificity is the rate of true negatives that are correctly identified. Sensitivity and specificity
were calculated according to Equations (2) and (3), respectively [32,37].

Sensitivity = true positive (TP)/((true positive (TP) + false negative (FN)) (2)

Specificity = true negative (TN)/(true negative (TN) + false positive (FP)) (3)
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In this study, the quantity of true positives corresponded to the number of data the
sensor assigned as authentic honey, while the number of true negatives corresponded
to adulteration. Furthermore, it is necessary to remember that for each sample, seven
measurements (seven exposure cycles) were taken. Therefore, in the case of analysis of data
from Table S1, to determine sensitivity, the denominator of Equation (2) was 42 (6 samples of
authentic honey × 7 measurements), while for the specificity calculation, the denominator
of Equation (3) was 77 (11 samples of adulterated honey × 7 measurements). In contrast, for
evaluation of the sensitivity and specificity of the average data (Table 1), the denominator
of the corresponding equations was 6 and 11, respectively.

Considering the classifiers IBK (k = 3, the accuracy of 97.5%), Kstar (k = 3, accuracy
of 96.6%), IBK* (k = 3, the accuracy of 94.1%), and Kstar* (k = 3, accuracy of 100.0%),
confusion matrices, sensitivity, and specificity were calculated and are summarized in
Figure 5. For IBK (k = 3), the sensitivity was 90.5%, indicating the system could distinguish
38 of the 42 data labeled as authentic honey, attributing 4 measures as adulterated. In
the same way, the specificity was 94.8%, which indicates that the sensor discriminated 73
of the 77 measurements as adulterated honey and 4 erroneously as authentic honey. For
Kstar (k = 3), the sensitivity was 95.2% and the specificity was 97.4%; in other words, from
the total known data, the classifier could discriminate 40 and 75 measures correctly as
authentic and adulterated honey, respectively. When the average data were considered,
IBK* (k = 3) and Kstar* (k = 3) both correctly attributed all samples concerning authentic
honey, with a sensitivity of 100%. Regarding specificity, IBK* (k = 3) erroneously classified 1
of 10 measures (90.9%), while Kstar* did not miss any sample labeled as adulterated honey
(100%).
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4. Conclusions

This work evaluated the capacity of an e-nose based on thin films of an ionogel
composite doped with different concentrations of Fe3O4 nanoparticles for discrimination
between authentic and adulterated honey. The sensors were obtained by keeping fixed
amounts of ionic liquid and gelatin, while suspensions with different concentrations of
Fe3O4 were used (0, 25, 50, and 75 mg·mL−1).

To evaluate the capacity of the e-nose for discrimination between authentic and
adulterated honey, two strategies were considered, graphical analysis (PCA) and automated
classifiers. In a preliminary analysis using data from individual cycles, PCA presented an
overlapping region, while taking the average data, two clusters with no intersection were
obtained.

Additionally, based on data from individual cycles, the discrimination accuracy of
different machine learning classifiers was calculated; IBK (k = 3) and Kstar (k = 3) presented
the highest values of 97.5% and 96.6%, respectively. From the confusion matrix, sensitivity
and specificity were calculated for each classifier. In the case of IBK (k = 3), sensitivity was
90.5% and specificity 94.8%, while for Kstar (k = 3), sensitivity and specificity were 95.2%
and 97.4%, respectively. Taking the average data of the measures taken for each sample, the
accuracy of the classifiers IBK* (k = 3) and Kstar* (k = 3) was 94.1% and 100%, respectively.
In the same way, for IBK* (k = 3), the sensitivity was determined as 100% and the specificity
as 90.9%. For Kstar* (k = 3), both parameters were 100%.

Finally, the proposed methodology based on e-nose technology is a simple and low-
cost alternative for analyzing honey frauds and can be used as a complementary tool for
honey quality control, reducing the analysis time and manipulating steps. Nevertheless,
further studies must be performed to optimize experimental parameters, data acquisition,
and treatment steps. Additionally, more samples must be evaluated for validation of the
proposed methodology for discrimination between authentic and adulterated honey.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app13084881/s1, Figure S1: PCA biplot obtained for au-
thentic (TH, �) and adulterated honey (AH, �) based on individual cycles RRs data. Table S1: RRs
data obtained by sensors during individual cycles.
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