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Abstract: The incorporation of electric vehicles into the transportation system is imperative in order to
mitigate the environmental impact of fossil fuel use. This requires establishing methods for deploying
the charging infrastructure in an optimal way. In this paper, an optimization model is developed to
identify both the number of stations to be deployed and their respective locations that minimize the
total cost by utilizing Genetic Algorithms. This is implemented by combining these components into
a linear objective function aiming to minimize the overall cost of deploying the charging network
and maximize service quality to users by minimizing the average travel distance between demand
spots and stations. Several numerical and practical considerations have been analyzed to provide an
in-depth study and a deeper understanding of the model’s capabilities. The optimization is done
through commercial software that is appropriately parametrized to adjust to the specific problem.
The model is simple yet effective in solving a variety of problem structures, optimization goals and
constraints. Further, the quality of the solution seems to be marginally affected by the shape and size
of the problem area, as well as the number of demand spots, and this may be considered one of the
strengths of the algorithm. The model responds expectedly to variations in the charging demand
levels and can effectively run at different levels of grid discretization.

Keywords: electric vehicles; charging station allocation; facility-to-site allocation; optimization;
genetic algorithms; evolutionary computing; grid discretization

1. Introduction

The use of electric vehicles is rising in many cities around the world, underpinned by
the urgent need to reduce the levels of air and noise pollution and tackle the ever-growing
energy-related greenhouse gas (GHG) emissions from conventionally fueled vehicles.
Research conducted on large city air pollution metrics indicates that the highest contribution
comes from the transportation system, where multiple internal combustion engines work
with diesel fuel and spark-ignition engines mainly work with petrol [1]. Electric vehicles
(EVs) promise high efficiency, energy savings, low noise, and zero emissions; however, the
lack of supporting charging infrastructure is holding back their prompt and widespread
adoption. Although EV charging infrastructure is being installed in several countries,
most of them have not been able to install the required number of EV charging stations,
except in some states. The world’s highest charging station density (19–20 charging stations
per 100 km) appears in the Netherlands, while China is the second-best performing country
with 3–4 charging stations per 100 km, and the UK will have approximately 3 charging
points per 100 km by 2030 [2]. Low or almost zero station deployment levels reduce EV
adoption. For that reason, it is imperative to support the deployment of an extended
network of charging stations to attract private or public vehicle drivers to use EVs. This is a
prerequisite to solving efficiently the facility allocation problem, meaning that the number
and location of the charging stations composing the respective network should be optimized
first while considering certain constraints (budget limitation, charging station capacity,
dispersion of the charging demand, etc.). Finding the optimal location for a charging station
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is a decision that may require considering various and potentially contradictory factors
such as driver satisfaction with charging, operator concerns about economics, fleet losses
from power outages, grid safety issues, and traffic problems in the transportation system [3].
Also, electric vehicles’ battery status is a factor that should be taken into account when
considering such problems, as the competitive relationship between charging time and
performance degradation may render the battery’s optimal fast charging challenging [4],
thus preventing the high adoption of EVs even if the respective infrastructure has been
enhanced. In [5], the researchers have proposed a model for deciding the location and
capacity of the EV fast charging stations, along with the optimal multistage expansion
of the distribution network to cope with future load growth. This is formulated in three
interconnected layers (Layer 1: optimal locations of FCS, Layer 2: optimal numbers of FCSs
and CPs, and Layer 3: optimal planning of DN expansion), with a sub-layer of optimal
assignment of EVs at FCSs. The solution is carried out along with validation using different
metaheuristic methods (Differential Evolution, Symbiotic Organism Search, Arithmetic
Optimization Algorithm) and integer linear programming. As emphasized in [6], the EV
charging station placement problem requires the charging network to be pervasive enough
such that an EV can easily access a charging station within its driving range and also widely
spread so that EVs can compete to displace internal combustion engine (ICE) vehicles.

2. Background

To improve EV charging efficiency, researchers have been working on the Electric
Vehicle Charging Station (EVCS) distribution problem, investigating different perspectives
in order to reach an optimal allocation scheme. In terms of planning scenarios, several
factors and targets have been considered, including the optimal location, number, service
type, and capacity of each EVCS to satisfy the user’s needs and ultimately the growth of
EV penetration. In terms of solution algorithms, the global research effort has developed a
variety of methods and algorithms in order to solve the charging station sizing and place-
ment problem [7]. In particular, the formulated optimization problems for the placement of
EVCS can form a single or multi-objective, linear or nonlinear, convex or concave assembly.
According to the used variables, the formulated problem can be continuous, integer, dis-
crete, or combinatory [8]. The most frequently used algorithms in existing studies can be
divided into two types: heuristic/meta-heuristic and mathematical algorithms. Heuristic
algorithms are relatively more popular than mathematical ones due to their ability to find a
global or near-global optimum solution even in complex problems.

Several studies have attempted to estimate the optimal location of the EVCS by
examining alternative distribution scenarios based on a predefined set of candidate EVCS
sites. The work in [9] develops a bi-level mathematical model to optimize the location
of charging stations for EVs with consideration of the driving range. The upper level is
to maximize the flows served by charging stations, while the lower level depicts route
choice behavior given the location of the charging station. Genetic Algorithms have also
been employed in [10] and [11] to calculate the necessary number of charging stations
and best placement positions to satisfy the clients’ demand using origin–destination (OD)
data of conventional vehicles and real-world driving data of 196 battery EVs. The research
in [12] uses an intelligent multi-objective optimization method to handle the problem by
integrating a multi-objective particle swarm optimization (MOPSO) process to obtain a set
of Pareto optimal solutions and an entropy weight method-based evaluation process to
select the final solution from the Pareto optimal solutions. The effort in [13] develops an
optimization model of charging station location that considers the waiting time for EVs in
the queue for charging as an influencing factor. The minimization of the time cost to EV
drivers is performed with the utilization of the hybrid evolutionary algorithm SCE-UA.
Another work in [14] presents a case study for planning the locations of public electric
vehicle charging stations with the employment of three different classic facility location
models (set covering model, maximal covering location model, and p-median model) to test
the model’s effectiveness. The optimal positioning of EVCS in an urban area is analyzed



Appl. Sci. 2023, 13, 4867 3 of 19

in [15] by introducing weighting maps (cost values, distance) for managing different social
requirements into the optimization process while utilizing evolutionary algorithms (Particle
Swarm Optimization (PSO), Genetic Algorithms (GA), Biogeography-based Optimization
(BBO), and Social Network Optimization (SNO)). The proposed solution to the deployment
problem applies a greedy approach that consists of placing all the CS, one at a time, such
that each one is locally optimal and is tested through various scenarios with a different
predefined number of EVCS to appoint. A multi-period optimization problem is proposed
in [16] for EVCS placement, in which the distribution of charging demand is modeled
with a combination of node-based and flow-based approaches, so as to model the needs
of EVs to recharge on intermediary stops on long-haul travels. For this problem, a mixed-
integer linear programming (MILP) formulation is considered. The research in [17] applies
a Geographic Information System (GIS)-based Multi-Criteria Decision Analysis process
using the analytical hierarchy process (AHP) to address the electric vehicle charging station
site selection in light of 15 environmental, economic, and urbanity criteria. A hierarchical
optimization model, integrating three levels of analysis, is also developed in [18] to assist
city planners with charging station location selection and system design. In this work,
10 different locations were considered for EVCS deployment, consisting of shopping malls
and cultural centers. A study on expanding existing EVCS networks is realized in [19],
following two different expansion strategies to choose additional sites for charging station
placement, with the candidate locations being based on real-world data on charging station
utilization and correlation with places of common interest.

Other research studies integrate into the EVCS allocation problem the optimization of
its sizing by assigning the optimal charging piles per infrastructure deployed. The work
in [20] examines the optimal EV charging infrastructure location and capacity determination
problem, assuming charging queuing behavior with finite queue length constraints. The
GA is used to minimize the total cost, which considers charging queuing behavior with
finite queue length and various siting constraints in a small-scale case study (20 EVCS
candidate locations). The effort in [21] utilizes Genetic Algorithms to solve the fast-charging
station location-and-sizing problem to maximize EV charging station owner profits across
a region for BEV owners who wish to charge en route, taking into consideration elastic
demand, station congestion, and network equilibrium. The research in [22] proposes a
multi-criterion-oriented optimization approach to determine the optimal charging station
placement and charging piles assignment under multiple constraints, such as recharging
demand and cruising range, by employing two different algorithms, the Lazy Greedy with
Direct Gain (LGDG) and Lazy Greedy with Effective Gain (LGEG), both based on the greedy
method. Public trajectory data collected from the taxi cabs have been utilized for building
up and verifying the research work based on the hypothesis that the traveler/driver
behavior remains unchanged when switching to driving/taking electric vehicles. The work
in [23] develops a model based on an artificial immune algorithm to identify the optimal
solution considering the overall user satisfaction: charging convenience, charging cost,
and charging time. In [24], the planning and sizing model is established to minimize the
annual cost of the charging station under multiple constraints that consider the actual
load, charging power, and charging distance through the utilization of a neighborhood
mutation immune clone selection algorithm. The Analytic Hierarchy Process (AHP) is
adopted in [25] to rank 10 EVCS alternative locations in a large city district by assigning
relative weights as input for the mathematical model to determine the number of charging
stations to install and their relevant capacities.

In the context of optimal EVCS placement planning, the charging facility type is used
to build up the optimization objectives in several research studies. In the study [26], three
typical kinds of charging facilities have been considered: slow-charging facility (SCF),
normal-charging facility (NCF), and fast-charging facility (FCF). The resulting optimization
model employs mixed-integer second-order cone programming (MISOCP) and aims to
minimize the annualized social cost of the whole EV charging system (investment cost of
EVCSs, grid reinforcement cost, O&M cost of EVCSs, network losses cost). The research
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in [27] establishes a GIS-based multi-objective Particle Swarm Optimization model aiming
at minimizing the total cost of charging station investment and maximizing the service
coverage. Four types of charging stations are considered, each with different specifications,
characteristics, and costs (AC, DC, rated voltage, etc.). The research in [28] searches for
locations, capacity options, and service types for EV charging stations, after estimating
charging demand from GPS trajectory data. To solve the corresponding mixed-integer
linear programming (MILP) model, a hybrid evolutionary algorithm that combines the
non-dominated sorting genetic algorithm-II (NSGA-II) with linear programming (LP)
and neighborhood search is proposed. The method adopted in [29] addresses the EVCS
distribution problem through an approach in which, apart from the optimal location, the
number of the required charging stations is calculated to cover charging needs. The EVCS
placement is estimated through the employment of Genetic Algorithms that estimate the
EVCS longitudes and latitudes.

In summary, existing research generally considers optimization models that develop
the optimal placement of charging stations upon a predefined set of candidate sites (facility-
to-location configuration). Also, the number of stations composing the network is generally
considered fixed, with the exception of the research studies in [20] and [29], in which the
optimization variables include the number of charging stations, with [20] formulating the
problem as a facility-to-location one. This paper aims to fill these gaps by developing
an optimization model that determines the optimal number and placement of charging
stations freely within the application area (facility-to-site formulation) to cover the dis-
tributed EV charging demand. The problem is developed in a bi-objective model with two
objectives: minimizing the total cost for the charging station deployment (construction,
operational, and maintenance costs) and maximizing service quality by minimizing the
average traveling distance (and thus, cost) between demand spots and station locations,
while considering any station capacity constraints. This analysis intends to enrich previous
research efforts in several directions, in terms of both numerical and practical considera-
tions. The work includes a number of case studies and numerical applications to assess the
capability, applicability, and scalability aspects of the model. Overall, the present research
aims at an in-depth study and better understanding of the problem characteristics and the
quality and practicality of the solutions in a real-life environment.

The rest of the paper is organized as follows. Section 3 presents the problem description
and the proposed model formulation. In Section 4, 10 case studies are developed and run
with the corresponding results presented and commented on. Section 5 provides a brief
discussion of the obtained results and the main conclusions of the study.

3. Proposed Model

Research findings show that EV adoption requires deploying charging infrastructure
(in terms of number and location) in a manner that is financially feasible as an investment
and also manages to satisfy demands and overcome EV users’ range anxiety. To support this
goal, a bi-objective model is introduced for deploying EV charging stations for minimizing
the total charging station network cost and maximizing the service quality/user satisfaction
by reducing travel distance.

The problem of charging station allocation in space falls within the general class of the
Quadratic Assignment Problem (QAP). There are two general methods for dealing with this
problem, the facility-to-location and the facility-to-site approach. In the first case, a number
of potential sites for facility placement are predefined and the optimization algorithm seeks
among them the best placement of the required facilities (stations). In the latter case, the
algorithm freely assigns the facility to the solution space aiming at developing the best
outcome based on the objective parameters and function. In the present formulation, the
facility-to-site approach is primarily employed as it is difficult and rather impractical to
predefine a reasonable number of potential station locations, except perhaps a few spots
with known high charging demand (e.g., city downtown, shopping malls, etc.) or to exclude
certain spots from the solution space if station deployment is infeasible (e.g., area topology,
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grid restrictions) or experience very low EV demand around it. The main shortcoming
(and risk) of the facility-to-location approach is that, by selecting certain points for station
deployment, one can omit other points that can potentially lead to better outcomes. In
contrast, the facility-to-site approach can search all possible solutions but generally at the
expense of higher computation effort. For the purpose of comparison, the problem has
also been formulated as a facility-to-location one, based on grid discretization size, and the
merits and demerits of both approaches are explored in Case Study 8 below.

In this model development, an area of interest (A) is considered to represent a city
or a neighborhood. Within this area, a number of charging stations (either predefined or
open to the optimization process) are to be spatially allocated. In its general form, the
model seeks two outcomes, the optimal number of stations and their spatial location to best
serve the existing EV demand. Two cost (fitness) functions are considered, one for station
deployment (f1) and the other for EV users traveling from each origin to its nearest station
(f2), which is proportional to the traveling distance. As the decision for station placement is
a one-time decision in advance of the operational phase, Euclidean distances have been
considered in this formulation. The actual distances as well as the traffic conditions are
rather dynamic and may be more effectively considered at the later stage of EV distribution
to stations analysis.

The mathematical form of the module is as follows. The demand points are set at
predetermined coordinates (DPx, DPy). The decision parameters are the coordinates (CSx,
CSy) of the charging stations. Two cost functions f1 and f2 are calculated as indicated in
Equations (1) and (2).

f1 = Cstation · Si = (C1 + C2 + C3) · Si (1)

where Cstation is the total cost for station deployment, comprising the construction (C1),
operational (C2), and maintenance (C3) costs, and Si is the number of stations. Although
the above parameters have been taken here with fixed values in most of the analyses, it is
easy to extend the problem structure to differentiate the costs depending on the size and
deployment area of each station, as, for instance, in Case Study 4.

f2 = ∑N
1 dij =∑N

1

√
(CSxi − DPxj)2 + (CSyi − DPyj)2 (2)

where dij is the distance between the demand point j and its closest charging station i for
each of the N demand points.

The objective function has the form:

minF = w1 · f1 + w2 · f2, (3)

where f1 and f2 are the station deployment and user traveling costs, respectively, and wi’s
are the weights of the sub-objectives.

There are no major constraints in the model other than constraining the search area
within the city bounds. If there are infeasible zones within the search area, these zones are
excluded by considering an extremely high station deployment cost (Case Study 10). Some
additional constraints are introduced as part of specific case studies that are described in
the next section. For instance, constraints on station capacity may be introduced to avoid
large deviations in station utilization.

The optimal solution is sought via the application of Genetic Algorithms. These algo-
rithms have been proven consistent and efficient in solving a wide range of NP problems,
such as the one of electric vehicle charging station deployment. They rely on bio-inspired
operators, including selection, crossover, and mutation across decision variable values
(Figure 1). The chromosome consists of two parts: a string of the (x, y) coordinates of the
charging stations and a string of binary values indicating whether a specific station is going
to be deployed or not. For the latter part of the chromosome, if a station gets a value of
1, it is ordinarily evaluated based on its proximity to the demand points; otherwise, it is
artificially excluded from evaluation either by using the “if” command or by assigning an
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additional high transport cost (penalty) to any demand assigned to this station. In each
algorithm iteration, the distances from each station to all demand spots are calculated, and
each spot is assigned to the nearest station. In this model, parents are chosen using a linear
ranking-based mechanism. Then, 10% of the fittest members of the population are carried
over to the next generation without any changes (crossover or mutation) to them (elitism).
This offers a smoother selection probability curve and prevents good organisms from
completely dominating evolution at an early point. The crossover process is implemented
using a uniform crossover routine, meaning that instead of chopping the list of variables
in a given scenario at some point and dealing with each of the two blocks (“single-point”
or “double-point” crossover), two groups are formed by randomly selecting items to be in
one group or another. The uniform crossover method is considered better at preserving
and generating any schema from the two parents when compared to traditional x-point
crossovers that could bias the search with the irrelevant position of the variables. The
mutation process is performed by looking at each variable individually. A random number
between 0 and 1 is generated for each of the variables in the organism, and if a variable
gets a number that is less than or equal to the mutation rate (for example, 0.1), that variable
is mutated. Mutating a variable involves replacing it with a randomly generated value
(within its valid min-max range).
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Part of the analysis is the fine-tuning of the algorithm parameters for the specific
problem to achieve better convergence within a reasonable computation time. In particular,
the genetic algorithm is parameterized to use 50 chromosomes to form the initial population
with crossover and mutation rates of 0.5 and 0.1, respectively. An iterative procedure of
200,000 trials, or 60 min of runtime, is used for all the scenarios that have been tested. Due
to the stochastic nature of the GA, the algorithm was run a number of times (typically
three or five) in each specific scenario, and the solution with the best fitness value was
recorded. The result deviations were also recorded to provide an indication of the solution
variability. The implementation has been done with commercial GA software (Palisade
Evolver Version 8.3.2), which runs as an add-in to the Excel program. The employment
of commercial software is considered adequate at this development stage, which mainly
aims to set up the problem while providing more accessibility for practical use. Further,
the current evaluation indicates that the solution surface is quite smooth without notable
local minima; therefore, the software may be capable of reaching near-optimal solutions.
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Finally, the employment of the Excel software facilitates the problem setting and test-case
configuration.

4. Case Study Development and Results

To illustrate the algorithm application and demonstrate the contribution of the pro-
posed model to the electric vehicle charging station (EVCS) deployment, a case study
consisting of a 200-EV fleet is considered. The area of interest in which the EVCS network
is deployed is a square one, extending from −50 to 50 in a coordinate system in which 1
length-unit may indicatively represent 100 m to simulate a medium-sized city of 100 km2.
The charging demand has been pseudo-randomly distributed all over the area of interest,
while some specific sites concentrate a higher charging demand, representing places of
different levels of interest. This type of allocation develops a balance between the necessary
scattered distribution and some variation in demand concentration from point to point.
In particular, there are 100 demand spots where 1, 2, or 3 EVs have been randomly allo-
cated (Table S1). The number of charging stations varies from 1 to 25 in the core analysis,
while larger numbers of stations are examined as part of a case study. The initial station
allocation for the optimization deployment can be anyone, starting from the case of all
stations coinciding at the center coordinates (this alternative is mostly used), progressing
to a symmetrically scattered positioning within the application space, up to fully random
placing in the area (Figure 2).
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Figure 2. Demand scatter diagram (blue color) and charging station deployment (orange color) for
the initial solution of the optimization: (a) center coordinates; (b) random distribution.

The efficiency of the proposed model has been tested through a number of case studies
that are summarized in Table 1 and described in the following subsections. The aim of the
analysis is to provide insight and evidence of the algorithm capability in terms of both the
mathematical solution vigor and its response potency to practical considerations. In each
case, multiple runs have been made (usually three) to account for the result variability due
to the probabilistic nature of the genetic algorithm. Different values of the GA parameters
(initial population size, crossover, mutation rates, finishing criterion) have been analyzed
and appropriately set.
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Table 1. Case study objectives and considerations.

Case Study No. Objectives Considerations

1 Optimal station allocation Predefined number of stations, different
initial stations positioning

2 Optimal station allocation Different station capacity constraints

3 Optimal station number
and allocation Different weighting coefficients w1 and w2

4 Optimal station allocation Different station deployment cost zones

5 Optimal station allocation Varying EV charging demand levels

6 Optimal station allocation Varying service area shape

7 Optimal station allocation Large service area and number of stations

8 Optimal station allocation Different grid discretization levels

9 Optimal station allocation Two-phase station network deployment.

10 Optimal station allocation Varying EV range capacity, infeasible zones

4.1. Case Study 1: Station Allocation for EV Traveling Distance (Cost) Minimization at Different
Numbers of Stations

Initially, an exhaustive investigation of all scenarios representing the number of charg-
ing stations, from 1 to 25, was performed to develop the best station allocations (i.e., the
lowest cumulative traveling distance of all EVs) at every number of stations. There are
alternative configurations of station allocation that lead to approximately the same travel
cost. Figure 3 presents three of them being developed by an initial station placement at
the center of the area, a symmetrical initial station positioning, and a fully random initial
station distribution within the analysis area. It appears that the algorithm converges to
virtually the same station settlement regardless of the initial station distribution.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 18 
 

8 Optimal station allocation Different grid discretization levels 
9 Optimal station allocation Two-phase station network deployment. 

10 Optimal station allocation Varying EV range capacity, infeasible zones 

4.1. Case Study 1: Station Allocation for EV Traveling Distance (Cost) Minimization at Differ-
ent Numbers of Stations 

Initially, an exhaustive investigation of all scenarios representing the number of 
charging stations, from 1 to 25, was performed to develop the best station allocations (i.e., 
the lowest cumulative traveling distance of all EVs) at every number of stations. There are 
alternative configurations of station allocation that lead to approximately the same travel 
cost. Figure 3 presents three of them being developed by an initial station placement at 
the center of the area, a symmetrical initial station positioning, and a fully random initial 
station distribution within the analysis area. It appears that the algorithm converges to 
virtually the same station settlement regardless of the initial station distribution. 

 
Figure 3. Optimal charging station deployment for the case of 12 stations and different initial station 
distributions: center placement (brown color), symmetrical placement (red color), random place-
ment (blue color), demand points (grey color). 

Obviously, as the number of stations increases and the network becomes denser, the 
EV user can find a nearby station to charge and therefore reduce the travel distance. Figure 
4 presents the average travel distance per EV, depending on the number of stations. The 
distance ranges from 4.4 to 20.6 for 25 and 3 stations, respectively (these numbers increase 
radically for 1 or 2 stations, not shown in the diagram). Figure 5 depicts 2 indicative net-
works deployed through Case Study 1 applications, which consist of 12 and 20 stations, 
respectively. To provide a rough indication of the required computational time, the algo-
rithm requires on a typical laptop computer 90, 150, 350, and 1100 s for 10, 15, 20, and 25 
station networks, respectively. 

 
Figure 4. Trade-off diagram between the number of charging stations and the average EV travel 
distance. 

Figure 3. Optimal charging station deployment for the case of 12 stations and different initial station
distributions: center placement (brown color), symmetrical placement (red color), random placement
(blue color), demand points (grey color).

Obviously, as the number of stations increases and the network becomes denser,
the EV user can find a nearby station to charge and therefore reduce the travel distance.
Figure 4 presents the average travel distance per EV, depending on the number of stations.
The distance ranges from 4.4 to 20.6 for 25 and 3 stations, respectively (these numbers
increase radically for 1 or 2 stations, not shown in the diagram). Figure 5 depicts 2 in-
dicative networks deployed through Case Study 1 applications, which consist of 12 and
20 stations, respectively. To provide a rough indication of the required computational time,
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the algorithm requires on a typical laptop computer 90, 150, 350, and 1100 s for 10, 15, 20,
and 25 station networks, respectively.
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4.2. Case Study 2: Station Allocation for EV Travel Distance (Cost) Minimization at Different
Station Capacity Levels

The proposed methodology focuses on charging station allocation based on the mini-
mum travel distance of the participating EVs. In every case, the assignment of each EV is
given to its closest station. In this way, however, there may be cases where some stations
can be loaded with high charging demand while others may serve very few EVs. Both cases
may present adverse financial consequences. For this reason, in the present case study, the
algorithm is expanded with constraints about station capacity, i.e., the maximum number
of EVs that can be served (a similar analysis can be done for the minimum number of EVs).
The result of such a constraint is that some EVs may need to travel to another station but
the closest one, if the capacity of the latter is exceeded. The objective of the optimization, in
this case, is to assign the extra EV to the second-closest station, if the capacity level permits.
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In this analysis, the average number of EVs per charging station is considered (de-
pending on the number of stations). Next, a station capacity tolerance (float) above the
average value is assumed as a percentage increase. The results of the investigation are
portrayed in Figure 6 for four indicative numbers of charging stations. As expected, the
stricter the station capacity level, the longer the total (and average) distance traveled. The
distance increases from the fully free EV allocation to a very restrictive station capacity
of 10% above average, ranging between 7% and 21% without a specific pattern along the
number of stations.
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4.3. Case Study 3: Optimization of Station Number and Allocation Based on Station Deployment
Cost and EV Travel Cost

Unlike most previous studies that solely focused on charging station allocation, the
present algorithm can simultaneously handle the multi-objective problem of obtaining the
optimal number of stations along with their optimal placement. This problem follows the
classical trade-off between the cost of the charging station development, which relates to
the number of stations and their construction cost, and the cost of EV total travel distance,
which decreases with the number of charging stations. This means that as the EVCS network
becomes denser, the EV user can more easily find a nearby available station to charge at
and, therefore, reduce the daily travel distance. However, the number of charging stations
should be determined and kept at a certain level, based on the charging demand, the size
of the area of interest/service coverage, as well as any budget availability constraints. A
number of runs have been made for different values of the w1/w2 ratio of Equation (3)
(i.e., the relative weights of the model objective function). For instance, with w1/w2 = 100,
the optimal number of stations is 12 (based on repetitive runs). The full picture of this
investigation is depicted in Figure 7. At a low value of w1/w2 = 25, the optimal number
of stations is 25, while at w1/w2 = 300, a network of 5 stations provides the best solution.
The wi’s are the input values representing each specific charging station deployment area
and provide the appropriate number of stations that better serves the tradeoff between
deployment cost and EV travel cost. In terms of computational effort, the multi-objective
configuration requires more time (as it solves a more complex problem), which, compared
to the single-objective travel distance problem, presents an increased time by an order of
1.3 to 1.5 times in average values.
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4.4. Case Study 4: Station Allocation for EV Travel Distance (Cost) Minimization for Different
Station Deployment Cost Zones

The previous analyses assume the same cost for deploying all charging stations within
a scenario. However, it is known that different land uses and human activity concentrations
create different cost zones within a city. To account for such cost variances, the present
analysis considers four different cost zones in the form of inner to outer rectangles, with
the cost being the highest in the inner zone and decreasing outward. Another parameter
that plays a role in the charging station allocation is the cost rate among zones. As part
of this study, different zone cost sets have been analyzed, with the expected result of
station construction toward the cheaper zones, especially if the cost proportions are high.
A representative allocation solution for this case is presented in Figure 8.
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4.5. Case Study 5: Station Allocation for EV Travel Distance (Cost) Minimization for Highly
Unequal Demand Dispersion

The demand distribution is quite unequal in certain cases. For example, places of
high interest (e.g., downtown premises, shopping malls, sport arenas, etc.) may attract a
high charging demand. This may be modeled by a disproportionally increased demand at
specific sites. To deal with this case, an example is formulated based on the original input
data but considering 10 random locations having 5 or 10 times higher demand than all other
spots. Here, 15 charging stations are considered for serving the EV demand. The station
allocation results are indicated in Figure 9. The dark blue dots indicate low-demand spots,
the light blue ones are high-demand spots, and the orange circles indicate station places. It
can be seen that 10 out of 15 stations are placed exactly on or close to high-demand spots,
while the other 5 stations are optimally placed to cover the sparse demand.
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4.6. Case Study 6: Station Allocation for EV Travel Distance (Cost) Minimization for Irregular
Service Area Shape

An interesting research question with practical importance is the adjustment of the
solutions to the uneven shape of a typical city or neighborhood area. There are two ways to
deal with this issue, either consider the city shape as it is or develop a square (or rectangle)
that surrounds the city shape. In the first case, the solution space is reduced to the city
shape; however, a large number of constraints should be added to model the city limits.
In the latter case, the solution space increases, but the simplicity of the algorithm in terms
of constraints is retained. As part of this analysis, the solution space of the basic scenario
was extended, considering solution space dimensions ranging from −100 to 100 in both
directions (4 times larger than the original area) and −200 to 200 in both directions (16 times
larger than the original). The demand points and size remained as originally (within the
−50 to 50 range) while different initial station allocations were considered, from all stations
being at point (0, 0) to randomly assigned within the large box. Figure 10 provides an
indicative solution for the case of an area ranging from −100 to 100, in which 10 charging
stations are to be deployed, while Table 2 summarizes some results of the process regarding
the fitness value of the total distance traveled. Not surprisingly, the algorithm, after some
exploration of the whole space, has always converged to a solution very similar to the
initial one and, interestingly, within the same computation time. This can highlight the GA
converging capability regardless of the space size and the initial station placement.
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Figure 10. Indicative charging station deployment example for a −100 to 100 field range: (a) initial
random solution; (b) final optimal solution (demand points in blue color, charging stations in
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Table 2. Optimization distance results for Case Study 6.

Number of Stations Field Range Total Distance

10
−50 to 50 2042
−100 to 100 2054
−200 to 200 2053

20
−50 to 50 1170
−100 to 100 1161
−200 to 200 1165

4.7. Case Study 7: Station Allocation for EV Travel Distance (Cost) Minimization for Large Service
Area Size and Number of Stations

Regarding the size of the area for which the analysis is performed, the following
aspects need to be considered: depending on the city (or neighborhood) size, the number
of stations can vary from a few to many. In fact, this decision has also to do with the
demand level, in the sense that if the demand is low and dispersed, it is not cost-effective
to build a large number of stations. Instead, the users should travel a longer distance to
reach a station. Within the present analysis, a relatively small number of stations have been
considered (up to 25). This is very realistic for neighborhoods and small-to-medium-size
cities, e.g., 10 by 10 km (thus every distance unit in the above analysis corresponds to 100 m).
To evaluate the scalability performance of the algorithm, larger station numbers have been
further considered (within the same plan structure and demand size and distribution). In
particular, 50, 100, and 200 stations were examined. The total traveling distances for 50,
100, and 200 stations are 411, 197, and 105, respectively. Nevertheless, since the number of
demand generated spots is 100, there is no need to go over that number in terms of stations
built. The indicative results of this analysis are shown in Figure 11.
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Figure 11. Indicative charging station deployment optimization results for Case Study 7: (a) 50-station
charging network; (b) 100-station charging network (demand points in blue color, charging stations
in orange color).

A similar analysis assumes that there are 50 (100) demand spots of 4 (2) EVs each. The
same number of stations is considered, with the expectation being that one station is placed
exactly at each demand spot. Although no full convergence on this goal is obtained, the
solution indicates that most stations coincide with demand spots, while a few others attract
EVs from more than one demand point, making the use of some other stations unnecessary.
In Figure 12, the station allocations for the cases of 50 or 100 uniform demand points (with
a total demand of 200 EVs) are presented to indicate the outcome. In the case of 50 stations,
4 of them are redundant (they do not attract any demand) and can be omitted. In the case
of 100 stations, 23 of them are redundant.
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4.8. Case Study 8: Station Allocation for EV Travel Distance (Cost) Minimization at Grid
Discretization Levels

The issue of grid discretization is important for the following reasons. The area size
under analysis may vary considerably along city sizes and the achievement of a certain
level of detail is a desirable aspect. On the other hand, fine discretization may lead to
difficulties in achieving an optimal solution in terms of both, the fitness value and the
computational time. In this regard, a number of grid discretization alternatives have
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been examined as part of this investigation. All the solutions presented above have been
obtained by considering station coordinates with integer values. In the present analysis,
different discretization levels are considered in the basic scenario. As the discretization level
becomes coarser, the problem progressively moves from a facility-to-site to a facility-to-
location formulation. For instance, if the grid unit is 10, there are 11 by 11 possible locations
for allocating the charging stations in the −50 to 50 range of the rectangle area, and the
objective is to select which of these points will host a station. Such rough discretization
may be preferable if the application space is widespread, e.g., in large cities. As the number
of possible locations decreases, the number of alternative solutions also decreases, as does
the optimization quality in terms of the fitness value. On the other hand, a possible benefit
of such rough discretization may be any reduction in computation time. Not surprisingly,
the computational time is not improved because the required computations are virtually
the same, as the only change is the set of values that the decision parameters (station
coordinates) can choose from. In fact, even with a fine decimal level of discretization, the
computation burden is not increased, and the resulting fitness value is comparable to that of
the integer discretization. Figure 13 illustrates the results for 10 stations and discretization
levels of 1 and 10 units. The total traveling distance for discretization levels of 1, 2, 5, and
10 units is 2042, 2045, 2078, and 2193, respectively. The lowest of the above values is also
achieved with any decimal discretization of the application area.
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4.9. Case Study 9: Station Allocation for EV Travel Distance (Cost) Minimization at Progressive
Station Network Deployment

This analysis refers to the practical consideration of the dynamic demand evolvement
over time. The EV market and charging demand are still in their infancy in many places
around the world but they grow fast. Although a full-scale station development could
be done now with the expectation of full market growth in a few years, an alternative
cost-effective solution is the ongoing (phased) station development. This approach balances
the demand growth and the service provision without binding unnecessary resources for
building several stations from the beginning to serve initially sparse EV charging demand.
This progressive development may also be of benefit if the EV demand, besides increasing,
presents a different space allocation in the future, as a result of city development. For the
purposes of the present study, it is assumed that the EV demand retains the same space
allocation which is also a realistic scenario. The analysis is performed in two stages. Initially,
10 charging stations are optimally allocated (with reference to the basic scenario). In the
second phase, these 10 stations are considered fixed, and another 10 stations are further
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allocated in an optimal way to improve the total EV traveling distance. The final solution
is compared to the one with a single-phase allocation of 20 charging stations. Figure 14
comparatively illustrates the two scenarios, one deploying 20 stations at once and a second
deploying 10 stations nowadays and another 10 stations in a future stage. It can be seen
that the total traveling distance in these two cases is 1170 and 1236, respectively, indicating
an increase in the second case of about 6%.
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4.10. Case Study 10: Station Allocation for EV Travel Distance (Cost) Minimization Considering
EV Range Capacity and Infeasible Zones for Station Deployment

In this part of the analysis, two further cases are considered, the implication of EV
range limitations to reach a station and the potential existence of infeasible zones for station
deployment. In regard to the traveling range limitation, the 12-station network that was
examined in Case Study 1 is revisited. Different range thresholds are considered to indicate
the maximum distance the EVs can travel. Table 3 illustrates some indicative results. If the
permittable range is higher than 27.31 units, which is the maximum EV traveling distance
in the case of free station allocation, the optimization results coincide with those of Case
Study 1 in terms of station spatial distribution and the objective function value. Below
the threshold of 27.31 units, station reallocation is needed to satisfy the maximum range
constraint at the expense, however, of the total (and average) traveling distance. The lowest
limit of the maximum traveling distance that can lead to a feasible solution is 17.03 and can
be found by minimizing the max trip distance of all EVs.

Table 3. Optimization results for different EV traveling range constraints.

EV Range Constraint
(Units)

Total Distance
(Units)

Average Distance
(Units)

Maximum Distance
(Units)

∞ 1762 8.81 27.31
27.31 1762 8.81 27. 31

26 1769 8.85 25.50
24 1779 8.90 23.71
22 1797 8.98 21.93
20 1871 9.35 19.92
18 2068 10,34 18

17.03 2208 11.04 17.03

The second part of this Case study examines the practical implication of having
infeasible zones for station deployment within the search area. This case can be considered
a special instance of Case Study 4 (different cost zones) by setting an extremely high-
cost value within the infeasible zones. An indicative example is presented in Figure 15
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where the inner zone is considered to be infeasible for station deployment. The results
indicate that five stations initially allocated in this zone (green color) are moved outside
it with some of them placed just outside the infeasible region to serve EVs from this area.
The corresponding fitness values for the two cases in terms of total distance are 948 and
1019, respectively.
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5. Discussion

The EV charging station deployment within a spatial area is a combinatorial problem
that aims to place the stations in such a pattern that facilitates different objectives, the
most important being the cost of station deployment and the necessary traveling distance
of EV users to reach a station. The problem includes several numerical and practical
considerations that need to be considered to enhance its practical applicability in the real
world. In this paper, a simple yet effective optimization model has been developed and
tested in several cases to provide a rather complete view of its capability, applicability, and
scalability in tackling practical problems.

Focusing on the main analysis and result features, the model considers the two cost
functions described above with certain weight coefficients and can be quite easily im-
plemented in a spreadsheet mode. Based on that, several aspects of the problem can be
modeled and tested through an optimization software. Among them, some interesting
findings include the following: The model can provide an optimal solution for both the
number and placement of charging stations based on the demand level and dispersion
as well as the cost of station construction and user movement to the nearest station. The
optimal station positioning outcome is slightly affected by the area size and the number of
demand spots. In fact, the level of solution detail (both in terms of the fitness value and
the required computation time) may be controlled by the grid discretization of the analysis
area. As anticipated, the more coercive discretization leads to a declining efficiency in terms
of fitness value. In the case of very aggregate discretization, the problem may resemble the
facility-to-location structure. The model responds expectedly to variations in the charging
demand levels and assigns stations close to or right at high-demand spots.

The case studies that were analyzed in the previous section aimed at highlighting the
practical implications and summarizing the usefulness of this research. The consideration
of several characteristics that simulate the actual EV charging problem and environment
(in terms of both optimization goals and constraints) and the exploration of methods
for modeling these characteristics provide a tool for efficiently addressing the real-world
challenges associated with this problem. In fact, it appears that many of the real-world
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characteristics can be modeled quite efficiently by exploring suitable ways to describe them
with mathematics and developing the respective optimization problem.

The charging station allocation represents the first stage of the whole optimization
process. The second part that integrates the process is the EV distribution to stations. Unlike
the former part, which is rather of a stationary nature, the second one is highly dynamic
as the demand distribution typically changes over time while the actual routes from EV
demand spots to any nearby station as well as the traffic conditions need to be taken into
account.
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