
Citation: Mateo-Cortés, J.A.;

Arias-Antúnez, E.; Cazorla-López, D.

Impact of Blockchain Technology for

Business and Information Systems:

Automation of Inter-Company Debt

Compensation Case Study. Appl. Sci.

2023, 13, 4805. https://doi.org/

10.3390/app13084805

Academic Editor: Gianluca Lax

Received: 13 February 2023

Revised: 24 March 2023

Accepted: 31 March 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Impact of Blockchain Technology for Business and Information
Systems: Automation of Inter-Company Debt Compensation
Case Study
José A. Mateo-Cortés 1, Enrique Arias-Antúnez 2,* and Diego Cazorla-López 2

1 Albacete Research Institute of Informatics, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
2 Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
* Correspondence: enrique.arias@uclm.es; Tel.: +34-967599200 (ext. 2497)

Abstract: Debt compensation is a process via which various entities (companies, people, etc.) propose
the payment of their mutual debts by compensating them according to the credits they may have
in their favor. The aim is to establish the financial information of a company so that its debts can
somehow be satisfied by its credits, breaking the vicious cycle of debts that cannot be paid. To
this end, this financial information is retrieved from the business information system of a company,
encompassing how much is owed and to which companies. From the retrieved information, this
paper describes the implementation of an automatic system that allows calculating not only the
debt cycles involving different companies, but also how these cycles can be effectively solved using
blockchain technology thanks to the use of smart contracts. Blockchain technology can have a
great impact for companies in this kind of application, guaranteeing the security and traceability of
transactions among companies, which are two well-appreciated features from a financial auditing
point of view.

Keywords: debt compensation; blockchain; smart contracts; Ethereum; solidity

1. Introduction

Debt compensation is a process via which an affected party proposes the payment of its
debt through compensation using the credits it may have in its favor. Debt compensation is
used for the benefit of the companies involved, since they can reduce their debts without a
direct payment mechanism, thus reducing the need for treasury. Let us note that this process
requires the approval of the companies involved. To this end, prior to debt compensation, a
determination of the debt cycles among these companies is required, so that a compensation
cycle can be established. In the real world, this mechanism is managed by banks or financial
entities. In any case, both companies and managerial agencies achieve several advantages.
On the one hand, companies can efficiently use their funds, while the risk of insolvency is
reduced. On the other hand, banks or financial agencies can attract more clients and make
a succulent profit thanks to the fees generated by debt compensation cycles.

It is worthwhile to mention that debt compensation is very important for the finance
of companies. Debt cancelation, therefore, resolves a major problem for the economy in
general. It is well known that past due invoices are a serious problem for many businesses,
especially small and medium-sized enterprises and freelancers, reducing their liquidity
and considerably slowing their development. According to [1], 12% of the productive
fabric considers its continuity to be at risk due to the impact of non-payments by clients,
suggesting that 220,000 companies are at risk of closing in the coming months, which also
implies job losses.

Having that in mind, it is very useful not only to “discover” debt compensation
cycles (the authors implemented a Dijkstra likewise algorithm [2] to this end), but also
to automatize the process of debt compensation among companies, ensuring the result

Appl. Sci. 2023, 13, 4805. https://doi.org/10.3390/app13084805 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084805
https://doi.org/10.3390/app13084805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1968-7108
https://orcid.org/0000-0002-0714-7510
https://doi.org/10.3390/app13084805
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084805?type=check_update&version=2

Appl. Sci. 2023, 13, 4805 2 of 14

according to regulations, including auditing regulations and actions. For this purpose,
the main contribution of this paper is to present a complete framework using blockchain
technology to carry out the debt compensation mechanism semiautomatically.

In this case, semiautomatically indicates that users (business consultancies) only
provide the system with input data, whereas they select the cycle(s) to be canceled since
this operation cannot be automatically conducted due to Spanish regulations (companies
involved in a cycle must legally agree on the terms of the compensation). More detailed
information about the workflow is provided in Section 5. As far as the authors know, there
is no similar application of blockchain technology and its associated smart contracts.

This paper is structured as follows: Section 1 introduces the problem studied; Section 2
presents some examples of debt compensation and the obtained cycles; Section 3 presents
related work about the use of blockchain and smart contracts in this field; Section 4 concep-
tualizes blockchain and smart contracts, as well as introduces the related technology used
in this work; Section 5 presents the proposed solution; Section 6 outlines the conclusions
and future work.

2. Debt Compensation: An Example

Debt cancelation algorithms have as data input the debts (mainly invoices) among
companies; that is, companies must provide, clearly and precisely, information on how
much is owed and to which companies. Thus, the algorithm is able to construct a graph
representing the debts among these companies, allowing an evaluation of various debt
cancelation cycles. Cancelation is applied for the minimum amount common across the
components of such a cycle. Next, we show a graph highlighting the relationships among
different companies and a small example of a debt cancelation cycle. Obviously, in the real
economy, such transactions can include many more companies, making the problem nontrivial.

Suppose there are three companies, as shown in Figure 1. In this case, company A has
a debt (e.g., an invoice) of 1500 EUR with company B, which in the graph is represented
by an arrow directed from company A to company B, where the weight is the amount
owed (1500 EUR). Likewise, company B has a debt with company C of 4500 EUR and a
debt of 500 EUR with company A. As can be seen, this creates a debt cycle where multiple
companies owe each other; therefore, a cancelation worth 500 EUR can be established.
As mentioned earlier, cancelation cycles are always applied for the lower amount. After
compensation, we obtain the new graph shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 15

suggesting that 220,000 companies are at risk of closing in the coming months, which also
implies job losses.

Having that in mind, it is very useful not only to “discover” debt compensation cycles
(the authors implemented a Dijkstra likewise algorithm [2] to this end), but also to autom-
atize the process of debt compensation among companies, ensuring the result according
to regulations, including auditing regulations and actions. For this purpose, the main con-
tribution of this paper is to present a complete framework using blockchain technology to
carry out the debt compensation mechanism semiautomatically.

In this case, semiautomatically indicates that users (business consultancies) only pro-
vide the system with input data, whereas they select the cycle(s) to be canceled since this
operation cannot be automatically conducted due to Spanish regulations (companies in-
volved in a cycle must legally agree on the terms of the compensation). More detailed
information about the workflow is provided in Section 5. As far as the authors know, there
is no similar application of blockchain technology and its associated smart contracts.

This paper is structured as follows: Section 1 introduces the problem studied; Section
2 presents some examples of debt compensation and the obtained cycles; Section 3 pre-
sents related work about the use of blockchain and smart contracts in this field; Section 4
conceptualizes blockchain and smart contracts, as well as introduces the related technol-
ogy used in this work; Section 5 presents the proposed solution; Section 6 outlines the
conclusions and future work.

2. Debt Compensation: An Example
Debt cancelation algorithms have as data input the debts (mainly invoices) among

companies; that is, companies must provide, clearly and precisely, information on how
much is owed and to which companies. Thus, the algorithm is able to construct a graph
representing the debts among these companies, allowing an evaluation of various debt
cancelation cycles. Cancelation is applied for the minimum amount common across the
components of such a cycle. Next, we show a graph highlighting the relationships among
different companies and a small example of a debt cancelation cycle. Obviously, in the
real economy, such transactions can include many more companies, making the problem
nontrivial.

Suppose there are three companies, as shown in Figure 1. In this case, company A
has a debt (e.g., an invoice) of 1500 EUR with company B, which in the graph is repre-
sented by an arrow directed from company A to company B, where the weight is the
amount owed (1500 EUR). Likewise, company B has a debt with company C of 4500 EUR
and a debt of 500 EUR with company A. As can be seen, this creates a debt cycle where
multiple companies owe each other; therefore, a cancelation worth 500 EUR can be estab-
lished. As mentioned earlier, cancelation cycles are always applied for the lower amount.
After compensation, we obtain the new graph shown in Figure 2.

Figure 1. Debt relation among three companies. Figure 1. Debt relation among three companies.

Therefore, we started with an example where the initial total debt was 6500 EUR, i.e.,
the sum of all the debts of the participants. After the cancelation, we can clear 1500 EUR;
therefore, the new total debt is 5000 EUR.

As can be seen in the example, circular debt compensation can reduce the liquidity
needs of companies, help to solve the problem of non-payment, and improve the balance
sheet by facilitating access to credit for companies. In the example, an economic activity

Appl. Sci. 2023, 13, 4805 3 of 14

of 6500 EUR is resolved with only 5000 EUR of liquidity. The remainder can be resolved
through a multilateral agreement for the exchange of services and/or goods. Note that,
for a higher minimum debt between two companies, cancelation becomes more beneficial;
therefore, the system contains lower liquidity requirements.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 15

Figure 2. Debt relation among three companies after cancelation.

Therefore, we started with an example where the initial total debt was 6500 EUR, i.e.,
the sum of all the debts of the participants. After the cancelation, we can clear 1500 EUR;
therefore, the new total debt is 5000 EUR.

As can be seen in the example, circular debt compensation can reduce the liquidity
needs of companies, help to solve the problem of non-payment, and improve the balance
sheet by facilitating access to credit for companies. In the example, an economic activity
of 6500 EUR is resolved with only 5000 EUR of liquidity. The remainder can be resolved
through a multilateral agreement for the exchange of services and/or goods. Note that, for
a higher minimum debt between two companies, cancelation becomes more beneficial;
therefore, the system contains lower liquidity requirements.

3. Related Work
To begin with, some related studies regarding the management of debt cancelation

in enterprise resource planning systems are presented. First, to the best of our knowledge,
Odoo is not endowed with a native system to process debt cycles. By using an extension
(an app in Odoo) [3], one can summarize all the debts and credits in just one single trans-
action, but only for a single company. Moreover, in SAP software, one can use an external
system [4] to cope with the problem of debt compensation. Unfortunately, we could not
find the information about how this process is conducted and if any state-of-the-art algo-
rithm is used.

On the other hand, blockchain technology is nothing new. In 1991, Haber and Scott
Stornetta had the vision of what many people have come to know as blockchain. However,
it was in 2008 that the blockchain story began to increase in importance, thanks to the
work of Nakamoto [5] related to cryptocurrency, particularly Bitcoin.

Today, nobody disputes the use of blockchain technology in different fields of appli-
cation [6] such as business intelligence [7], healthcare systems [8], or vehicle-to-everything
applications [9], mainly thanks to the inherent good features of blockchain architecture
and design, providing qualities such as transparency, robustness, auditability, and secu-
rity [10,11]. However, blockchain extends beyond cryptocurrency. In fact, one of the main
applications is in finance, where blockchain technology is applied to business services,
settlement of financial assets, prediction markets, and economic transactions [12]. Most
financial applications necessitate the avoidance of mediators in transactions. Some exam-
ples can be found in the literature [13–17]. In those papers, blockchain technology was
considered from a specific point of view, i.e., research, energy consumption, or partial
enterprise solutions.

It is well known that there is also huge interest by the European Commission in the
development of blockchain technology. Documents from the European Commission (e.g.,
[18]) demonstrate the significance and attention placed by Europe on blockchain technol-
ogy. The European Union Blockchain Observatory and Forum specifically showcases the
present capabilities and prospects of blockchain. Furthermore, in order to boost innova-
tion with respect to blockchain technology, the EU is enabling both industry and citizens
to benefit from blockchain applications. Thus, the European Commission, after a prospec-
tive process, has established a set of applications of blockchain technology in different
areas such as finance, trade, and the public sector, which go beyond the current use of

Figure 2. Debt relation among three companies after cancelation.

3. Related Work

To begin with, some related studies regarding the management of debt cancelation in
enterprise resource planning systems are presented. First, to the best of our knowledge,
Odoo is not endowed with a native system to process debt cycles. By using an extension
(an app in Odoo) [3], one can summarize all the debts and credits in just one single
transaction, but only for a single company. Moreover, in SAP software, one can use an
external system [4] to cope with the problem of debt compensation. Unfortunately, we could
not find the information about how this process is conducted and if any state-of-the-art
algorithm is used.

On the other hand, blockchain technology is nothing new. In 1991, Haber and Scott
Stornetta had the vision of what many people have come to know as blockchain. However,
it was in 2008 that the blockchain story began to increase in importance, thanks to the work
of Nakamoto [5] related to cryptocurrency, particularly Bitcoin.

Today, nobody disputes the use of blockchain technology in different fields of appli-
cation [6] such as business intelligence [7], healthcare systems [8], or vehicle-to-everything
applications [9], mainly thanks to the inherent good features of blockchain architec-
ture and design, providing qualities such as transparency, robustness, auditability, and
security [10,11]. However, blockchain extends beyond cryptocurrency. In fact, one of
the main applications is in finance, where blockchain technology is applied to business
services, settlement of financial assets, prediction markets, and economic transactions [12].
Most financial applications necessitate the avoidance of mediators in transactions. Some
examples can be found in the literature [13–17]. In those papers, blockchain technology
was considered from a specific point of view, i.e., research, energy consumption, or partial
enterprise solutions.

It is well known that there is also huge interest by the European Commission in
the development of blockchain technology. Documents from the European Commission
(e.g., [18]) demonstrate the significance and attention placed by Europe on blockchain
technology. The European Union Blockchain Observatory and Forum specifically show-
cases the present capabilities and prospects of blockchain. Furthermore, in order to boost
innovation with respect to blockchain technology, the EU is enabling both industry and
citizens to benefit from blockchain applications. Thus, the European Commission, after
a prospective process, has established a set of applications of blockchain technology in
different areas such as finance, trade, and the public sector, which go beyond the current
use of blockchain technology. On the other hand, these documents [18] warned of the legal
implications of blockchain.

More specifically, blockchain technology has great applicability to the financial sector
beyond cryptocurrencies. In fact, blockchain technology is becoming an essential part of
what is known as FinTech, due to the following technical features of blockchain: decen-
tralized, open, and untampered information, high security in transactions, and intelligent

Appl. Sci. 2023, 13, 4805 4 of 14

trading contracts [19]. There are several applications of blockchain technology in finance.
Among them, the following stand out [20]: payment and settlement systems, security
issuance, clearing and settlement processes, derivative trading, trade repositories, credit
reporting agencies, and corporate governance.

Normally, in mainstream finance, permissioned blockchains are the preferred choice
for most blockchain applications. This is because such blockchains only allow participants
to access the data stored in them. Furthermore, not all participants are authorized to add
new transactions to the chain, and their identities are often verified. Since the voters are
identifiable, it is relatively simple to implement consensus mechanisms based on majority
votes in these chains. Typically, a majority or super-majority of privileged participants
must approve each new transaction [21].

Focusing on settlement, it is well known that the main advantage of a blockchain is
faster and more flexible settlement. In fact, it is estimated that “for the US corporate debt
market yield, the net gains from blockchain are in the range of 1–4 bps” [22]. The work
presented here has a strong relationship with settlement, more precisely, with debt compen-
sation among companies. In fact, late payments in commercial transactions continue to be
a pressing problem for small and medium-sized enterprises [23]. In the European Union,
they increase financial costs, contribute to illiquidity, and can even lead to bankruptcy.
In [23], the authors combined the properties of distributed ledgers with smart contracts
leading to harmonization of redress procedures. Such a system improves the standard
of proof required to issue a European Order of Payment by providing formal control of
the evidence.

Although blockchain has potential in finance, there are several challenges that need to
be addressed, such as the following [24,25]:

• Technical performance: the current blockchain systems on the market may not be able
to meet the demands of actual businesses with issues in data processing throughput
and verification speed, data storage, and node synchronization.

• Security risks: information security and encryption algorithm security are not ad-
dressed here. Relevant articles in this area can be found in the literature [7–9].

• Financial regulation: this topic is also outside of the scope of the work presented here.
A good example of work in this area can be found in [26].

As a blockchain infrastructure specially built for blockchain in finance, DeFi (decen-
tralized finance) can be highlighted [27]. Decentralized finance is a term used to describe
a different financial system constructed on blockchain. The system utilizes smart con-
tracts to design protocols that duplicate existing financial services in a more transparent,
interoperable, and accessible way.

On the basis of previous state-of-the-art articles, in this paper, we transfer all the
knowledge in blockchain acquired through our research in the enterprise world dealing
with a very common problem: debt compensation. Moreover, blockchain technology has
been naturally incorporated into company information systems, firstly retrieving debt
information from all companies involved in the process to calculate debt cycles, and
then enabling automatic debt cancelation thanks to the use of smart contracts, according
to Spanish regulations. The problem of energy consumption is not addressed in this
work since the energy cost of a private permissioned blockchain is much lower than that
of a public blockchain. As far as the authors know, there is no similar application in
the literature.

4. Conceptualizing Blockchain Technology

In this section, we reiterate some important concepts for a better understanding of
this work.

4.1. Blockchain Technologies

The recent years have seen a lot of interest in blockchain technology across various
industries [9,18,28] and sectors [3,29–31]. Blockchain is a decentralized, secure, and tamper-

Appl. Sci. 2023, 13, 4805 5 of 14

proof ledger that records transactions and tracks assets through P2P connections. It operates
on the basis of a consensus protocol that ensures transaction validity and security, and its
immutability is one of its key features [32].

The term blockchain refers to the structure of the ledger. It consists of groups of
transactions, organized and stored in blocks, which are chronologically ordered and linked
by a block number (hash) and a proposer or validator. The participants in a blockchain
network depend on the type of blockchain: public or permissionless blockchains allow
anyone to participate, and all participants have equal roles, while private or permissioned
blockchains are controlled by a limited number of entities that manage the chain, grant
permissions, propose transactions, and validate blocks. There are also hybrid blockchain
models. In private and hybrid blockchains, the roles and interactions of participants
are defined by smart contracts, which are also stored on the blockchain and known to
all participants.

The rise of Bitcoin has led to the creation of various blockchain environments. Cur-
rently, Ethereum [33–35], Cardano [36], and Hyperledger [37,38] are the dominant tech-
nologies in the market for decentralized application development based on smart contracts.
Ethereum is a global, open-source, permissionless platform for decentralized applications
that was launched in 2015, becoming the world’s first blockchain for DApp development.
Hyperledger, hosted by the Linux Foundation, is a growing open-source community that
aims to advance blockchain technology for cross-industry use in business. With over
250 members worldwide, it is the fastest-growing project in Linux Foundation history.
IBM has adopted Hyperledger as its blockchain technology, offering Hyperledger Fab-
ric [37], which provides a framework for developing blockchain solutions with a modular
architecture, pluggable implementations, and container technology. This allows for the
development of applications as components that build a final product, while also offering
confidentiality, scalability, and security for enterprise environments. This is important for
companies who do not want their transactions to be made public.

4.2. Smart Contracts

In this section, the concept of smart contracts is introduced. We consider when the
procedure of a debt compensation cycle should trigger a smart contract to make this
compensation effective.

To grasp the functioning of a blockchain, it is essential to comprehend the following
four crucial concepts:

• Shared ledger: An unalterable record of all network transactions accessible to all
network participants. By having a shared ledger, transactions are recorded only once,
eliminating the duplicative efforts prevalent in traditional business networks.

• Permissions: As previously mentioned, blockchains can be either permissioned or
permissionless. In a permissioned blockchain, each participant holds a distinct identity,
which enables the implementation of policies to regulate network participation and
access to transaction information.

• Consensus: In a business network where the participants are familiar and trustwor-
thy, transactions can be verified and recorded on the ledger through a consensus
mechanism (an agreement).

• A smart contract is a self-executing agreement or set of rules that govern a business
transaction, which is stored on the blockchain and automatically executed as part of
the transaction.

The concept of smart contracts was first introduced in the 1990s, but it was not until
the rise in cryptocurrencies and the implementation of blockchain technology that it became
a reality. They play a crucial role in blockchain technology as they dictate and regulate
the conduct of transactions. Unlike traditional contracts, smart contracts are integrated
into a blockchain network, providing a secure and automated environment for execution.
The transparency and self-executing nature of smart contracts is a major advantage; once
deployed on the blockchain, they cannot be altered or halted. Furthermore, as mentioned

Appl. Sci. 2023, 13, 4805 6 of 14

previously, they are special programs stored on the blockchain, which is a neutral territory
outside of any server. The main advantage of this approach is the absence of an intermedi-
ary; that is, when the code is deployed in the chain, it is automatically executed where the
conditions are met. Thus, they define the agreements among multiple parties without an
intermediary. Obviously, the testing phase of this approach is crucial since, for example,
the system can incorrectly transfer money to some accounts. In general, these contracts are
usually based on the Ethereum network since their integration is mature enough.

Therefore, smart contracts are computer programs that automate the implementation
of agreements among parties, eliminating the need for manual coordination or interven-
tion [39,40]. These agreements can be recorded and validated on a blockchain, which can
then execute the contract automatically on the basis of predefined “if–then” instructions.
For example, “if” a certain condition is met (such as paying for a rental car and short-
term insurance), “then” certain actions are triggered (such as the car door unlocking, and
payment being transferred). The blockchain’s verification and recording process ensures
that conflicts or errors are resolved and only one valid transaction is recorded (preventing
double entries).

In this way, these smart contracts can be used in a wide variety of scenarios. They
can be used to carry out simple transactions with a set of requirements that are verifiable
by the network, either within the blockchain itself or outside it using APIs. Today, the
main application of this approach is for all kinds of financial products, from funds to
call options to many others. For example, one can think of a way to manage things such
as copyright for an image bank. Every time an image is used in any media, it will be
automatically detected, and the author will be paid. Moreover, micro-insurance can be paid
out to farmers depending on certain aspects such as rainfall data collected over a period of
time, or micro-payments can be made instantly when the conditions for which they were
signed are met (e.g., a worker can be paid according to some performance indicators, or
the apartment rent is automatically transferred to the landlord if no complaints are made
during the month).

4.3. Related Technologies

Next, we present the blockchain technologies used in this work. We leveraged the
potential and benefits of a first-class blockchain, Ethereum. This chain was first designed to
be a real alternative to Bitcoin for building decentralized applications. As usual, it comes
with advantages and disadvantages, making it more suitable for one scenario than others.
The founders (including Vitalik Buterin) advocate for the use of blockchains in a wide
range of decentralized applications, not only for money management (cryptocurrencies).
These applications can leverage the fast development time, security, and very efficient
interoperability of Ethereum as introduced by Vitalik Buterin in his whitepaper. Ethereum
achieves this by building the ultimate abstract foundational layer, i.e., an open-source
blockchain with a built-in Turing-complete programming language that endows developers
with the ability to write smart contracts and decentralized applications, where they provide
their own arbitrary rules for ownership, transaction definitions, and functions to change
from one state to another. A bare-bones version of Namecoin [40] can be written in two
lines of code, and other protocols such as currencies and reputation systems can be built
in under 20 lines [36]. Smart contracts can also be built on top of the platform, with
vastly more power than offered by Bitcoin scripting because of the added powers of
Turing completeness, value awareness, blockchain awareness, and state. In Ethereum, the
state of the system is composed of objects called “accounts”, with each account having
42 hexadecimal characters, with address and state transitions being a direct relocation of
values and information between accounts. Moreover, “Ether” is the main internal crypto
fuel of Ethereum and is used to pay transaction fees.

To cope with smart contracts, we used Solidity. Solidity is a programming language not
designed to create normal programs; it is a language specifically created for programming
smart contracts. Its syntax is based on ECMAScript, similar to other languages such as

Appl. Sci. 2023, 13, 4805 7 of 14

JavaScript and C, but with the difference of implementing strong typing when declaring
the types of variables and arguments. This is to ensure contract rigor. This similarity with
other widely used languages reduces the learning curve since its syntax is quite familiar to
the developers. This language can compile and link the contracts created in the Ethereum
network code. Solidity was created in 2014 by different collaborators of the Ethereum
Project. Specifically, it is a language created to run on Ethereum virtual machines (EVMs)
that run on the Ethereum blockchain.

Let us remark that we did not publish to the main net of Ethereum due to current high
gas fees (see Figure 3, where ~50 EUR was the total gas fee at the time of writing); however,
it is part of Ethereum’s roadmap to reduce these fees to make them more affordable for
everyone. This cost is high if one considers that a small case study was conducted. In con-
trast, we used a well-known framework to simulate the Ethereum virtual machine (EVM).
Truffle [19] is a world-renowned environment to develop, test, and deploy decentralized
applications. It acts as a pipeline for code using the Ethereum virtual machine, with the
aim of making a developer’s life easier. In Truffle, one can find the following:

• Built-in support for smart contract compilation, linking, deployment, and binary management.
• A mature and automatic testing environment.
• Scriptable, extensible deployment, and migration framework.
• Seamless deployment to any number of public and private networks.
• Complete software for package management (EthPM) and NPM, using the ERC190 standard.
• User console for contract communication.
• Configurable channel with support for strong integration.
• External script executor that runs code within a Truffle environment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 15

they provide their own arbitrary rules for ownership, transaction definitions, and func-
tions to change from one state to another. A bare-bones version of Namecoin [40] can be
written in two lines of code, and other protocols such as currencies and reputation systems
can be built in under 20 lines [36]. Smart contracts can also be built on top of the platform,
with vastly more power than offered by Bitcoin scripting because of the added powers of
Turing completeness, value awareness, blockchain awareness, and state. In Ethereum, the
state of the system is composed of objects called “accounts”, with each account having 42
hexadecimal characters, with address and state transitions being a direct relocation of val-
ues and information between accounts. Moreover, “Ether” is the main internal crypto fuel
of Ethereum and is used to pay transaction fees.

To cope with smart contracts, we used Solidity. Solidity is a programming language
not designed to create normal programs; it is a language specifically created for program-
ming smart contracts. Its syntax is based on ECMAScript, similar to other languages such
as JavaScript and C, but with the difference of implementing strong typing when declar-
ing the types of variables and arguments. This is to ensure contract rigor. This similarity
with other widely used languages reduces the learning curve since its syntax is quite fa-
miliar to the developers. This language can compile and link the contracts created in the
Ethereum network code. Solidity was created in 2014 by different collaborators of the
Ethereum Project. Specifically, it is a language created to run on Ethereum virtual ma-
chines (EVMs) that run on the Ethereum blockchain.

Let us remark that we did not publish to the main net of Ethereum due to current
high gas fees (see Figure 3, where ~50 EUR was the total gas fee at the time of writing);
however, it is part of Ethereum’s roadmap to reduce these fees to make them more afford-
able for everyone. This cost is high if one considers that a small case study was conducted.
In contrast, we used a well-known framework to simulate the Ethereum virtual machine
(EVM). Truffle [19] is a world-renowned environment to develop, test, and deploy decen-
tralized applications. It acts as a pipeline for code using the Ethereum virtual machine,
with the aim of making a developer’s life easier. In Truffle, one can find the following:
• Built-in support for smart contract compilation, linking, deployment, and binary

management.
• A mature and automatic testing environment.
• Scriptable, extensible deployment, and migration framework.
• Seamless deployment to any number of public and private networks.
• Complete software for package management (EthPM) and NPM, using the ERC190

standard.
• User console for contract communication.
• Configurable channel with support for strong integration.
• External script executor that runs code within a Truffle environment.

Figure 3. Example of gas fees for deploying a set of contracts in the main Ethereum network. Figure 3. Example of gas fees for deploying a set of contracts in the main Ethereum network.

In addition to Truffle, Ganache [41] is a particular blockchain for quick Corda and
Ethereum distributed application development. Developers can use Ganache across the
entire development lifecycle. It enables the development, deployment, and testing of
DApps in a safe and deterministic environment. Moreover, Ganache can be used in two
ways: through a user interface (UI) and through the command line interface (CLI). The
Ganache UI is devoted to being used as a desktop application that supports both Ethereum
and Corda. Furthermore, the command-line tool, called ganache-cli (formerly known as
TestRPC), is also available for development purposes.

5. Automation of Debt Compensation Process by Means of Smart Contracts

In this section, the framework for the process of compensating for a set of invoices
obtained from the debt graph is presented. Figure 4 depicts the flow of the entire process.
Here, the gear icon represents the system, and the user icon represents the operator. Let us
remark that fully automatic compensation is not possible in Spain since, in the final step of

Appl. Sci. 2023, 13, 4805 8 of 14

the workflow (choosing the cycles to be compensated), it is mandatory that the involved
parties sign the legal allowance for the cancelation of the corresponding debts. Thus, the
framework automatically obtains the set of possible cycles that can be canceled, but the tool
operator (normally, a consultant) must decide the specific cycles. Then, just by clicking a
button (see Figure 11), the framework automatically creates and processes the transactions
in the blockchain. As can be observed in Figure 4, the process starts when a consultant
extracts a set of invoices from the enterprise resource planning software as a csv file. In our
case, IPI Conocimiento y Flexibilidad uses Odoo. Then, the file is uploaded to an Azure
storage account. The framework automatically downloads the file and anonymizes it, as
can be seen in Figure 4. Once processed, the operator can upload it (see Figure 5), and it is
automatically sent to a backend process that calculates the possible cycles. When they are
ready, the operator can proceed with the compensation (after all companies legally agree to
it). Lastly, all the transactions are created and processed in Ethereum so that the companies
have an immutable record of their transactions in the system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 15

In addition to Truffle, Ganache [41] is a particular blockchain for quick Corda and
Ethereum distributed application development. Developers can use Ganache across the
entire development lifecycle. It enables the development, deployment, and testing of
DApps in a safe and deterministic environment. Moreover, Ganache can be used in two
ways: through a user interface (UI) and through the command line interface (CLI). The
Ganache UI is devoted to being used as a desktop application that supports both
Ethereum and Corda. Furthermore, the command-line tool, called ganache-cli (formerly
known as TestRPC), is also available for development purposes.

5. Automation of Debt Compensation Process by Means of Smart Contracts
In this section, the framework for the process of compensating for a set of invoices

obtained from the debt graph is presented. Figure 4 depicts the flow of the entire process.
Here, the gear icon represents the system, and the user icon represents the operator. Let
us remark that fully automatic compensation is not possible in Spain since, in the final
step of the workflow (choosing the cycles to be compensated), it is mandatory that the
involved parties sign the legal allowance for the cancelation of the corresponding debts.
Thus, the framework automatically obtains the set of possible cycles that can be canceled,
but the tool operator (normally, a consultant) must decide the specific cycles. Then, just
by clicking a button (see Figure 11), the framework automatically creates and processes
the transactions in the blockchain. As can be observed in Figure 4, the process starts when
a consultant extracts a set of invoices from the enterprise resource planning software as a
csv file. In our case, IPI Conocimiento y Flexibilidad uses Odoo. Then, the file is uploaded
to an Azure storage account. The framework automatically downloads the file and anon-
ymizes it, as can be seen in Figure 4. Once processed, the operator can upload it (see Figure
5), and it is automatically sent to a backend process that calculates the possible cycles.
When they are ready, the operator can proceed with the compensation (after all companies
legally agree to it). Lastly, all the transactions are created and processed in Ethereum so
that the companies have an immutable record of their transactions in the system.

Figure 4. Complete system workflow.
Figure 4. Complete system workflow.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 15

Figure 5. Upload file screen.

Next, the algorithm (see Algorithm 1)for cycle finding and the smart contract for debt
cancelation are presented. In this tool, a smart contract is used to mimic the entities in-
volved in the process of debt cancelation (e.g., companies). Listing 1 depicts that a com-
pany has a mapping, where a list of company addresses and their corresponding debts is
simulated; that is, this data structure simulates a database for each company where its
debtors are stored. Moreover, two functions are defined. The first is used to add invoices
to the company mapping, i.e., this function is invoked when reading the input csv file that
mimics the debt graph so that the debts are updated accordingly. We omit here the screen-
shot of the graphical user interface implemented in the tool to invoke this method. The
second one is invoked to cancel a specific invoice. Let us remark that when the “cancel
cycle button” is pressed (see Figure 11), it is run for each row in the screen. In Figure 10,
the three transactions automatically created for the cycle of Figure 11 can be observed.

On the other hand, the algorithm is based on Dijkstra’s shortest path between two
cities (in this case, companies). The main differences are summarized as follows: in this
case, the matrices are not symmetric since a directed graph is provided, whereby the debt
from company A to B is not normally the same as the debt from company B to A. This
slight variation of Dijkstra’s algorithm is not a contribution of the article, but an inevitable
step in the overall context of debt cancelation.

Moreover, the paths under study are from one company to itself in order to discover
cycles involving it. The algorithm has some data structures to store the current minimum
debt from one company to another, the path between two companies, and a visited array
to avoid visiting a company twice in the same path. Moreover, in the while loop, the algo-
rithm studies all the companies in the problem, whereas for loops are used to calculate the
minimum neighbor company and the minimum debt. Let us remark that we check if one
of the neighbors of the company under consideration is the company indeed.

Figure 5. Upload file screen.

Appl. Sci. 2023, 13, 4805 9 of 14

Next, the algorithm (see Algorithm 1) for cycle finding and the smart contract for
debt cancelation are presented. In this tool, a smart contract is used to mimic the entities
involved in the process of debt cancelation (e.g., companies). Listing 1 depicts that a
company has a mapping, where a list of company addresses and their corresponding debts
is simulated; that is, this data structure simulates a database for each company where its
debtors are stored. Moreover, two functions are defined. The first is used to add invoices
to the company mapping, i.e., this function is invoked when reading the input csv file
that mimics the debt graph so that the debts are updated accordingly. We omit here the
screenshot of the graphical user interface implemented in the tool to invoke this method.
The second one is invoked to cancel a specific invoice. Let us remark that when the “cancel
cycle button” is pressed (see Figure 11), it is run for each row in the screen. In Figure 10,
the three transactions automatically created for the cycle of Figure 11 can be observed.

On the other hand, the algorithm is based on Dijkstra’s shortest path between two
cities (in this case, companies). The main differences are summarized as follows: in this
case, the matrices are not symmetric since a directed graph is provided, whereby the debt
from company A to B is not normally the same as the debt from company B to A. This
slight variation of Dijkstra’s algorithm is not a contribution of the article, but an inevitable
step in the overall context of debt cancelation.

Moreover, the paths under study are from one company to itself in order to discover
cycles involving it. The algorithm has some data structures to store the current minimum
debt from one company to another, the path between two companies, and a visited array
to avoid visiting a company twice in the same path. Moreover, in the while loop, the
algorithm studies all the companies in the problem, whereas for loops are used to calculate
the minimum neighbor company and the minimum debt. Let us remark that we check if
one of the neighbors of the company under consideration is the company indeed.

Listing 1. Solidity contract of company entity.

contract Company {
uint16 cif;
address payable owner;
//For each company (address), we

annotate the // debt (invoice)
mapping (address => uint24) public

debts;
function addInvoice (address addr, uint24

amnts) public returns (uint24) {
require (amnts > 0, “Amount must

be greater than 0”);
debts [addr] = debts [addr] + amnts;
return debts [addr];

}
function cancelInvoice (address addr,

uint24 amnts) public returns (uint24)
{
require (amnts > 0, “Amount must

be greater than 0”);
require ((debts [addr] − amnts) >=

0, “The amount cannot be
cancelled since it is greater
than the current debt.”);

debts [addr] = debts [addr] − amnts;
return debts [addr];

}
}

Appl. Sci. 2023, 13, 4805 10 of 14

It is important to note that the authors implemented many auxiliary functions such as
csv processing, anonymizing companies, and back-end services to ship the graph debt to
the algorithm, but this material is not included in this works since it is outside of the scope
of the paper and their contribution is limited.

Below, the graphical tool the authors developed in order to obtain a set of smart
contracts instances starting from an input debt graph is presented. This chart is provided
as a set of edges showing the creditor, the debtor, and the amount of the debt. These data
are given by an external entity, normally business consultancies, since they have all the
invoices of their customers. Figure 5 shows the input screen, where the user must provide
the input file in csv format (representing the debt graph), and then choose the date for
debt calculation.

This is important since the algorithm must take into consideration the due date of the
invoice. Thus, only past due invoices with respect to the date provided by the user are
considered. Let us remark that this tool was conceived with business consultancies in mind
as they can receive succulent fees for advising debt compensation to their customers. Thus,
the tool was developed in collaboration with the company IPI: Conocimiento y Flexibilidad.
Once the input data are obtained, normally an Excel or text file, they are anonymized for
privacy issues. This task is performed through bash scripts. When this process ends, our
algorithm is executed to obtain the debt cycles in the graph (see Figure 6). The output is
a text file with the current cycles, as well as the amount of debt that can be compensated.
This text file is shown in the tool as HTML tables so that the user can check different cycles
and make decisions accordingly (see also Figure 11).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15

Algorithm 1. Algorithm for finding debt cycles between companies.

Figure 6. Example of debt cycle.

The required logic to create the stakeholders in the cycle compensation is included in
the tool. Thus, companies are created inside the application by means of forms. In future
versions, we can consider an automatic process to extract information from external plat-
forms such as Metamask [42], integrating our tool so that companies can attach their
ledger in the platform without any human interaction.

In Figure 7, we show the input fields for company creation. As can be seen, partici-
pants must provide their name, CIF, and Ethereum address. CIF is the Spanish VAT num-
ber of a company, which allows it to be identified for taxation.

Figure 6. Example of debt cycle.

The required logic to create the stakeholders in the cycle compensation is included
in the tool. Thus, companies are created inside the application by means of forms. In
future versions, we can consider an automatic process to extract information from external
platforms such as Metamask [42], integrating our tool so that companies can attach their
ledger in the platform without any human interaction.

In Figure 7, we show the input fields for company creation. As can be seen, participants
must provide their name, CIF, and Ethereum address. CIF is the Spanish VAT number of a
company, which allows it to be identified for taxation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15

Figure 7. Company creation example.

Once this information is provided, after clicking “proceed”, an instance of a Solidity
smart contract named “company” is created, and the corresponding transaction is de-
ployed in the chain (see Figure 8).

Figure 8. Transaction for company creation in Ganache.

Moreover, a new block is added to the blockchain (see Figure 9). This logic is inter-
nally provided using the Web3 library.

Figure 9. Added block after company creation in Ganache.

Each company has a Solidity smart contract with three variables: the name of the
company, its CIF, and a mapping from the Ethereum address and debts, i.e., an array
where the indices are the debtor’s address, and the value is the amount of debt in EUR.
This mapping can be seen as a sort of accounting for the debts of a specific company. Let
us note that we internally calculate the correspondence between Ethers and EUR.

On the other hand, if the user (normally, the consultant) asks for a cycle compensa-
tion, the tool automatically calls the corresponding method of the creditor smart contract,
called “cancelInvoice”, in order to reduce the amount of debt in the previously presented
mapping. This method is invoked for each invoice in the cycle. As previously mentioned,

Figure 7. Company creation example.

Appl. Sci. 2023, 13, 4805 11 of 14

Algorithm 1: Algorithm for finding debt cycles between companies.

Data: A set of invoices between companies
Result: A set of cycles that can be compensated
debts← ∞
path←−1
visited← 0
debts [origin] = 0;
path [0] = origin;
min = origin;
all_visited = 1;
while all_visited < tam do

for d = 1; d < tam; d++ do
if exists_invoice(minimum, d) and
invoice_qty(minimum, d) <
current_debt(minimum, d) and
visited(d) = false then

debt(minimum, d) =
invoice(minimum, d)

if invoice_qty(minimum, d) <
minimum_debt then

minimum_debt =
invoice_qty(minimum, d)

end
end

end
new_minimum = 1;
for d = 2; d < tam; d++ do
if invoice_qty(minimum, d) <

invoice_qty(new_minimum, d) then
if d == origin then

cycle exists = true;
visited [origin] = 1;
all_visited = tam;
d = tam;

end
new_minimum = d;

end
end

end

Once this information is provided, after clicking “proceed”, an instance of a Solidity
smart contract named “company” is created, and the corresponding transaction is deployed
in the chain (see Figure 8).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15

Figure 7. Company creation example.

Once this information is provided, after clicking “proceed”, an instance of a Solidity
smart contract named “company” is created, and the corresponding transaction is de-
ployed in the chain (see Figure 8).

Figure 8. Transaction for company creation in Ganache.

Moreover, a new block is added to the blockchain (see Figure 9). This logic is inter-
nally provided using the Web3 library.

Figure 9. Added block after company creation in Ganache.

Each company has a Solidity smart contract with three variables: the name of the
company, its CIF, and a mapping from the Ethereum address and debts, i.e., an array
where the indices are the debtor’s address, and the value is the amount of debt in EUR.
This mapping can be seen as a sort of accounting for the debts of a specific company. Let
us note that we internally calculate the correspondence between Ethers and EUR.

On the other hand, if the user (normally, the consultant) asks for a cycle compensa-
tion, the tool automatically calls the corresponding method of the creditor smart contract,
called “cancelInvoice”, in order to reduce the amount of debt in the previously presented
mapping. This method is invoked for each invoice in the cycle. As previously mentioned,

Figure 8. Transaction for company creation in Ganache.

Appl. Sci. 2023, 13, 4805 12 of 14

Moreover, a new block is added to the blockchain (see Figure 9). This logic is internally
provided using the Web3 library.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15

Figure 7. Company creation example.

Once this information is provided, after clicking “proceed”, an instance of a Solidity
smart contract named “company” is created, and the corresponding transaction is de-
ployed in the chain (see Figure 8).

Figure 8. Transaction for company creation in Ganache.

Moreover, a new block is added to the blockchain (see Figure 9). This logic is inter-
nally provided using the Web3 library.

Figure 9. Added block after company creation in Ganache.

Each company has a Solidity smart contract with three variables: the name of the
company, its CIF, and a mapping from the Ethereum address and debts, i.e., an array
where the indices are the debtor’s address, and the value is the amount of debt in EUR.
This mapping can be seen as a sort of accounting for the debts of a specific company. Let
us note that we internally calculate the correspondence between Ethers and EUR.

On the other hand, if the user (normally, the consultant) asks for a cycle compensa-
tion, the tool automatically calls the corresponding method of the creditor smart contract,
called “cancelInvoice”, in order to reduce the amount of debt in the previously presented
mapping. This method is invoked for each invoice in the cycle. As previously mentioned,

Figure 9. Added block after company creation in Ganache.

Each company has a Solidity smart contract with three variables: the name of the
company, its CIF, and a mapping from the Ethereum address and debts, i.e., an array where
the indices are the debtor’s address, and the value is the amount of debt in EUR. This
mapping can be seen as a sort of accounting for the debts of a specific company. Let us note
that we internally calculate the correspondence between Ethers and EUR.

On the other hand, if the user (normally, the consultant) asks for a cycle compensation,
the tool automatically calls the corresponding method of the creditor smart contract, called
“cancelInvoice”, in order to reduce the amount of debt in the previously presented mapping.
This method is invoked for each invoice in the cycle. As previously mentioned, these calls
are made using the Web3 library. Figure 10 shows the automatic transactions run on the
system, which compensates for the cycle of Figure 11.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 15

these calls are made using the Web3 library. Figure 10 shows the automatic transactions
run on the system, which compensates for the cycle of Figure 11.

Figure 10. Transactions for cycle cancelation.

Figure 11. Cycle cancelation example.

6. Conclusions and Future Work
In this paper, a tool for the semiautomatic cancelation of debt cycles among compa-

nies was presented. To this end, an algorithm for cycle calculation was implemented, and
Solidity smart contracts were established for company models. The Web3 library was used
to model the logic of the application with respect to these smart contracts. It is easy to
observe the benefits of using blockchain in this type of problem, where conflict resolution
and traceability are challenging requirements in such systems. The software developed in
this work can be downloaded in the link provided as Supplementary Materials.

As future work, we plan to extend the tool with well-known platforms such as Meta-
mask, and we have deployed an on-premises Ethereum network for deeper testing pur-
poses. In addition, we will deploy the application in other currently available Ethereum
test nets. Lastly, let us note that the system was conceived for transferring debt or other
kinds of assets among participants since, for instance, one company could be interested in
buying another company’s debt due to its high reputation. This feature will be included
in the next versions of the tool.

In general, the problem dealt in this work is an NP problem from the point of view
of computational complexity. However, future work will consist of the implementation of
a parallel algorithm to alleviate the limitations of companies that can be treated in a rea-
sonable amount of time. In fact, the authors are also working on a quantum algorithm
which will allow us to deal with this problem in the future. In this case, the algorithm to

Figure 10. Transactions for cycle cancelation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 15

these calls are made using the Web3 library. Figure 10 shows the automatic transactions
run on the system, which compensates for the cycle of Figure 11.

Figure 10. Transactions for cycle cancelation.

Figure 11. Cycle cancelation example.

6. Conclusions and Future Work
In this paper, a tool for the semiautomatic cancelation of debt cycles among compa-

nies was presented. To this end, an algorithm for cycle calculation was implemented, and
Solidity smart contracts were established for company models. The Web3 library was used
to model the logic of the application with respect to these smart contracts. It is easy to
observe the benefits of using blockchain in this type of problem, where conflict resolution
and traceability are challenging requirements in such systems. The software developed in
this work can be downloaded in the link provided as Supplementary Materials.

As future work, we plan to extend the tool with well-known platforms such as Meta-
mask, and we have deployed an on-premises Ethereum network for deeper testing pur-
poses. In addition, we will deploy the application in other currently available Ethereum
test nets. Lastly, let us note that the system was conceived for transferring debt or other
kinds of assets among participants since, for instance, one company could be interested in
buying another company’s debt due to its high reputation. This feature will be included
in the next versions of the tool.

In general, the problem dealt in this work is an NP problem from the point of view
of computational complexity. However, future work will consist of the implementation of
a parallel algorithm to alleviate the limitations of companies that can be treated in a rea-
sonable amount of time. In fact, the authors are also working on a quantum algorithm
which will allow us to deal with this problem in the future. In this case, the algorithm to

Figure 11. Cycle cancelation example.

Appl. Sci. 2023, 13, 4805 13 of 14

6. Conclusions and Future Work

In this paper, a tool for the semiautomatic cancelation of debt cycles among companies
was presented. To this end, an algorithm for cycle calculation was implemented, and
Solidity smart contracts were established for company models. The Web3 library was used
to model the logic of the application with respect to these smart contracts. It is easy to
observe the benefits of using blockchain in this type of problem, where conflict resolution
and traceability are challenging requirements in such systems. The software developed in
this work can be downloaded in the link provided as Supplementary Materials.

As future work, we plan to extend the tool with well-known platforms such as Meta-
mask, and we have deployed an on-premises Ethereum network for deeper testing pur-
poses. In addition, we will deploy the application in other currently available Ethereum
test nets. Lastly, let us note that the system was conceived for transferring debt or other
kinds of assets among participants since, for instance, one company could be interested in
buying another company’s debt due to its high reputation. This feature will be included in
the next versions of the tool.

In general, the problem dealt in this work is an NP problem from the point of view
of computational complexity. However, future work will consist of the implementation
of a parallel algorithm to alleviate the limitations of companies that can be treated in a
reasonable amount of time. In fact, the authors are also working on a quantum algorithm
which will allow us to deal with this problem in the future. In this case, the algorithm
to be developed will be executed in a DWave platform. However, other alternatives will
be tested.

Supplementary Materials: The software developed for this work has been registered. The registra-
tion, software, and documentation can be downloaded from https://www.safecreative.org/work/22
11302757747-desarrollo-de-software-de-compensacion-de-deuda. Last accessed on 23 March 2023.

Author Contributions: J.A.M.-C., conceptualization, software, methodology, investigation, valida-
tion, and writing—original draft; E.A.-A., conceptualization, methodology, writing—original draft,
and supervision; D.C.-L., writing—original draft, validation, and supervision. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was carried out with the support of IPI Conocimiento y Flexibilidad S.L. company
through the project “Estudio e implementación de algoritmos para la compensación de deuda y su
ejecución en una plataforma paralela”.

Data Availability Statement: No data used in this paper.

Acknowledgments: The authors would like to thank Raúl Mata Jiménez, IPI Conocimiento y Flexi-
bilidad’s for his valuable contribution to this paper. He was crucial in the conceptualization of the
problem and supervision of the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Estudio de Riesgo de Crédito en España. Available online: https://agentes.creditoycaucion.es/ca/gguijarro/noticias/analisis/

detalle/1020-estudio-riesgo3 (accessed on 22 January 2023).
2. Behún, M.; Knežo, D.; Cehlár, M.; Knapčíková, L.; Behúnová, A. Recent Application of Dijkstra’s Algorithm in the Process of

Production Planning. Appl. Sci. 2022, 12, 7088. [CrossRef]
3. Odoo Module for Account Payment Netting. Available online: https://apps.odoo.com/apps/modules/12.0/account_payment_

netting/ (accessed on 23 March 2023).
4. Technosis Software. Available online: https://technosis.de/ (accessed on 23 March 2023).
5. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. March 2009. Available online: https://bitcoin.org/bitcoin.pdf

(accessed on 23 March 2023).
6. Casino, F.; Dasaklis, T.K.; Patsakis, C. A Systematic Literature Review of Blockchain-Based Applications: Current Status,

Classification and Open Issues. Telemat. Inform. 2019, 36, 55–81. [CrossRef]
7. Kumar, R.; Kumar, P.; Jolfaei, A.; Islam, A.K.M.N. An Integrated Framework for Enhancing Security and Privacy in IoT-Based

Business Intelligence Applications. In Proceedings of the 2023 IEEE International Conference on Consumer Electronics (ICCE),
Las Vegas, NV, USA, 6–8 January 2023; pp. 1–6. [CrossRef]

https://www.safecreative.org/work/2211302757747-desarrollo-de-software-de-compensacion-de-deuda
https://www.safecreative.org/work/2211302757747-desarrollo-de-software-de-compensacion-de-deuda
https://agentes.creditoycaucion.es/ca/gguijarro/noticias/analisis/detalle/1020-estudio-riesgo3
https://agentes.creditoycaucion.es/ca/gguijarro/noticias/analisis/detalle/1020-estudio-riesgo3
https://doi.org/10.3390/app12147088
https://apps.odoo.com/apps/modules/12.0/account_payment_netting/
https://apps.odoo.com/apps/modules/12.0/account_payment_netting/
https://technosis.de/
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1016/j.tele.2018.11.006
https://doi.org/10.1109/ICCE56470.2023.10043450

Appl. Sci. 2023, 13, 4805 14 of 14

8. Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Islam, A.K.M.N.; Shorfuzzaman, M. Permissioned Blockchain and Deep Learning
for Secure and Efficient Data Sharing in Industrial Healthcare Systems. IEEE Trans. Ind. Inform. 2022, 18, 8065–8073. [CrossRef]

9. Kumar, R.; Kumar, P.; Tripathi, R.; Gupta, G.P.; Garg, S.; Hassan, M.M. BDTwin: An Integrated Framework for Enhancing
Security and Privacy in Cybertwin-Driven Automotive Industrial Internet of Things. IEEE Internet Things J. 2022, 9, 17110–17119.
[CrossRef]

10. Greenspan, G. Ending the Bitcoin vs. Blockchain Debate. Available online: http://www.multichain.com/blog/2015/07/bitcoin-
vs-blockchain-debate (accessed on 22 January 2023).

11. Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303.
[CrossRef]

12. Haferkorn, C.M.; Quintana Diaz, J.M. Seasonality and Interconnectivity within Cryptocurrencies—An Analysis on the Basis of Bitcoin,
Litecoin and Namecoin; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 106–120.

13. Notheisen, B.; Cholewa, J.B.; Shanmugam, A.P. Trading Real-World Assets on Blockchain. Bus Inf. Syst. Eng. 2017, 59, 425–440.
[CrossRef]

14. Sedlmeir, J.; Buhl, H.U.; Fridgen, G.; Keller, R. The Energy Consumption of Blockchain Technology: Beyond Myth. Bus. Inf. Syst.
Eng. 2020, 62, 599–608. [CrossRef]

15. Ante, L.A. A place next to Satoshi: Foundations of blockchain and cryptocurrency research in business and economics. Scientometrics
2020, 124, 1305–1333. [CrossRef]

16. Risius, M.; Spohrer, K. A Blockchain Research Framework. Bus. Inf. Syst. Eng. 2017, 59, 385–409. [CrossRef]
17. Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [CrossRef]
18. European Commission. Blockchain Now and Tomorrow: Assessing Multidimensional Impacts of Distributed Ledger Technologies.

2019. Available online: https://ec.europa.eu/jrc/en/facts4eufuture/blockchain-now-and-tomorrow (accessed on 22 January 2023).
19. Truffle Suite. Available online: https://trufflesuite.com/docs/truffle/ (accessed on 22 January 2023).
20. Ali, O.; Ally, M.; Dwivedi, C.Y. The state of play of blockchain technology in the financial services sector: A systematic literature

review. Int. J. Inf. Manag. 2020, 54, 102–199. [CrossRef]
21. Varma, J.R. Blockchain in Finance. Vikalpa J. Decis. Makers 2019, 44, 1–11. [CrossRef]
22. Chiu, J.; Koeppl, T.V. Blockchain-Based Settlement for Asset Trading. Rev. Financ. Stud. 2019, 32, 1716–1753. [CrossRef]
23. Crepaldi, M. Distributed ledgers, EOP, and debt recovery mechanisms: A new technology for civil procedure. Civ. Proced. Rev.

2018, 9, 59–69.
24. Monrat, A.A.A.; Schelen, O.; Andersson, K. A Survey of Blockchain from the Perspectives of Applications, Challenges, and

Opportunities. IEEE Access 2019, 7, 117134–117151. [CrossRef]
25. The European Union Blockchain Observatory Forum, Blockchain Innovation in Europe. 2018. Available online: https://

dutchblockchaincoalition.org/assets/images/default/Report-innovation-in-europe-light.pdf (accessed on 22 January 2023).
26. Yeoh, P. Regulatory issues in blockchain technology. J. Financ. Regul. Compliance 2017, 25, 196208. [CrossRef]
27. Schär, F. Decentralized Finance: On Blockchain- and Smart Contract-Based Financial Markets. Federal ReServe Bank of St. Louis Review,

Second Quarter; The Federal Reserve Bank of St. Louis: St. Louis, MO, USA, 2021; pp. 153–174. [CrossRef]
28. Blechschmidt, B. Blockchain in Europe: Closing the Strategy Gap. Cognizant Reports. 2018. Available online: https://www.

cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf (accessed on 22 January 2023).
29. Escala, A. Definiendo un Nuevo Futuro Para la Banca Con Blockchain; IBM Reports; IBM: Armonk, NY, USA, 2018.
30. Grech, A.; Camirelli, A.F. Blockchain in Education; European Commission: Brussels, Belgium, 2017.
31. European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry; Blockchain in Healthcare: Brussels,

Belgium, 2017.
32. Allende, M. Blockchain: Cómo Desarrollar Confianza en Entornos Complejos Para Generar Valor de Impacto Social; Banco Interamericano

de Desarrollo: Washington, DC, USA, 2018.
33. Ethereum. Available online: https://ethereum.org/ (accessed on 23 March 2022).
34. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. Available online: https://ethereum.org/

en/whitepaper/ (accessed on 22 January 2023).
35. Wood, G. Ethereum: A secure decentralised generalised transaction ledger; EIP-150 REVISION. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
36. Cardano. Available online: https://cardano.org (accessed on 22 January 2023).
37. Hyperledger Fabric. Available online: https://www.ibm.com/blockchain/hyperledger (accessed on 22 January 2023).
38. Hyperledger Technology. Available online: https://www.hyperledger.org/ (accessed on 22 January 2023).
39. Szabo, N. The Idea of Smart Contracts. 1997. Available online: http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/

CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html (accessed on 22 January 2023).
40. Namecoin. Available online: https://www.namecoin.org (accessed on 22 January 2023).
41. Ganache. Available online: https://trufflesuite.com/docs/ganache/ (accessed on 22 January 2023).
42. Metamask. Available online: https://metamask.io (accessed on 22 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TII.2022.3161631
https://doi.org/10.1109/JIOT.2021.3122021
http://www.multichain.com/blog/2015/07/bitcoin-vs-blockchain-debate
http://www.multichain.com/blog/2015/07/bitcoin-vs-blockchain-debate
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1007/s12599-017-0499-8
https://doi.org/10.1007/s12599-020-00656-x
https://doi.org/10.1007/s11192-020-03492-8
https://doi.org/10.1007/s12599-017-0506-0
https://doi.org/10.1007/s12599-017-0467-3
https://ec.europa.eu/jrc/en/facts4eufuture/blockchain-now-and-tomorrow
https://trufflesuite.com/docs/truffle/
https://doi.org/10.1016/j.ijinfomgt.2020.102199
https://doi.org/10.1177/0256090919839897
https://doi.org/10.1093/rfs/hhy122
https://doi.org/10.1109/ACCESS.2019.2936094
https://dutchblockchaincoalition.org/assets/images/default/Report-innovation-in-europe-light.pdf
https://dutchblockchaincoalition.org/assets/images/default/Report-innovation-in-europe-light.pdf
https://doi.org/10.1108/JFRC-08-2016-0068
https://doi.org/10.20955/r.103.153-74
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://ethereum.org/
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://cardano.org
https://www.ibm.com/blockchain/hyperledger
https://www.hyperledger.org/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://www.namecoin.org
https://trufflesuite.com/docs/ganache/
https://metamask.io

	Introduction
	Debt Compensation: An Example
	Related Work
	Conceptualizing Blockchain Technology
	Blockchain Technologies
	Smart Contracts
	Related Technologies

	Automation of Debt Compensation Process by Means of Smart Contracts
	Conclusions and Future Work
	References

