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Abstract: People with autistic spectrum disorders (ASDs) have difficulty recognizing and engaging
with others. The symptoms of ASD may occur in a wide range of situations. There are numerous
different types of functions for people with an ASD. Although it may be possible to reduce the
symptoms of ASD and enhance the quality of life with appropriate treatment and support, there is no
cure. Developing expert systems for identifying ASD based on the facial landmarks of children is the
main contribution for improvements in the healthcare system in Saudi Arabia for detecting ASD at
an early stage. However, deep learning algorithms have provided outstanding performances in a
variety of pattern-recognition studies. The use of techniques based on convolutional neural networks
(CNNs) has been proposed by several scholars to use in investigations of ASD. At present, there is no
diagnostic test available for ASD, making this diagnosis challenging. Clinicians focus on a patient’s
behavior and developmental history. Therefore, using the facial landmarks of children has become
very important for detecting ASDs as the face is thought to be a reflection of the brain; it has the
potential to be used as a diagnostic biomarker, in addition to being an easy-to-use and practical tool
for the early detection of ASDs. This study uses a variety of transfer learning approaches observed in
deep CNNs to recognize autistic children based on facial landmark detection. An empirical study is
conducted to discover the ideal settings for the optimizer and hyperparameters in the CNN model so
that its prediction accuracy can be improved. A transfer learning approach, such as MobileNetV2 and
hybrid VGG19, is used with different machine learning programs, such as logistic regression, a linear
support vector machine (linear SVC), random forest, decision tree, gradient boosting, MLPClassifier,
and K-nearest neighbors. The deep learning models are examined using a standard research dataset
from Kaggle, which contains 2940 images of autistic and non-autistic children. The MobileNetV2
model achieved an accuracy of 92% on the test set. The results of the proposed research indicate that
MobileNetV2 transfer learning strategies are better than those developed in existing systems. The
updated version of our model has the potential to assist physicians in verifying the accuracy of their
first screening for ASDs in child patients.

Keywords: deep learning model; autism; facial appearance; machine learning model; recognition system

1. Introduction

Autism spectrum disorder (ASD) is a complex condition that makes it difficult to
communicate on a day-to-day basis [1]. Autism is characterized by a range of symptoms,
many of which are mild but might sometimes call for specialized treatment. Patients
with ASD often struggle to communicate verbally, via gestures, or through facial expres-
sions. Although patients with ASD are often identified by medical professionals based
on neurophysiological signals, there is neither a definitive biosignature nor a pathological
method that can readily diagnose autism [2]. An early diagnosis may offer opportunities
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for beneficial lifestyle changes [3], even though no therapy cures the condition. Children
exhibiting indications of ASD may benefit from an early diagnosis due to the malleability
of brain development, which might help them improve their social lives. Some research has
shown that children who receive medical care before the age of two years have higher IQs
than those who do not receive it until later on in life [4]. According to the recent research [5],
most children with ASD are not diagnosed until they are at least three years old [6,7].

Numerous studies have investigated the important characteristics of autism through
a variety of lenses, such as facial-feature extractions [8] using eye-tracking strategies [9],
face recognition [10–12], bio-medical image analysis [13], application creation [14], and
speech recognition [15]. Among these methods, face recognition is particularly useful for
determining a person’s emotional state, and it has the potential to accurately diagnose
autism. It is a popular method used for analyzing human faces and extracting distinguish-
ing characteristics between normal and abnormal faces, as well as for mining significant
information to reveal behavioral patterns [16,17].

In light of the recent developments in the predictive analytics of facial-pattern recog-
nition, several intensive initiatives are presently underway in the field of autism research
to analyze the data on autistic children in an attempt to diagnose ASD at an earlier age.
To automate the identification of facial expressions in diverse neurological illnesses, Yolcu
et al. [18] introduced the CNN technique to detect ASD. The first CNN was taught to
divide important facial components, while the second CNN was utilized to detect facial
expressions. They divided the system into four convolutional neural network models by
Haque and Valles [19] were able to recognize human facial emotions in 2018. They did this
by modifying Kaggle’s Facial Expression Recognition 2013 (FER2013) dataset of young,
autistic children with lighting effects (darker or brighter shades of contrast). Figure 1
presents an overview of the numerous diagnostic methods for autism.

Figure 1. Different types of technology to detect autism.

We introduce a face-recognition system based on transfer learning for a more precise
autism diagnosis in this study [20]. We perform this by amassing a large dataset of facial
appearances from children with and without autism, which we then examine using a num-
ber of machine learning, deep learning, and other superior pre-trained models. Then, the
effectiveness of these classifiers is assessed using a number of different metrics, including
accuracy, area under the curve (AUC), sensitivity, specificity, fall-out rate, and miss rate,
among others. Subsequently, we enhance MobileNet-V1, which presently demonstrates the
best level of accuracy in this predictive analysis. Figure 2 shows the process of the transfer
leaning model via the computer vision method.
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Figure 2. Transfer learning model.

When compared to children who do not have autism, autistic individuals have a
specific facial feature that is not shared by children who do not have autism, as discovered
by the researchers at the University of Missouri who researched the diagnosis of children
based on their facial features (non-autistic children). These characteristics include the
upper face that is exceptionally broad, including eyes that are positioned far apart, and the
middle of the face that is unusually short, including the cheeks and nose. The proposed
system makes use of a number of different transfer learning methods that are based on
deep convolutional neural networks (CNNs) in order to identify autistic children based on
their facial appearance.

The main contributions of the proposed system are as follows:

• We propose a more robust face-recognition framework based on transfer learning,
which has the potential to provide high accuracy in identifying children with autism.

• In this study, we analyze an enhanced MobileNet model, which outperforms hybrid
deep learning with deep learning methods to identify ASD.

• Various machine learning and deep learning models are developed to detect ASD.
• ASD children present characteristics that include an upper face that is exceptionally

broad, including eyes that are positioned far apart, and a middle section of the face
that is unusually short, including the cheeks and nose; therefore, developing an expert
system for identifying ASD based on the facial landmarks of children is the main
contribution for improving the healthcare system in Saudi Arabia for detecting ASD
at an early stage.
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2. Background of Study

Our knowledge of ASD, its categorization, and our capacity to research its essen-
tial characteristics have all advanced significantly in recent years [21–23]. ASD Test is a
smartphone application developed by Thabtah et al. [24] to collect ASD data for newborns,
children, and adults. Q-CHAT and AQ-10 evaluation tools were used as the foundation for
the creation of this app. Data could be collected for persons with ASDs using this program,
which was then placed in a repository for ML at the University of California, Irvine. Omar
et al. [25] suggested a method where random forest (RF), classification and regression trees
(CART), and random forest–iterative Dichotomizer 3 were all tested on the AQ-10 and 250
real-world datasets (ID3). Sharma et al. [26] investigated these datasets using a variety of
methods, such as naive Bayes (NB), stochastic gradient descent (SGD), K-nearest neighbors
(KNN), random tree (RT), and K-Star, with the assistance of the CFS-greedy stepwise
feature selector. Using a variety of tree-based classifiers, Satu et al. [27] examined samples
of children ranging in age from 16 to 30 years in order to establish what characteristics
define a “normal” or “autistic” young person. Erkan et al. [28] studied comparable datasets
and employed KNN, SVM, and RF to evaluate the method that was superior in terms
of its ability to diagnose ASDs. In contrast, Thabtah et al. [29] employed IG and CHI to
construct feature subsets of adults and adolescents; these subsets served as inputs to LR for
detecting ASDs. These subsets were used to differentiate between those with and without
ASDs. Akter et al. [30] collected and adjusted the datasets, including information obtained
from newborns, children, adolescents, and adults, and examined them using a variety of
classifiers, with SVM exhibiting the best performance for toddlers and AdaBoost delivering
the best results for older children and adults; GLMBoost also performed fairly well for
the dataset consisting of teenagers. Hossain et al. [31] proposed multilayer perceptron
(MLP) and sequential minimal optimization (SMO) methods for detecting ASD. The SMO
algorithm was shown to be the most accurate, with a success rate of 91% across all child
datasets, 99.9% across all adolescent datasets, and 97.58% across all adult datasets.

Because of the societal effects of ASD on different nations, the research into the subject
of diagnosing ASD based on children’s facial characteristics is rapidly expanding. This
technique has the potential to be a benchmark for identifying children with ASD, as well
as children without this condition. Recent research [32–42] demonstrates the potential of
deep neural networks for the diagnosis of a variety of diseases. In particular, CNN models
have been shown to be especially effective in this area. As CNNs are so adept at learning
by automatically extracting the hidden features from a high volume of images, they are the
feature extractors of choice when it comes to object identification and image categorization
procedures. This ability allows CNNs to become increasingly accurate over time. Training
CNN models takes a long period of time and high number of computer resources [35],
despite the fact that CNNs are very effective and precise in their predictions.

3. Proposed System

Using a transfer learning individual with machine learning algorithms for autistic
facial appearances and landmark detection, the purpose of this research was to determine
whether children show signs of ASD at an early age. In this study, deep learning with
machine learning methods were applied to automatically extract the main characteristics of
facial landmark features from children for detecting ASD. These features are very difficult,
if not impossible, to distinguish by eye owing to their level of complexity. Then, we ran
these characteristics through a series of layers, with the diagnosis of ASD being obtained
from the most densely packed layer at the top. Figure 3 shows the framework the of ASD
diagnosis system.
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Figure 3. Framework of the proposed recognition system.

3.1. Dataset

This study used facial images gathered from the Kaggle’s autistic children dataset.
This is the only publicly available dataset of its kind; thus, we used it to create the models
we proposed. Children aged 2–14 years were included in the dataset, with the majority
being between the ages of 2 and 8 years. All of the photos were 2D RGB jpegs. The dataset
had two classes: the autistic class contained images of children with autism, while the
non-autistic class contained photographs of children not diagnosed with autism. A test
folder comprised the photos required to test the model after it had been trained. The test
folder had two subfolders classified as autistic and non-autistic. Each subfolder contained
100 images 224× 224× 3 in size, in a jpeg format. The autistic subfolder contained the facial
images of children with autism, and the non-autistic subfolder contained facial images
of children randomly collected from online searches. The dataset contained 2940 images
where 1327 images were of autistic children and 1613 were of non-autistic children. Figure 4
shows a sample of the dataset.

Figure 4. Images of autistic and non-autistic children.
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3.2. Deep Learning Models

CNNs place a burden on neural networks, which have been shown to be beneficial in
the classification and detection of ASDs. ConvNets are reminiscent of inscriptions, which
may be because their names are derived from the veiled layers that they include. A CNN is
composed of three parts: convolution, pooling, and a fully connected layer [6]. Convolution
is used to collect local image attributes, pooling is used to reduce dimensionality, and the
fully connected layer is used to provide the output that is needed. This mode highlights
local image features and uses brighter pixels to illustrate the image boundaries. It also
allows for better processing [43,44].

An activation function, in addition to convolution and pooling functions, may be found
embedded inside each foundational layer of the network. The output of the convolution
process is the same image that is fed into it along with one filter. The performance of the
neural network is affected by a variety of factors, including the image size (224 × 224 × 3),
height, width, and channels. The height of the image channel was 200 by 200 pixels
and the processing size was 49,152 bytes. The image channel used the RGB color model
(224 × 224 × 3). For instance, if the image dimensions are 2048 by 2048 in 3 dimensions,
the required weighted extent size is 12 million.

C = ∑i
1 ∑j

1 IijFij (1)

F denotes a convolution kernel or filter, while rows and columns are indicated by the
letters i and j. For instance, after multiplying the image by the kernel, Figure 5 displays
both the raw image and filter. Figure 6 presents the newly developed output value in
a two-dimensional format. The image is broken up into perceptrons using convolution,
which are then planed along the (y), (x), and (z) axes, respectively. Each layer has a number
of filters that may be used to locate certain attributes. The following annotations are added
to the X-sized feature maps that are produced by layer L:

CL
i = BL

i +∑x(L−1)

j=1 FL
i,j∗C

(L−1)
j (2)

where BL
i : bias matrix.

FL
i,j: filter linking jth based on the feature map in the layers.

Figure 5. Filter matrix of the convolution operation.
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Figure 6. Convolution neural network.

For example, the blue channel may have a value of −1, whereas the other channels
might have values of +1 or 0. Utilize the dot product in order to calculate the value of the
convolution. Convolution is a process that warps images. In this demonstration, (Is) equals
1. If both (Is) and (Is) are true, then (Fs) (Fs) describes the same image size (Fs).

Cs = ((Is − Fs)/S) + 1 (3)

If the values of Is, Fs, and S are 6, 3, and 1, respectively, then Cs = (6 − 3 + 1) = 4. The
following is how the output dimension was calculated:

b(Width− Fs + 2P)/S] + 1c (4)

where Fs is the filter size, padding is P, S is stride, and Equation (4) is the floor value.

3.2.1. MobileNet Architecture

MobileNet is a deep learning model developed to effectively conduct image classifi-
cations in different technology platforms, such as mobile devices, embedded systems, or
low-power PCs that do not have a GPU [38]. Figure 7 provides a visual representation
of the MobileNet model’s underlying architectural framework. One key feature that sets
this CNN model apart from others is the presence of depth-wise separable filters, which
perform both depth-wise and point-wise convolutions.

Figure 7. MobileNet’s structure.
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Unlike traditional convolution procedures, depth-wise convolution makes use of each
channel of the input image in its own right to extract feature maps using a variety of filtering
techniques. When increasing the number of channels in the output image to the proper
number, using filter masks sized (1 1) results in a significant reduction in the length of
processing time required by the computer. This model is well-known as a straightforward
deep neural network. MobileNet may be used for a variety of applications, some of
which include object detection, facial-attribute recognition, fine-grain categorization, and
geographic localization. The important parameter values of the MobileNet model are
presented in Table 1.

Table 1. Parameters of the MobileNet model.

Input Values

Image input 224 × 224 × 3
Initial learning rate 0.0001

Epochs 100
Optimizer RMSprop
Batch sizes 80

3.2.2. Hybrid VGG-16 with Machine Learning Models

The Visual Geometry Group (VGG) at the University of Oxford is responsible for
the development of a pre-trained image-recognition model known as the VGG-16 model.
This model was trained using a large collection of photos known as the ImageNet dataset.
This dataset includes over 14 million images and over 1000 distinct categories. During
the training phase, the model identifies attributes from the image itself, which allows it to
recognize and categorize items in the images it is shown. The proper operation of the deep
neural network may be confirmed when the size of the network is increased. Networks A,
A-LRN, B, C, D, and E were all built by the VGG. Figure 8 shows that VGG-16 networks C
and D; each contain 13 convolution layers, 3 layers that are entirely linked, and 16 layers
overall. Convolution in network C is conducted using a 1 × 1 filter size. However, in
network D, this is not the case. Network D commonly employs a filter size of 3 × 3 for
convolution operations, increasing the total number of parameters that need training to
138 million. Network E, also known as the VGG-19 network, receives its name from the
fact that it has 16 convolution layers, followed by 3 layers that are totally connected over
19 levels. All VGG networks have ReLu; however, they do not really use it since executing
local response normalization takes more time and memory space during training [10].
The most significant difference between AlexNet and VGG is that AlexNet has an 11 × 11
kernel with a stride of 4 × 4, whereas VGG uses a 3 × 3 kernel with a stride of 1 × 1.
The 1 × 1 convolution filter that VGG provides is useful for both predictive modeling
and classification work. The network employs a technique called multiscaling to boost
the quality of the data, which increases the number of inputs and solves the problem of
overfitting [11]. The final categorization of the items in the photographs is accomplished via
the use of layers that are completely linked. In this investigation, the VGG-16 model was
employed; however, the top layers were stripped away, which implies that the model does
not include any of the layers that are already completely linked. This was performed in
order to extract the features that were included in the pictures, and the output of the model
was a feature map that contained the features that were retrieved from the image. The
input shape of the model was configured to have the dimensions of 224 × 224 × 3, which
was the default size for the VGG-16 model. Following the extraction of the characteristics
from the photos, we classified the results using a number of different machine learning
models (autistic or normal).
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Figure 8. VGG-16 structure.

3.3. Measuring the ASD Diagnosis System’s Performance

To assess the efficacy of the provided algorithms in detecting ASDs, the evaluation
metrics included sensitivity, specificity, precision, and recall scores, as well as the F1-score.
The equations relating to these parameters are presented below:

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (5)

Sensitivity =
TP

TP + FN
× 100% (6)

Precision =
TP

TP + FP
× 100% (7)

Speci f icity =
TN

TN + FP
× 100 (8)

F1− score = 2× precision× Sensitivity
precision + Sensitivity

× 100 (9)

4. Experiments

The deep learning MobileNet-V1 and VGG-16 models hybridized with various ma-
chine learning models, namely, logistic regression, LinearSVC, random forest, decision
tree, gradient boosting, MLPClassifier, AdaBoost, and K-nearest neighbors, were applied to
detect ASDs. As a result, Jupyter Notebook, based on Python, was responsible for all of the
calculations that were altered for developing a classification of ASDs in children. Several
methods may be used to detect ASDs. Individual classification models were trained using
the 80% training set, and their efficacy was evaluated using the 20% test set. Both sets were
utilized in conjunction with the training set. For the purpose of determining how well these
classifiers functioned, a number of assessment measures, including accuracy, area under
the curve (AUC), sensitivity, specificity, precision, and F1-score, were computed.

4.1. Results
4.1.1. Results of the MobileNet Model

The training of the MobileNet learning models with the assistance of the Keras API
Library was applied. Matplotlib, Sklearn, and Pandas are just a few examples of the data
visualization and analysis tools utilized in the process of determining the effectiveness
of the models. We used a standard set of hyperparameters with the following values to
compare the performance of MobileNet-based models trained with different optimizers
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with a batch size of 80 and a learning rate of 0.001 across 100 epochs. The dataset comprised
a total of 2940 images, of which 2540 were utilized for training, 300 were utilized for testing,
and 100 were utilized for validation. As can be observed in Table 2, when we were building
the data frame, we provided an image a value of 0 for children in the normal control (NC)
group and a value of 1 for children who were diagnosed with ASD. It is observed that the
MobileNet model achieved an accuracy of 92%.

Table 2. Results of MobileNet model.

Precision % Recall % F1-Score % Support

Autism 92 92 92 150

Normal 92 92 92 150

Accuracy 92 300

Macro avg 92 92 92 300

Weighted avg 92 92 92 300

Overall results 90.47 92 92

Figure 9 is the MobileNet model’s confusion matrix, which includes indicators, such
as the true-negative and false-positive rates, as well as valid-positive and false-negative
ones. When the MobileNet model was applied to the total of 300 test images, 140 images
were classified as normal (with 19 false-positives and 10 false-negatives), and 131 images
were classified as autism-related (true-positive). According to the evaluation metrics, the
MobileNet model achieved good accuracy results.

Figure 9. MobileNet model confusion matrix.

Figure 10 provides a graphical representation of the MobileNet model’s accuracy,
where the percentage accuracy of the model is represented in % (Y-axis) and each iteration
of 17 epochs (X-axis). In order to obtain an accurate image of how effectively the training
system functioned, we examined how well the validation system operated. A break in the
process of optimizing led to a significant increase in precision that was eventually brought
up to 100 epochs. During the course of the validation procedure, the MobileNet model’s
efficiency increased from 75% to 92% during the testing process phase. Because of this, we
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decided to employ a categorical cross-entropy function for obtaining the accuracy loss of
the MobileNet model. In a period of 100 epochs, the validation loss decreased from 7 to 1
during the testing phase.

Figure 10. Performance of MobileNet. (a) Accuracy; (b) loss.

4.1.2. Results of VGG-16 with Machine Learning

The results of the VGG-16 deep learning model hybridized with various machine
learning models, namely, logistic regression, LinearSVC, random forest, decision tree,
gradient boosting, MLPClassifier, AdaBoost, and K-nearest neighbors, are presented in
the study. In this study, we made use of the VGG-16 model without its top layers. This
means that the model does not contain the layers that are totally related to one another.
This facilitated the model’s ability to extract the images’ features, and the end result of this
procedure was a “feature map” that included those extracted features. The dimensions that
are common for a VGG-16 model, which are 224 × 224 × 3, were applied to the model’s
input shape. In order to classify the outcomes of feature extraction from the photographs,
we made use of several different machine learning models (autistic or normal). The Kaggle
ASD dataset includes a total of 2940 images; of those, 2540 were used for training, 300
were used for testing, and 100 were used for validation. The outcomes of VGG-16 using
a logistic regression model are shown in Table 3. It can be observed that VGG-16 using
logistic regression is 82.14 percent accurate.

Table 3. Results of VGG-16 with logistic regression.

Precision % Recall % F1-Score % Support

Autism 83 81 82 291
Normal 82 83 82 297

Accuracy 82.14

Macro avg 82 82 82 588
Weighted avg 82 82 82 5888

Figure 11 shows the confusion matrix of VGG-16 with logistic regression. For the
300 images, the model produced a false-positive outcome for 50 images, a true-positive
outcome (autism) for 247 images, and classified 236 images as normal.
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Figure 11. Confusion matrix of VGG-16 with logistic regression.

The results of the VGG-16 and linear SVC hybrid models for detecting ASD are presented
in Table 4. In its predictions, the model presented an F1-score of 81%, along with a precision
score of 82% and a recall score of 80%. The average accuracy of the model was 81.46%.

Table 4. Results of VGG-16 with linear SVC.

Precision % Recall % F1-Score % Support

Autism 82 80 81 291
Non-autistic 81 83 82 297

Accuracy 81.46

Macro avg 81 81 81 588
Weighted avg 81 81 81 588

The performances of the VGG-16 and linear SVC hybrid models are shown in the
confusion matrix presented in Figure 12. The confusion matrix has four indictors for the per-
formance of the VGG-16 and linear SVC models. The model produced 50 false-positives, 247
true-positives (autism), and classified 232 images as normal out of a total of 300 test images.

Figure 12. Confusion matrix of VGG-16 with linear SVC.
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The results of VGG-16 with random forest are presented in Table 5. The results of
VGG-16 with random forest are not satisfactory; the accuracy of the model was 78.06%.

Table 5. Results of VGG-16 with random forest.

Precision % Recall % F1-Score % Support

Autism 75 84 79 291
Non-autistic 82 72 77 297

Accuracy 78.06

Macro avg 79 78 78 588
Weighted avg 79 78 78 588

The confusion matrix of VGG-16 with random forest is presented in Figure 13. There
is a very high rate of false-positives (83 images). The number of true-positives (214 images)
is much lower than that of the previous model.

Figure 13. Confusion matrix of VGG-16 with random forest.

Table 6 shows the results of VGG-16 with a decision tree. This hybrid achieved an
accuracy of 66.15%. Figure 14 displays the VGG-16 decision tree confusion matrix. We
achieved a significant number of false-positives (97 pictures) and a low number of genuine
negatives (189 images).

Table 6. Results of VGG-16 with decision tree.

Precision % Recall % F1-Score % Support

Autism 66 65 66 291
Non-autistic 66 67 67 297

Accuracy 66.15

Macro avg 66 66 66 588
Weighted avg 66 66 66 588
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Figure 14. Confusion matrix of VGG-16 with decision tree.

The results of VGG-16 with gradient boosting are shown in Table 7. VGG-16 with gradient
boosting achieved an accuracy of 75.15%, superior to that of the decision tree algorithm.

Table 7. Results of VGG-16 with gradient boosting.

Precision % Recall % F1-Score % Support

Autism 74 78 76 291
Non-autistic 77 73 75 297

Accuracy 75.51

Macro avg 76 76 76 588
Weighted avg 76 76 76 588

The confusion matrix of VGG-16 with gradient boosting is presented in Figure 15.
The number of true-positives was 218, while the number of true-negatives was 226. False-
positives and false-negatives numbered 79 and 65, respectively.

Figure 15. Confusion matrix of VGG-16 with gradient boosting.

Table 8 shows the results of VGG-16 with the MLPClassifier. This model achieved an
accuracy of 77.04%. The confusion matrix of VGG-16 with the MLPClassifier is presented in
Figure 16. The number of true-positives was 73, and 218 images were classified as normal.
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Meanwhile, 235 images were classified as autism-related. The results of this model are
not satisfactory.

Table 8. Results of VGG-16 with MLPClassifier.

Precision % Recall % F1-Score % Support

Autism 78 75 76 291
Normal 76 79 78 297

Accuracy 77.04

Macro avg 77 77 77 588
Weighted avg 77 77 77 588

Figure 16. Confusion matrix of VGG-16 with MLPClassifier.

Finally, the results of VGG-16 with KNN are shown in Table 9. This model performed
poorly, with a recall of 0.04% and an F1 score of 0.08%. The confusion matrix of this model
is presented in Figure 17. It was noted that there were less than 13 false-negative and
true-negative images.

Figure 17. Confusion matrix of VGG-16 with KNN.
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Table 9. Results of VGG-16 with KNN model.

Precision % Recall % F1-Score % Support

Autism 87 0.04 0.08 291
Non-autistic 0.51 0.99 0.68 297

Accuracy 52.38

Macro avg 69 52 38 588
Weighted avg 69 52 38 588

In summary, we can observe that the MobileNet method for the diagnosis of ASD
based on facial expression recognition is reliable, efficient, and easy to disseminate. It
provides a one-of-a-kind approach for identifying facial expressions based on attention,
which allows us to concentrate on critical facial characteristics, such as the brows and lips.
We recommend this method be used to help to detect ASD in children.

5. Discussion

The use of facial landmarks has promise as a screening tool for autism spectrum
disorder (ASD). Creating a concise and informative paradigm for ASD diagnosis is critical
for overcoming the challenges of dealing with children. Therefore, developing such systems
is a challenging task because of the intricacies of attentional behavior present in individuals
with ASDs. Early diagnosis and intervention result in the most favorable outcomes for
patients receiving treatment for ASDs. Hospitalization has traditionally been necessary
to diagnose ASD in children; this process is not only expensive and time consuming,
but it is also susceptible to expert prejudice [45]. In this work, we presented a method
that is objective, usable, and effective for diagnosing children with ASD based on their
facial expressions.

Our concept reduces the gap between autism categorization and facial analysis, mak-
ing automated autism categorization an alternative method that is more efficient in terms
of both cost and time. Our deep learning model employed MobileNet as well as VGG-16
with various machine learning models in order to complete both of these objectives. The
model was trained and validated using 2940 images; 80% of the data were used for training
and 20% were used for testing. The data was obtained from children with autism, as well
as children who did not have autism. According to the results of our study, a single image
may be all that is required to make an accurate diagnosis of autism in children. It is possible
that this diagnostic method could be used for a number of other illnesses as well.

Our results reveal that the proposed model achieved an accuracy of 92%. The accuracy
of MobileNet’s results was evaluated using the ROC metric, with true-positives for normal
and pathological classes presented on the y-axis and false-positives indicated on the x-axis.
The results of the MobileNet model compared to different existing systems are presented in
Table 10. Figure 18 presents the results of the measurements used to determine the ROC of
the MobileNet model.

Table 10. Significant results of ASD diagnosis system against existing diagnosis systems.

References Model Dataset Accuracy %

[10] MobileNet Kaggle dataset 87
[24] Xception Kaggle dataset 90

(2022) [46] Xception Kaggle dataset 91
Proposed Kaggle dataset 92
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Figure 18. ROC of MobileNet model.

Khosla et al. [46] stated that they were able to achieve an accuracy of 87% using
MobileNet on the new autism dataset. Rahman and Subashini used the Xception model,
achieving an accuracy of 90%. A comparison of the accuracy reported by a number of
studies is shown in Figure 19. Alsaade and Alzahrani developed an exception model to
detect ASD, using an old dataset that was considerably enhanced to help with classifying
the algorithm with high accuracy. The proposed expert system increased the accuracy by
1% compared to recent, existing studies, due to the complexity of the dataset. This is the
only standard dataset that has ASD images, which were collected from different individuals
with different ages. Furthermore, the capturing of these images using different devices
allowed the system to show the complexity of increasing its accuracy.

If ASD is identified at an earlier age through the use of facial images, this will have
a tremendous impact not only on the child, but also on their parents and the clinician.
When a child is diagnosed with ASD at an early age, the benefits include the fact that it
only takes the physician a few moments to determine whether or not the child is autistic
or developing normally after being shown images of the child’s face. This is one of the
benefits of early ASD diagnoses. However, it is more challenging when an expert performs
a manual diagnosis of autism or the typical development in a child based on a visual
interpretation of it’s facial traits. The model increases in accuracy when it is trained on a
larger training set. If the suggested model were to be implemented in the form of a mobile
application, then the parents would be able to perform the screening on their own children,
which would facilitate the process of preparing for referrals or diagnostic testing.
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Figure 19. Comparison of the proposed and existing systems. Histograms represent references [10,24,46]
(from left to right).

Our approach comes with a number of disadvantages that need to be considered. For
instance, a significant proportion of both positive and negative results were erroneous.
An incorrect diagnosis caused by a false-positive outcome might result in unnecessary
medical procedures and increased anxiety for the patient’s parents. The contrary is also true;
delays in the diagnosis and treatment of a child might be caused by a false-negative result.
Because of this, it is important to bear in mind that the suggested method is not capable of
identifying ASD by itself; rather, the results need to be accurate from a clinical standpoint.

The recommended approach would have a favorable influence on ASD diagnoses due
to its simplicity, speed, and accuracy in comparison to the parent-administered screening
techniques used to date for early ASD screening. This is because the suggested method
would be able to detect ASD earlier.

6. Conclusions

The early diagnosis of ASD in children has been shown to have significant positive
effects on the diagnosed child’s long-term health outcomes. All the detection methods used
at present rely on the judgement of professionals, despite the fact that this approach is both
subjective and costly. In this study, we recommended using a deep learning system that
integrates several facial landmark features in order to identify children who have ASD. The
utilization of this system could reduce costs and increase the effectiveness of the detection
process. To start, we devised a unique approach for recognizing the properties of facial
landmarks. The goal of this study was to examine whether certain facial characteristics
may be utilized as biomarkers to accurately and reliably distinguish autistic children from
normally developing children.

In this study, we made use of a dataset that is available to the general public and
includes images of the faces of both autistic and typically developing children. Pre-trained
models for binary ASD classification were developed and assessed using logistic regression,
LinearSVC, random forest, decision tree, gradient boosting, MLPClassifier, and K-nearest
neighbors methods. Hybrid VGG-16 models employing these and other machine learning
methods were also constructed. When compared to the other models we examined, we
discovered that the MobileNet-V2 model had the best accuracy (92%). The results suggest
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that still images of children’s faces might be used to rapidly gather diagnostic indicators of
ASD, thus enabling an ASD screening approach that is both rapid and accurate.

Through the examination of images of children’s faces, this study addressed a press-
ing issue in the field of computer vision, which is the screening of individuals for ASDs.
The result of this study lend credence to the observations made by clinicians who noted
differences in the facial characteristics of children diagnosed with ASD and children who
are developing typically. We believe that this computer vision solution will help to address
the major causes of racial disparity in ASD diagnosis and screening methods. These major
causes include subjective screening or diagnosis, difficulty in accessing professional medical
services, and the financial obstacles that families face in numerous regions, and especially
in less-developed countries. The development of an expert system for recognizing autism
spectrum disorder in children based on facial landmarks is the key contribution for im-
proving the healthcare system in Saudi Arabia with the aim of detecting autism spectrum
disorder at an earlier stage. The performance accuracy of the proposed system is in need of
improvement; therefore, advanced AI algorithms will be suggested in our future research.
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