
Citation: Yao, F.; Wang, G.-G.

Transfer Learning Based on

Clustering Difference for Dynamic

Multi-Objective Optimization. Appl.

Sci. 2023, 13, 4795. https://doi.org/

10.3390/app13084795

Received: 28 February 2023

Revised: 30 March 2023

Accepted: 4 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Transfer Learning Based on Clustering Difference for Dynamic
Multi-Objective Optimization
Fangpei Yao and Gai-Ge Wang *

School of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
* Correspondence: wgg@ouc.edu.cn

Abstract: Dynamic multi-objective optimization problems (DMOPs) have become a research hotspot
in engineering optimization, because their objective functions, constraints, or parameters may change
over time, while quickly and accurately tracking the changing Pareto optimal set (POS) during the
optimization process. Therefore, solving dynamic multi-objective optimization problems presents
great challenges. In recent years, transfer learning has been proved to be one of the effective means to
solve dynamic multi-objective optimization problems. However, this paper proposes a new transfer
learning method based on clustering difference to solve DMOPs (TCD-DMOEA). Different from the
existing methods, it uses the clustering difference strategy to optimize the population quality and
reduce the data difference between the target domain and the source domain. On this basis, transfer
learning technology is used to accelerate the construction of initialization population. The advantage
of the TCD-DMOEA method is that it reduces the possibility of negative transfer and improves the
performance of the algorithm by improving the similarity between the source domain and the target
domain. Experimental results show that compared with several advanced dynamic multi-objective
optimization algorithms based on different benchmark problems, the proposed TCD-DMOEA method
can significantly improve the quality of the solution and the convergence speed.

Keywords: dynamic multi-objective optimization; evolutionary algorithm; prediction; transfer learning

1. Introduction

Dynamic multi-objective optimization problems (DMOPs) [1,2] are optimization prob-
lems in which the objective function and decision variables are related to time (environ-
ment). Their optimal solution is a set of Pareto optimal solutions that change dynamically
with time (environment). Different from solving the static multi-objective optimization
problem, when dealing with this kind of optimization problem, it is necessary to not only
optimize several conflicting objectives, but also deal with the changes of objective function
and constraints at the same time. DMOPs are widely used to solve many real-world prob-
lems, and common application domains include scheduling [3,4], control [5], chemistry [6],
industry [7] and energy design [8].

An ideal dynamic multi-objective optimization algorithm should contain three nec-
essary parts, namely change detection, change response and multi-objective optimization
algorithm (MOEA) [9–12]. When the time variable changes, the algorithm needs to detect
the change of the objective function in time and respond to the change according to dif-
ferent types of changes, deal with the optimization problem after the change, and use the
multi-objective optimization algorithm to iterate the population, then quickly find DPF
and DPS at the current moment. In fact, DMOPs can be regarded as a static multi-objective
optimization problem (SMOEA) under a set of discrete time variables that can convert
complex dynamic characteristics into static processing, which is more convenient and easier
to handle, but its disadvantages are also obvious. That is, the processing speed is slow,
and timeliness cannot be guaranteed. When encountering an environment with a high fre-
quency of changes, it often fails to achieve the purpose of quickly tracking the Pareto front,

Appl. Sci. 2023, 13, 4795. https://doi.org/10.3390/app13084795 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084795
https://doi.org/10.3390/app13084795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9199-0622
https://orcid.org/0000-0002-3295-8972
https://doi.org/10.3390/app13084795
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084795?type=check_update&version=2

Appl. Sci. 2023, 13, 4795 2 of 23

resulting in poor performance of the algorithm. Therefore, for ideal DMOEAs, a suitable
change response mechanism is the top priority in dealing with DMOPs. The existing envi-
ronmental response strategies can be divided into the following four categories: diversity
maintenance, memory strategy, prediction mechanism and transfer learning [13,14].

Diversity maintenance improves algorithm performance mainly by maintaining or
improving population diversity. The specific process is shown in Figure 1a. Xu et al. [15]
used the perturbation method to divide the decision variables into time-dependent and
time-independent according to the dependence of the decision variables on the time param-
eters, and respectively adopted the optimal solution of the corresponding decision variables
of the co-evolution of two subpopulations. In addition, Zhang et al. [16] maintained popu-
lation diversity by simulating magnetic particles, and then quickly converged to the Pareto
front in the current environment. Generally speaking, the diversity maintenance strategy
directly adopts the Pareto optimal solution set of the optimization problem in the previous
environment as the initial population in the current environment. Liu et al. [17] used an
additional auxiliary strategy to maintain diversity that maintains two archives focusing
on convergence and diversity, respectively. In addition, for some problems with biased
characteristics, an interval mapping strategy is designed to make their solutions have good
diversity. Based on this, Liang et al. [18] divided the decision variables into three parts
and adopted the methods of diversity maintenance, prediction and diversity introduction,
respectively, to generate high-quality offspring individuals and speed up the convergence
of the population. Diversity preservation methods have better performance for DMOPs
with weaker changes, but when the optimal solution of the historical environment deviates
far from the real Pareto front in the current environment, it will lead to poor problem
tracking performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 21

translation, rotation and composite problems. Compared with the existing three predic-
tion methods, the proposed prediction mechanism has significant advantages in solving
most DMOPs. Zheng et al. [25] used different prediction strategies for different decision
variables to generate a new initial population according to the different effects of decision
variables on convergence and distribution. Ma et al. [26] recently proposed a feature in-
formation prediction algorithm for DMOPs. Among them, the joint distribution adapta-
tion model is used to identify the distribution of solutions after environmental changes
and create a population in a new environment on this basis.

（c）
（d）

（a）

Population individual
Population centroid

Ct

Ct−1

Ct−3

special individual

Memory
Retrieval?

Resue

update

Population memory

Add to population
Add to memory

Population individual

（b）

Removed

select

Maintain
diversity

Introduced individual

Removed individual

Population individual

Geodesic

S0 S0.2 S0.4
S0.6 S0.8 S1

A

B
C

D

E

G(d,n)

Ct−2

Figure 1. Description of environmental response strategies and methods. (a) diversity maintenance.
(b) Memory based approach. (c) Prediction based approach (d) Manifold transfer learning method.

Although the prediction model is more widely applicable, it inevitably has prediction
errors, which affect the accurate guidance of the optimization process. From a statistical
point of view, the solution set used to construct the prediction model and the solution set
predicted by the prediction model must obey the independent and identical distribution
assumption, thus ignoring the non-independence and identical distribution of the data. In
view of this, Jiang et al. [27] introduced the transfer learning strategy as the environment
response strategy.

Transfer learning makes full use of the problem information with similar character-
istics to guide the prediction or classification of current problems and improve recognition
accuracy. Jiang et al. [28] proposed a multi-objective dynamic learning method based on
evolutionary learning. Using the transfer principal component analysis method, we learn
the Pareto optimal solution set in the adjacent historical environment and generate a set
of initial populations through the transfer model in the current environment. Experi-
mental results show that this method can accelerate population convergence and accu-
rately track the optimal solution in the new environment. Jiang et al. [29] proposed a fast

Figure 1. Description of environmental response strategies and methods. (a) diversity maintenance.
(b) Memory based approach. (c) Prediction based approach (d) Manifold transfer learning method.

Appl. Sci. 2023, 13, 4795 3 of 23

Methods based on memory strategies and predictive mechanisms are common ap-
proaches to address DMOPs; the process is shown in Figure 1b. Chen et al. [19] proposed an
evolutionary algorithm for dealing with time-varying constraints and objective functions.
The algorithm employs new mating selection and environment selection operators that
allow the population to contain both feasible and infeasible solutions and reuse previous
solutions based on information obtained from new environments. Yu et al. [20] used polyno-
mial regression predictors to extract linear or non-linear relationships in historical changes
to generate good initial populations for new environments. Zou et al. [21] developed a
reinforcement learning method to respond to environmental changes according to the
severity of the change, which is considered as three states (mild, moderate and severe). The
method adopts three actions of knee-based prediction, center-based prediction and local
search, and selects a series of actions according to a given state to reorient the population
to a new Pareto front (PF).

Based on the evolution information of the optimization problem in the historical en-
vironment, the prediction strategy predicts the fitness terrain or the dominant evolution
direction of the current environment and provides useful guidance for the evolutionary
optimization process, thereby improving the performance of the algorithm. The process of
the forecasting model is shown in Figure 1c. Geng et al. [22] designed a group prediction
strategy by converting the individual positions at different moments in the same direction
of convergence in the target space into time series, predicting the position at the next mo-
ment, improving the diversity and effectiveness of the predicted population, and effectively
reducing the convergence time of the algorithm after changing the problem. Wang et al. [23]
proposed a prediction strategy based on ensemble learning. The strategy has three forecast-
ing models, including linear and non-linear. Given this, Rong et al. [24] constructed a multi
model prediction method for the characteristic change types of translation, rotation and
composite problems. Compared with the existing three prediction methods, the proposed
prediction mechanism has significant advantages in solving most DMOPs. Zheng et al. [25]
used different prediction strategies for different decision variables to generate a new initial
population according to the different effects of decision variables on convergence and
distribution. Ma et al. [26] recently proposed a feature information prediction algorithm
for DMOPs. Among them, the joint distribution adaptation model is used to identify the
distribution of solutions after environmental changes and create a population in a new
environment on this basis.

Although the prediction model is more widely applicable, it inevitably has prediction
errors, which affect the accurate guidance of the optimization process. From a statistical
point of view, the solution set used to construct the prediction model and the solution set
predicted by the prediction model must obey the independent and identical distribution
assumption, thus ignoring the non-independence and identical distribution of the data. In
view of this, Jiang et al. [27] introduced the transfer learning strategy as the environment
response strategy.

Transfer learning makes full use of the problem information with similar characteristics
to guide the prediction or classification of current problems and improve recognition
accuracy. Jiang et al. [28] proposed a multi-objective dynamic learning method based on
evolutionary learning. Using the transfer principal component analysis method, we learn
the Pareto optimal solution set in the adjacent historical environment and generate a set of
initial populations through the transfer model in the current environment. Experimental
results show that this method can accelerate population convergence and accurately track
the optimal solution in the new environment. Jiang et al. [29] proposed a fast dynamic
multi-objective evolutionary algorithm based on manifold learning. This method combines
the memory mechanism with the learning characteristics of manifold transfer to predict the
optimal individual in new instances in the process of evolution. The process is shown in
Figure 1d. Liu et al. [30] recently proposed the combination of PPS method and transfer
learning to improve population prediction. Jiang et al. [31] proposed a method based on
individual transfer learning to solve DMOPs. Unlike the existing method, this method

Appl. Sci. 2023, 13, 4795 4 of 23

uses a pre-search strategy to filter out some high-quality individuals with good diversity,
avoiding negative migration caused by individual agglomeration. Fan et al. [32] also
applied transfer learning to solve DMOPs with a large amount of computing, and used
alternative auxiliary evolution algorithms, especially MOEA/DEGO, as the baseline to
evolve and optimize under limited functional assessment. In addition, transfer learning is
used to map the previously archived training data to the current environment to quickly
start the proxy model building process, so that the dynamic multi-objective evolutionary
algorithm can better adapt to the new environment.

Combining the above transfer learning strategies, the transfer learning strategy has
good performance in solving dynamic multi-objective optimization test problems that
contain periodic changes and have a large degree of change. However, the application of
transfer learning to DMOP solving is still in its infancy. Multiple studies have shown that
hybrid change response methods generally perform better than single methods because
hybrid methods can handle more diverse dynamic features than single methods. This is
demonstrated by the increasing use of mixed strategies in recent work [33].

However, the existing transfer learning methods often need a long training time, which
is the main obstacle of some DMOPs. One of the reasons for the slow running speed is
that the existing transfer learning methods often realize knowledge reuse by searching the
potential space, which will require more parameter settings and consume more computing
resources, resulting in a large amount of computing resources wasted on searching low-
quality individuals, which greatly increases the possibility of negative transfer [34,35]. If
the knowledge possessed by these high-quality individuals can be transferred (from the
perspective of convergence and diversity), then more effective and accurate prediction
models can be built for the application of DMOPs in various real complex environments.

At the same time, existing dynamic multi-objective optimization algorithms based on
forecasting strategies usually use a single forecasting strategy. On the one hand, a single
prediction strategy cannot quickly and effectively respond to complex environmental
changes; on the other hand, the group diversity generated by a single prediction strategy is
poor, and it cannot quickly and effectively track the Pareto front, resulting in the algorithm
not being able to quickly converge. Based on the above analysis, in order to reduce the
occurrence of negative transfer and improve the running speed, this paper proposes a new
environment response mechanism that combines the cluster difference strategy and the
transfer learning strategy.

In this paper, the similarity between the source domain and the target domain is
improved by adding a clustering difference strategy to predict individuals before transfer
learning, thereby reducing the possibility of negative transfer. Then, the transfer learning
method TradaBoost [36] is used to build the prediction model. A higher quality initial
population is generated through this model, followed by subsequent multi-objective op-
timization. Therefore, this method is suitable for any population-based multi-objective
optimization algorithm and can achieve a large performance improvement. Experiments
on different test functions show that the proposed strategy is highly competitive in dealing
with problems with different dynamic characteristics and achieves better convergence
and distribution.

The contributions of this paper are summarized as follows:

(1) The Pareto solution set at the next moment is predicted by the clustering difference
strategy, so as to narrow the difference between the source domain and the target
domain of transfer learning, thereby reducing the possibility of negative transfer.
Therefore, the preprocessing process of the target domain is very necessary and can
make the subsequent transfer learning more efficient.

(2) After the target domain is preprocessed, a sample classifier based on the TradaBoost al-
gorithm is used to extract high-quality populations, which can effectively improve the
running speed of the algorithm, avoiding more parameter settings and the excessive
consumption of computing resources.

Appl. Sci. 2023, 13, 4795 5 of 23

The rest of this paper is organized as follows. Section 2 introduces some basic concepts
of dynamic multi-objective optimization problems and TradaBoost. Section 3 presents
the proposed clustering difference strategy and its combination with transfer learning for
solving dynamic multi-objective evolutionary optimization problems. Section 4 presents
the experimental setup and results, and discusses the comparison with five other typical
dynamic multi-objective optimization algorithms. Section 5 concludes this paper and
presents an outlook for future research directions.

2. Background
2.1. Dynamic Multi-Objective Optimization Problems

The mathematical form of dynamic multi-objective optimization of DMOPs is as
follows [37]:

Minimize F(x, t) = 〈 f1(x, t), f2(x, t), . . . , fm(x, t)〉
s.t.gi(x, t) ≤ 0, i = 1, 2, . . . , p
hj(x, t) = 0, j = 1, 2, . . . , q

(1)

where x = 〈x1, x2, . . . , xn〉 is the decision vector, t is a time or environment variable.
fi(x, t) : Ω→ R(i = 1, . . . , M) and Ω = [L1, U1]× [L2, U2]× . . .×[Ln, Un] are the lower

and upper bounds of the i-decision variable, respectively. gi(x, t) ≤ 0, i = 1, 2, . . . , p is
the i-th inequality constraint, hj(x, t) = 0, j = 1, 2, . . . , q is the j-th equality constraint. The
purpose of solving the DMOP is to find a set of solutions in different times or environments,
so that all objectives are as small as possible.

Definition 1 (Dynamic Decision Vector Domination [38]). At time t, the decision vector x1
Pareto dominates another vector x2, expressed as x1 � x2, if and only if{

fi(x1, t) ≤ fi(x2, t) ∀i = 1, . . . , m
fi(x1, t) ≤ fi(x2, t) ∃i = 1, . . . , m.

(2)

Definition 2 (Dynamic Pareto-Optimal Set (DPS) [39]). If a decision vector x* at time t satisfies

DPS = {x∗ ∈ Ω|∃x ∈ Ω, x �t x∗} (3)

For a fixed time window t and a decision vector x∗ ∈ Ω, a decision vector x* is said to be
non-dominant if no other decision vector x ∈ Ω dominates x*, and the dynamic Pareto-optimal set
(DPS) is the set of all non-dominated solutions in the decision space.

Definition 3 (Dynamic Pareto-Optimal Front (DPF) [39]). DPF is the set of the corresponding
objective vectors of the DPS, and

DPF = {y∗|y∗ = F(x∗, t), x∗ ∈ DPS} (4)

Algorithm 1 is the main framework of DMOEA. After initializing the current gen-
eration of the population, the algorithm employs several strategies to respond to the
environment when it changes. The initialized population is updated with the effective
strategy, and the time window t is incremented by 1 to represent the next environmental
change. In the next step, the i-th multi-objective problem is optimized for generation using
a multi-objective evolutionary algorithm. SMOEA uses the updated population as the
initial population. Finally, repeat the process if the stopping condition is not met.

Appl. Sci. 2023, 13, 4795 6 of 23

Algorithm 1: The main frame of DMOEA.

Input: The number of generations: g; the time window: t;
Output: Optimal solution x* at every time step;
Initialize population POP0;
While stop criterion is not met do

if change is detected, then
Update the population using some strategies: reuse memory, tune parameters, or

predict solutions;
t = t + 1;
end if

Optimize population with an MOEA for one generation and get optimal solution x*;
end while
g = g + 1;
return x*

2.2. TradaBoost

This paper adopts a method called TradaBoost to meet the requirement of DMOP.
TradaBoost is evolved from the Adaboost algorithm, but the Adaboost algorithm, like
most traditional machine learning algorithms [40], assumes that the data of the training
set and the test set are the same distribution. For migration learning, this assumption is
not true. In addition, for the part of the data in the training set that is different from the
data in the test set, it will directly lead to a decline in the prediction effect. The TradaBoost
algorithm adds weight to each training set sample, and uses the weight to weaken the test
set data with different distributions, thereby improving the effect of the model. In each
iterative training, if the model misclassifies a source domain sample, then this sample may
have a large gap with the target domain sample, so the weight of this sample needs to be
reduced. By multiplying the sample by a weight between 0 and 1, through the influence
of the weight value, in the next iteration, the influence of this sample on the classification
model will be reduced. After a series of iterations, the weights of samples in the source
domain that is similar to the target domain or helpful to the classification of the target
domain will increase, while the weights of other source domains will decrease.

If there are similarities between multiple source domain datasets and target datasets,
in this case, you can try to use multiple source domain datasets to help the learning of the
target dataset. More data can be obtained through the above method, so that the relationship
between the source data and the target data becomes closer, the transfer process easier, and
the classification effect more accurate.

Multi-source TradaBoost assumes that the source training data come from different
source domains. In each iteration, the source domain most relevant to the target domain is
selected to train a weak classifier, and finally, a strong classifier is obtained. This method
can ensure that the transferred knowledge is most relevant to the target task, and through
continuous learning, the TradaBoost algorithm can obtain a more accurate classifier for the
target domain samples.

3. Proposed TCD-DMOEA

This section details the transfer learning based on clustering difference for the dynamic
multi-objective optimization algorithm (TCD-DMOEA). Figure 2 describes the process of
TCD-DMOEA. Specifically, first of all, the framework of the algorithm is outlined. Then,
the specific process of the clustering type strategy is described. Finally, we analyze the
calculation complexity of the strategy.

Appl. Sci. 2023, 13, 4795 7 of 23
Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

Start

Maximum generation

Yes

DMOPs

Initialize the population
and parameters

Clustering Difference

Case Transfer

A SMOEA

Output:POS

end

Environment
changes

Yes

No

No

Figure 2. Procedure of TCD-DMOEA.

3.1. Overall Framework
The main framework of TCD-DMOEA is introduced in Algorithm 2. When an envi-

ronmental change is detected, in the first two changes, evolution is performed using
SMOEA. In subsequent changes, the clustering difference strategy is used to process the
target domain (see Algorithm 3), and then the transfer learning prediction model (see Al-
gorithm 4) is used to process high-quality individuals as the initial population for subse-
quent iterations.

Algorithm 2: TCD-DMOEA
Input: The dynamic optimization problem ()tF x , a static multi-objective optimization
algorithm SMOEA;
Output: The POS of the ()tF x at the different moments;
Initialization;

 tPOS = SMOEA ()()tF x ;
Generate randomly dominated solutions '

tP ;
while the environment has changed, do
t = t + 1;

1

1

'
1

t

tS tD POS P
−

−−= ∪ ;
t
TD = Processing (())tF x ;

iPop = Case-Transfer 1()t t
S TD D− ∪ ;

POSt = SMOEA (()), tPop xi F ;
Generate randomly dominated solutions '

tP ;
return POSt

end while

Figure 2. Procedure of TCD-DMOEA.

3.1. Overall Framework

The main framework of TCD-DMOEA is introduced in Algorithm 2. When an en-
vironmental change is detected, in the first two changes, evolution is performed using
SMOEA. In subsequent changes, the clustering difference strategy is used to process the
target domain (see Algorithm 3), and then the transfer learning prediction model (see
Algorithm 4) is used to process high-quality individuals as the initial population for
subsequent iterations.

Algorithm 2: TCD-DMOEA.

Input: The dynamic optimization problem Ft(x), a static multi-objective optimization
algorithm SMOEA;
Output: The POS of the Ft(x) at the different moments;
Initialization;
POSt = SMOEA(Ft(x));
Generate randomly dominated solutions Pt

′;
while the environment has changed, do
t = t + 1;
D

t−1

S = POSt−1 ∪ P′
t−1

;
Dt

T =Processing(Ft(x));
iPop = Case-Transfer(Dt−1

S ∪ Dt
T);

POSt = SMOEA(iPop, Ft(x));
Generate randomly dominated solutions Pt

′;
return POSt

end while

Appl. Sci. 2023, 13, 4795 8 of 23

Algorithm 3: Processing.

Input: The current population PT; the number of individuals in population, N;
Output: The predicted population PP
Initialize the random population PT and evaluate the initial population PT;
Change detection (PT);
if change is detected, then

while the maximum number of iterations is not reached, do
for i = 1 : N do
Use K-means algorithm to cluster the population P into 5 clusters;
Calculate the centroid Ci

T of each cluster;
Calculate Ci

T+1 using Formula (8);
end for

PT+1 =
{

Ci
T+1};

end while
end if
PP = PT+1;
return PP

Algorithm 4: Case transfer.

Input: The two labeled sets DS and DT, and unlabeled data set D, a based learning algorithm
Learner, and the maximum number of iterations N;
Output: The initial population initPop;

Initialize the initial weight vector ω1(x) =

{
1
|DS | , x ∈ XS

1
DT

, x ∈ XT
;

for i = 1 to N do
set Pt according to (13);
Call Learner, providing it the combined training set D with the distribution over D. Then, get

back a hypothesis ht : X → Y ;
Calculate εt according to (9);
Set βt, Update the weight vector ωt+1

i according to (10);
end for

Get h f (x) according to (11);
Sample solutions xtest at the current environment;

return initPop =
{

x
∣∣∣h f (x) = +1, x ∈ xtest

}
3.2. Processing of Target Domain

The output of the target domain processing stage is the predicted population. The
purpose of generating predicted population is to reduce the possibility of negative transfer
in subsequent transfer learning. According to the characteristics of transfer learning,
negative transfer can be improved by increasing the amount of effective source domain
knowledge or reducing the data distribution difference between neighbors. Through the
clustering difference strategy, the characteristics of the source domain and the target domain
data are first extracted to reduce the difference between the data, and then the knowledge
transfer is performed. At the same time, the population quality is improved through the
clustering difference strategy to increase the amount of effective source domain knowledge.

In the dynamic environment, the objective function changes with time, but there is a
certain relationship between the two objectives before and after the change. Therefore, the
optimal solution information before the change can be used to predict the distribution of
the next solution. First, the population is divided into five categories using the k-means
algorithm, and the centroids of these five categories are calculated separately. Then, the first-
order difference is used to predict the next corresponding centroid, and these centroids are
formed into a predicted population. Figure 3 shows the process of prediction of clustering
differential strategies.

Appl. Sci. 2023, 13, 4795 9 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

In the dynamic environment, the objective function changes with time, but there is a
certain relationship between the two objectives before and after the change. Therefore, the
optimal solution information before the change can be used to predict the distribution of
the next solution. First, the population is divided into five categories using the k-means
algorithm, and the centroids of these five categories are calculated separately. Then, the
first-order difference is used to predict the next corresponding centroid, and these cen-
troids are formed into a predicted population. Figure 3 shows the process of prediction of
clustering differential strategies.

Population Individual

Population centroid

f1

Ct+1

CtCt−1

f2

Figure 3. Classification of clustering dynamics.

Algorithm 3 gives the pseudo code of target domain processing. The basic principle
of K-means algorithm is: assuming a given data sample X, contains n objects

{ }1 2 3, , , , nX X X X X= , each of these objects has m-dimensions attributes. The goal of the
K-means algorithm is to cluster n objects into a specified k-class cluster based on similarity
between objects. Each object belongs to only one of the class clusters with the smallest
distance to the center of the class cluster. For K-means, k cluster centers
{ }1 2 3, , , , 1 ,kC C C C k n< ≤ need to be initialized first; the Euclidean distance from each
object to the center of each cluster is calculated as shown in the following Formula (5):

2

1
(,) ()

m

i j it jt
t

dis X C X C
=

= − (5)

In the above equation, Xi represents the i-th object 1 i n≤ ≤ , Cj represents the cen-
ter of the j-th cluster 1 j k≤ ≤ , Xit represents the t-property of the i-th object,
1 t m≤ ≤ , Cjt represents the t-th attribute of the j-th cluster center.

The distance from each object to each cluster center is compared sequentially, and
the objects are assigned to the cluster of the nearest cluster center, resulting in k class clus-
ters { }1 2 3 , , , , kS S S S .

The K-means algorithm defines the prototype of the class cluster with the center,
which is the average of all objects in the class cluster in each dimension, and its calculation
process is shown in Formula (6):

Figure 3. Classification of clustering dynamics.

Algorithm 3 gives the pseudo code of target domain processing. The basic prin-
ciple of K-means algorithm is: assuming a given data sample X, contains n objects
X = {X1, X2, X3, . . . , Xn}, each of these objects has m-dimensions attributes. The goal
of the K-means algorithm is to cluster n objects into a specified k-class cluster based on
similarity between objects. Each object belongs to only one of the class clusters with
the smallest distance to the center of the class cluster. For K-means, k cluster centers
{C1, C2, C3, . . . , Ck}, 1 < k ≤ n need to be initialized first; the Euclidean distance from
each object to the center of each cluster is calculated as shown in the following Formula (5):

dis(Xi, Cj) =

√
m

∑
t=1

(Xit − Cjt)
2 (5)

In the above equation, Xi represents the i-th object 1 ≤ i ≤ n, Cj represents the center
of the j-th cluster 1 ≤ j ≤ k, Xit represents the t-property of the i-th object, 1 ≤ t ≤ m,
Cjt represents the t-th attribute of the j-th cluster center.

The distance from each object to each cluster center is compared sequentially, and the
objects are assigned to the cluster of the nearest cluster center, resulting in k class clusters
{ S1, S2, S3, . . . , Sk}.

The K-means algorithm defines the prototype of the class cluster with the center, which
is the average of all objects in the class cluster in each dimension, and its calculation process
is shown in Formula (6):

Ct =
∑Xi∈Sl

Xi

|Sl |
(6)

where Cl represents the center of the l-th cluster, 1 ≤ l ≤ k, Sl represents the num-
ber of objects in the l-th class cluster, Xi represents the i-th object in the l-th class clus-
ter, 1 ≤ i ≤ |Sl |. The population is divided into five categories according to the
K-means principle above, and the centroid Ci

T(i = 1, 2, . . . , 5) of each cluster is calculated
after clustering.

The first-order differences are then used to derive the centroids Ci
T(i = 1, 2, . . . , 5) of

each cluster at the next moment. PT is the DPS obtained by the time window T, then Ci
T

can be calculated by the following Formula (7):

Ci
T =

1
|PT | ∑

x∈PT

x (7)

Appl. Sci. 2023, 13, 4795 10 of 23

where Ci
T+1 represents the centroid of each cluster in the next time window T+1, as

obtained by Formula (8):

Ci
T+1 = Ci

T + Ci
T −
−−−→
Ci

T−1 (8)

where Ci
T+1 will constitute a predicted population.

3.3. Transfer Learning

After the predicted population is generated, the source and target domains for transfer
learning are specified. Figure 4 describes the instance migration program of TCD-DMOEA.
Step 1: Treat the target domain; step 2: The solution in which step 1 is processed and the
previous solution (not just the nondominated solutions) are entered into the TradaBoost
algorithm. Step 3: Use the TradaBoost algorithm to generate a strong classifier hf. Step 4:
Enter hf multiple individuals generated by the current time. Step 5: Individuals recognized
as “good” by the classifier hf will form a high-quality initial group.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21

hfTradaBoostProcessing of
target domain

①

④②

③ ⑤

Case Transfer

High quality
population

hf1

hfN
hf

Figure 4. Schematic of procedure case transfer.

Algorithm 4 show the main program of the proposed TCD-DMOEA method. During
the transfer process, the target domain DT is the predicted population, and the source do-
main DS is the solution obtained in the past environment. These solutions are then labeled
with 1() { }: , , 1T Sc x x D D y y∈ ∪ → ∈ + − . For each domain, the non-dominant solution is
labeled +1, and the dominant solution is labeled -1.

Call Learner, according to the combined training data D and the weight distribution
Pt on D and the unlabeled data s, to obtain a classifier :th X Y→ in S; statistics on the
error rate of ht on Dt by Formula (9):

() ()
1

1

tn m
i t i i

t n m t
i n ii n

h x c xω
ε

ω

+

+
= +

= +

−
=

 (9)

If 0.5tε > then the algorithm terminates; set up ()/ 1t t tβ ε ε= − ,

()1/ 1 2ln /n Nβ = + , sets the new weight vector by Formula (10):

() ()

() ()
1 , 1, ,

, 1, ,

t i i

t i i

h x c xt
it

i h x c xt
i

i m

i m m n

ω β
ω

ω β

−
+

− −

 ==
= + +

 (10)

Finally, output the final classifier by Formula (11):

[] () [][]/ 2 / 2
)

2
(

/

1 1

r

ln 21,

0, othe

1 / lnN N N
tt N t N t

tx tf
Nh

h x
β β= = =

=

≥

 (11)

During the pre-build phase of the source domain, the output is the predicted popu-
lation. In this approach, the main purpose of transfer learning after preprocessing is to
reduce the possibility of negative transfer.

Given the sample with an initial weight vector ()1 1 1
1 , , n mω ω ω += , where 1

iω is ob-
tained from Formula (12):

1

1 , 1, ,

1 , 1, ,
i

i m
m

i m m n
n

ω

 ==
 = + +

 (12)

At the same time, set Pt to satisfy Formula (13).

1

t
t

n m t
ii

P ω
ω+

=

=

 (13)

Figure 4. Schematic of procedure case transfer.

Here, the TradaBoost algorithm is mainly used to realize the transfer, increase the
weight of each training set sample using the weight to weaken the test set data of those
different distributions, and then improve the effect of the model. In each iteration of
training, if the model misclassifies a sample of the source domain, the sample may have
a large gap with the sample of the target domain, so the weight of the sample needs to
be reduced. By multiplying the sample by a weight between 0 and 1, by the effect of the
weight value, in the next iteration, the effect of the sample on the classification model
will be reduced, and after a series of iterations, the weight of the samples in the source
domains that are similar to the target domain or helpful to the classification of the target
domain will be increased, while the weights of other source domains will be reduced.
When the training is complete, the classifier can recognize randomly generated solutions in
the current environment and select those individuals identified as “good” by the classifier
as the initial population. The specific algorithm pseudo code is described in detail in
Algorithm 4.

Algorithm 4 show the main program of the proposed TCD-DMOEA method. During
the transfer process, the target domain DT is the predicted population, and the source
domain DS is the solution obtained in the past environment. These solutions are then
labeled with c(x) : x ∈ DT ∪ DS → y, y ∈ {+1,−1} . For each domain, the non-dominant
solution is labeled +1, and the dominant solution is labeled −1.

Call Learner, according to the combined training data D and the weight distribution Pt

on D and the unlabeled data s, to obtain a classifier ht : X → Y in S; statistics on the error
rate of ht on Dt by Formula (9):

εt =
n+m

∑
i=n+1

ωt
i |ht(xi)− c(xi)|

∑n+m
i=n+1 ωt

i
(9)

Appl. Sci. 2023, 13, 4795 11 of 23

If εt > 0.5 then the algorithm terminates; set up βt = εt/(1− εt), β = 1/
(
1 +
√

2 ln n/N
)
,

sets the new weight vector by Formula (10):

ωt+1
i =

{
ωt

i β|ht(xi)−c(xi)|, i = 1, . . . , m

ωt
i β−|ht(xi)−c(xi)|, i = m + 1, . . . , m + n

(10)

Finally, output the final classifier by Formula (11):

h f (x) =

 1, ∑N
t=[N/2] ln

(
1
βt

)
ht(x) ≥ 1/2∑N

t=[N/2] ∑N
t=[N/2] ln

(
1
βt

)
0, other

(11)

During the pre-build phase of the source domain, the output is the predicted popu-
lation. In this approach, the main purpose of transfer learning after preprocessing is to
reduce the possibility of negative transfer.

Given the sample with an initial weight vector ω1 =
(
ω1

1, . . . , ω1
n+m

)
, where ω1

i is
obtained from Formula (12):

ω1
i =

{
1
m , i = 1, . . . , m

1
n , i = m + 1, . . . , m + n

(12)

At the same time, set Pt to satisfy Formula (13).

Pt =
ωt

∑n+m
i=1 ωt

i
(13)

3.4. Computational Complexity Analysis

This section analyzes the computational complexity of TCD-DMOEA at one iteration.
According to Algorithm 2, the main calculation of TCD-DMOEA comes from the following
aspects. (1) The complexity of the target domain preprocessing process mainly lies in the
use of K-means clustering and first-order difference to predict the non-dominated solution
at the next moment. K-means clustering requires O(Inkm) calculation, where m is the
number of element fields, n is the amount of data, I represents the number of iterations,
and k is the number of clusters. Generally, I, k, and m can be considered as constants, so
the computational complexity can be simplified to: O(n). The first difference requires O(n)
computation. The computational complexity of the target domain preprocessing stage is
O(n). (2) The transfer learning stage uses SVM as the basic classifier, and the SVM classifier
costs O(NS2d) to obtain a strong classifier, where S is the overall size, N is the number of
iterations, and d is the dimension of the decision variable. To sum up, the computational
complexity of TCD-DMOEA in this work is O(NS2d).

4. Experiments
4.1. Test Problems and Performance Indicators

Our experiment was divided into two parts: the first part demonstrated the conver-
gence and distribution uniformity of TCD-DMOEA by comparing it with several popular
dynamic multi-objective algorithms. In the second part, through the comparison with
Tr-DMOEA [28], it was possible to observe a reduction in the running time, effectively
reducing the possibility of negative transfer. The entire experiment was based on MATLAB
R2019b, running in a Windows 10 Pro.

The strategy proposed by the experimental setup was mainly used during the initial-
ization stage of the algorithm. A suite of preprocessing and transfer learning techniques
allowed us to obtain a high-quality population adapted to the current environment, and
evolution to obtain the optimal solution after modification. Theoretically, the target domain
generated by the clustering difference strategy is more similar to the source domain, and
the initial population improved by the transfer learning method is more adaptable to the

Appl. Sci. 2023, 13, 4795 12 of 23

changing environment, so as to obtain a solution closer to the actual DPF. To verify the
effectiveness of the method, this section used 20 test functions and two related metrics to
measure the convergence and uniformity of the algorithm, while using the running time to
evaluate the negative transfer possibility of the algorithm.

The 20 test functions used in this section were from CEC 2018: (1) DF function [41], and
(2) F function [42]. The DF Benchmark Suite contains 14 questions (DF1-DF14) and the F
Benchmark Suite contains six questions (F5–F10). The DF function is a diverse and unbiased
benchmark problem, covering various attributes that represent various real scenes, such
as time-dependent PF/PS geometry, irregular PF shape, disconnection, knee, etc. F5–F8
in F function have nonlinear correlations among decision variables. The PSs of F5–F7 are
1-D curves, and the PSs of F8 are 2-D surfaces. In F9, the environment changes smoothly in
most cases. Sometimes, Pareto sets jump from one region to another. In F10, the geometry
of two consecutive PFs is completely different.

In 20 test benchmarks, the time parameter t was used here and defined as
t = (1/nt) b(τ/τt)c, where τ, nt, and τt represented the maximum number of iterations,
the severity of the change, and the frequency of the change, respectively, as described in
Table 1. Different kinetic parameters were set for the experiment. We set different variation
severities, frequencies of change, and numbers of iterations so that each function could
iterate 20 times, and the entire population size was set to 200, meaning that 200 solutions
could be generated during evolution. In addition, the k value for K-means was set to 5.
This experiment chose RM-MEDA [43] as the SMOEA optimizer of TCD-DMOEA. In this
study, the following metrics were used to evaluate the performance of different algorithms.

Table 1. The dynamic parameters.

Settings Change Severity nt Change Frequency τt Maximum Iteration τ

S1 10 5 100
S2 5 10 200
S3 10 10 200

(1) Inverted generational distance (IGD [44–46]): IGD evaluates the convergence and
diversity of algorithms by measuring the proximity between the real Pareto frontier and
the Pareto frontier obtained by the algorithm, and the definition of the IGD indicator is
calculated by Formula (14), where d is calculated by Formula (15).

IGD(PF∗t, PFt) =
∑v∈PFt∗ d(v, PFt)

|PFt∗|
(14)

d(v, Pt) = minu∈Pt

√√√√ m

∑
j=1

(
f v
j − f u

j

)2
(15)

where PF∗t is the standard POF of the t-moment, it is the POF obtained by the t-moment
algorithm, and d is the Euclidean distance between the individual v on the PF∗t and the
individual closest to v in PFt. It can be seen that the evaluation method of IGD is for each
individual in the standard POF. PFt is used to find the closest point to it in the POF. PFt is
obtained by the algorithm, the Euclidean distance between them is calculated, and then all
the Euclidean distances are summed and the average taken, so IGD can not only evaluate
the proximity between PF∗t and PFt, but also evaluate the distribution of individuals in PFt;
the smaller the IGD value, the better the convergence of the POF obtained by the algorithm,
and the more uniform the distribution.

Appl. Sci. 2023, 13, 4795 13 of 23

The MIGD [42,47] indicator is a variant of IGD and is defined as the average of IGD
values over certain time steps in operation. The MIGD value is calculated by Formula (16):

MIGD =
1
|T|∑t∈T

IGD(t) (16)

where IGD(t) represents the IGD value at time t, T is a set of discrete time points in operation,
and |T| is the cardinality of T.

(2) Maximum coverage (MS [31,48]): MS measures the extent to which the Pareto front
obtained by the algorithm covers the standard Pareto front. The larger the MS, the better
the performance of the algorithm. The MS value is calculated by Formula (17):

MSt =

√√√√ 1
m

m

∑
i=1

[
min

[
PFti, PFti

∗]−max
[
PFti, PFti

∗]
PFti

∗ − PFti
∗

]2

(17)

where PFt
∗ is the standard Pareto frontier of t-moment, and PFt is the POF obtained by the

t-moment algorithm. Where PFti and PFti are the maximum and minimum values of the
i-th target of the POF obtained by the t-moment algorithm, respectively, PFti

∗ and PFti
∗

are the maximum and minimum values of the i-th target of the real Pareto frontier at the
t-moment.

4.2. Performance Comparison with Other Algorithms

In this section, performance comparison experiments are performed. The above
indicators MIGD and MS are used, and some algorithms are compared with the algorithm
proposed in this paper. Firstly, the MIGD values of six algorithms are compared, proving
the proposed algorithm’s effectiveness. These six algorithms include a dynamic multi-
objective optimization algorithm (TCD-DMOEA) that combines clustering difference and
transfer learning, a dynamic multi-objective optimization algorithm (Tr-DMOEA) that
combines only transfer learning methods [28], a dynamic NSGA-II algorithm (DNSGA-II-A,
DNSGA-II-B) [49], PPS [42], and MOEA based on Kalman’s predictions (KF-DMOEA) [50].
A comparison of TCD-DMOEA and Tr-DMOEA was conducted to prove the performance
of our proposed strategy. According to the difference in performance index and running
time, it could be determined that the clustering difference strategy proposed in this paper
can not only maintain good convergence and diversity, but also effectively reduce the
possibility of negative transfer.

Figure 5 plots the IGD values obtained by different algorithms after each change.
These curves show that under 20 different test functions, the curve obtained by the method
was basically at the bottom, and the curve of the method fluctuated less, which meant that
the method is not only better performing, but also more stable.

The statistical results of MIGD and MS values that were run 20 times are shown
in Tables 2 and 3, respectively. Table 2 shows the MIGD values for six algorithms in
three different configurations. Bold words in the table indicate that the algorithm had
the best diversity on this benchmark, and the last column represents the “winner” in this
comparison. It can be seen from Table 2 that TCD-DMOEA obtained 44 of the 60 best results,
accounting for 73.3%. KF-DMOEA achieved five best results, PPS achieved three best
results, and DNSGA-II-A and DNSGA-II-B achieved six and two best results, respectively.
Specifically, TCD-DMOEA performed well at most test functions in all dynamic test setups,
and DNSGA-II-A achieved better convergence than TCD-DMOEA on DF9 and DF12. The
value of PPS was obviously superior to that of other algorithms on DF11.

Table 3 shows the MS values for six comparison algorithms, and it is clear that TCD-
DMOEA obtained 38 out of 60 best results, KF-DMOEA obtained only one best result,
PPS obtained five best results, and Tr-DMOEA obtained nine best results. DNSGA-II-A
and DNSGA-II-B achieved four and three best results, respectively. Specifically, TCD-

Appl. Sci. 2023, 13, 4795 14 of 23

DMOEA performed well at most test functions in all dynamic test setups, with Tr-DMOEA
performing better on F8 and DNSGA-II-B performing better on DF10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

the proposed algorithm’s effectiveness. These six algorithms include a dynamic multi-ob-
jective optimization algorithm (TCD-DMOEA) that combines clustering difference and
transfer learning, a dynamic multi-objective optimization algorithm (Tr-DMOEA) that
combines only transfer learning methods [28], a dynamic NSGA-II algorithm (DNSGA-II-
A, DNSGA-II-B) [49], PPS [42], and MOEA based on Kalman’s predictions (KF-DMOEA)
[50]. A comparison of TCD-DMOEA and Tr-DMOEA was conducted to prove the perfor-
mance of our proposed strategy. According to the difference in performance index and
running time, it could be determined that the clustering difference strategy proposed in
this paper can not only maintain good convergence and diversity, but also effectively re-
duce the possibility of negative transfer.

Figure 5 plots the IGD values obtained by different algorithms after each change.
These curves show that under 20 different test functions, the curve obtained by the
method was basically at the bottom, and the curve of the method fluctuated less, which
meant that the method is not only better performing, but also more stable.

Figure 5. IGD values of six algorithms under S2 configuration.

The statistical results of MIGD and MS values that were run 20 times are shown in
Tables 2 and 3, respectively. Table 2 shows the MIGD values for six algorithms in three
different configurations. Bold words in the table indicate that the algorithm had the best
diversity on this benchmark, and the last column represents the “winner” in this compar-
ison. It can be seen from Table 2 that TCD-DMOEA obtained 44 of the 60 best results,
accounting for 73.3%. KF-DMOEA achieved five best results, PPS achieved three best re-
sults, and DNSGA-II-A and DNSGA-II-B achieved six and two best results, respectively.
Specifically, TCD-DMOEA performed well at most test functions in all dynamic test set-
ups, and DNSGA-II-A achieved better convergence than TCD-DMOEA on DF9 and DF12.
The value of PPS was obviously superior to that of other algorithms on DF11.

Table 3 shows the MS values for six comparison algorithms, and it is clear that TCD-
DMOEA obtained 38 out of 60 best results, KF-DMOEA obtained only one best result, PPS
obtained five best results, and Tr-DMOEA obtained nine best results. DNSGA-II-A and
DNSGA-II-B achieved four and three best results, respectively. Specifically, TCD-DMOEA
performed well at most test functions in all dynamic test setups, with Tr-DMOEA per-
forming better on F8 and DNSGA-II-B performing better on DF10.

The above experimental results show that TCD-DMOEA could obtain a set of solu-
tions with good convergence and diversity for most test problems. However, it did not
perform well enough on some reference functions, such as DF9, DF11, and DF12. TCD-

Figure 5. IGD values of six algorithms under S2 configuration.

The above experimental results show that TCD-DMOEA could obtain a set of solutions
with good convergence and diversity for most test problems. However, it did not perform
well enough on some reference functions, such as DF9, DF11, and DF12. TCD-DMOEA
also had some shortcomings, which may have been due to the large variation in the POS
of these problems, so it was difficult to accurately predict in the target domain processing
stage, and the final output of the population quality was poor.

At the same time, it can be found from Table 2 that except for F8, F9 and F10, TCD-
DMOEA achieved good performance on the F test function set in most cases. These
three test functions were characterized by POS jumps from one region to another, and the
geometry of the two consecutive POFs was completely different. This resulted in a low
degree of similarity between the source domain and the target domain, which ultimately
increased the likelihood of negative transfer.

4.3. Running Speed

The most obvious feature that reduces the possibility of negative transfer is reduced
running time, so the running times of different algorithms are compared and shown in
Table 4. Table 4 shows that the running time of TCD-DMOEA was the shortest among
the six algorithms. This shows that the proposed clustering difference strategy was very
effective. TCD-DMOEA ran much faster than Tr-DMOEA. The important difference is that
Tr-DMOEA mapped the different distributions that the solution obeys at varying moments
to a new potential space through the domain adaptation method, and then found the
solution in the potential space, and the construction of the potential space required a huge
amount of resources. However, TCD-DMOEA improved the similarity between the source
domain and the target domain by preprocessing the population and distinguished the
quality of the population through classifiers, which significantly shortened the running time.
Figure 6 is a histogram of the running time of several other algorithms except Tr-DMOEA,
through which the running time of TCD-DMOEA can be visually compared, and it was
found that the running time of TCD-DMOEA was the shortest, while the running times of
other algorithms were not much different. The above experimental results show that the
proposed TCD-DMOEA method not only improved the running speed of the algorithm,
but also greatly improved the quality of the Pareto optimal solution set, resulting in a better
state of convergence and distribution for the algorithm.

Appl. Sci. 2023, 13, 4795 15 of 23

Table 2. The MIGD values of six comparative algorithms with different dynamic test settings.

Functions Settings DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA Winner

S1 0.12549 0.18466 0.01825 0.79948 0.16762 0.18591 TCD-DMOEA
DF1 S2 0.14103 0.14997 0.02630 1.00778 0.22634 0.20192 TCD-DMOEA

S3 0.06910 0.07078 0.01770 0.34875 0.17491 0.15986 TCD-DMOEA

S1 0.07984 0.11042 0.00577 0.56862 0.1088 0.12259 TCD-DMOEA
DF2 S2 0.09846 0.09856 0.00521 0.55064 0.1808 0.14677 TCD-DMOEA

S3 0.04331 0.05206 0.00519 0.33104 0.1315 0.10525 TCD-DMOEA

S1 0.36036 0.31444 0.06176 0.46092 0.315 0.38322 TCD-DMOEA
DF3 S2 0.31344 0.30096 0.22758 0.56408 0.4117 0.36154 TCD-DMOEA

S3 0.34277 0.35370 0.05804 0.28151 0.3406 0.37636 TCD-DMOEA

S1 1.33552 1.29683 0.92736 4.09048 1.5689 1.20196 TCD-DMOEA
DF4 S2 0.85006 0.85114 1.45397 1.78053 1.8344 1.98927 DNSGA-II-B

S3 1.29904 1.28637 1.03469 2.13623 1.5869 1.98173 TCD-DMOEA

S1 0.09852 0.18511 0.02306 0.36546 2.3146 1.35092 TCD-DMOEA
DF5 S2 1.67522 1.68125 0.02317 2.00282 2.6205 3.26962 TCD-DMOEA

S3 0.05721 0.07235 0.02274 0.25696 2.4713 3.30728 TCD-DMOEA

S1 5.50747 7.96408 0.46630 11.8778 5.5982 6.26992 TCD-DMOEA
DF6 S2 7.32493 8.29557 0.16436 12.4986 7.2692 8.57652 TCD-DMOEA

S3 2.81471 3.45856 0.21433 5.66312 6.7379 6.55881 TCD-DMOEA

S1 4.94594 8.21914 0.51930 10.0823 8.8403 7.45962 TCD-DMOEA
DF7 S2 7.43732 7.84210 0.35659 11.3676 4.2387 8.67889 TCD-DMOEA

S3 2.19079 3.20643 1.13082 5.96671 4.0323 8.9454 TCD-DMOEA

S1 0.83967 0.88308 0.06331 0.87168 0.78817 1.10952 TCD-DMOEA
DF8 S2 0.86939 0.85910 0.29914 0.85785 0.7993 1.41749 TCD-DMOEA

S3 0.88772 0.89634 0.05962 0.86689 0.8026 1.64865 TCD-DMOEA

S1 1.44013 1.48968 2.03433 1.94736 2.5958 2.81085 DNSGA-II-A
DF9 S2 1.26994 1.27597 1.67976 2.24801 2.7079 3.17112 DNSGA-II-A

S3 1.59835 1.60138 2.33938 1.66393 2.3714 3.28462 DNSGA-II-A

Appl. Sci. 2023, 13, 4795 16 of 23

Table 2. Cont.

Functions Settings DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA Winner

S1 0.14762 0.14492 0.05083 0.16937 0.14870 0.23669 TCD-DMOEA
DF10 S2 0.15983 0.14948 0.05854 0.15284 0.1493 0.24198 TCD-DMOEA

S3 0.13147 0.12085 0.05061 0.12691 0.1194 0.21441 TCD-DMOEA

S1 0.40398 0.40980 0.19190 0.12101 0.38975 0.26247 PPS
DF11 S2 0.47354 0.47851 0.32070 0.20203 0.4178 0.19754 PPS

S3 0.39052 0.39487 0.20528 0.11272 0.3331 0.1851 PPS

S1 0.59895 0.64389 1.15032 1.18370 1.19331 0.91213 DNSGA-II-A
DF12 S2 0.64129 0.65550 1.14949 1.18769 1.1923 1.25910 DNSGA-II-A

S3 0.61309 0.68070 1.14954 1.18368 1.19 0.989 DNSGA-II-A

S1 0.58572 0.66171 0.17489 0.24456 3.62620 3.37829 TCD-DMOEA
DF13 S2 2.07238 2.07951 0.11530 1.78561 2.8032 3.55246 TCD-DMOEA

S3 0.53317 0.55064 0.18022 0.25370 2.7312 1.4413 TCD-DMOEA

S1 0.17673 0.61880 0.02471 0.18437 1.6727 2.29643 TCD-DMOEA
DF14 S2 2.42269 2.37278 0.03635 1.35517 1.8333 2.34678 TCD-DMOEA

S3 0.15027 0.59957 0.02626 0.08840 1.8257 1.90653 TCD-DMOEA

S1 1.79444 2.36932 0.19901 5.95315 2.8026 4.90052 TCD-DMOEA
F5 S2 1.78814 1.58863 1.04138 14.2358 3.6919 5.24772 TCD-DMOEA

S3 0.85822 1.01156 0.11964 2.79008 2.6592 6.85162 TCD-DMOEA

S1 1.16622 1.24886 0.33671 2.69581 1.2349 4.21603 TCD-DMOEA
F6 S2 0.82511 0.84377 0.03847 4.49749 2.4094 3.94881 TCD-DMOEA

S3 0.86284 0.83938 0.13659 2.26413 1.3095 1.32448 TCD-DMOEA

S1 1.69802 1.87903 0.07907 4.18370 1.4295 3.26674 TCD-DMOEA
F7 S2 1.53415 1.57008 0.06860 10.9552 3.1593 1.94158 TCD-DMOEA

S3 0.90880 0.90245 0.05635 1.95524 1.327 1.6357 TCD-DMOEA

S1 0.61626 0.58686 0.24926 0.89452 0.74194 0.23932 KF-DMOEA
F8 S2 0.57003 0.57302 0.31896 0.61123 1.0615 0.32661 TCD-DMOEA

S3 0.49723 0.51284 0.29669 0.30842 0.7875 0.21715 KF-DMOEA

Appl. Sci. 2023, 13, 4795 17 of 23

Table 2. Cont.

Functions Settings DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA Winner

S1 2.16322 3.43708 0.89799 16.9765 1.85947 0.72251 KF-DMOEA
F9 S2 2.79212 2.79170 0.24658 26.6893 2.6079 1.70666 TCD-DMOEA

S3 0.90504 1.72920 1.36171 8.46293 1.4721 0.82095 KF-DMOEA

S1 2.80464 3.23187 4.14096 10.3253 2.04876 0.69335 KF-DMOEA
F10 S2 1.89147 2.04139 0.17199 10.3688 2.7845 3.83634 TCD-DMOEA

S3 2.58958 2.52480 4.10541 6.39496 2.7327 8.66578 DNSGA-II-B

Table 3. The MS values of six comparative algorithms with different dynamic test settings.

Functions Settings DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA Winner

S1 0.87298 0.83399 0.99596 0.65263 0.9203 0.7995 TCD-DMOEA
DF1 S2 0.87466 0.87180 0.99608 0.64542 0.84163 0.7807 TCD-DMOEA

S3 0.92019 0.92503 0.99328 0.85485 0.88981 0.8143 TCD-DMOEA

S1 0.91976 0.90297 0.99738 0.52831 0.9473 0.8202 TCD-DMOEA
DF2 S2 0.91425 0.91246 0.99786 0.71981 0.91661 0.8029 TCD-DMOEA

S3 0.94907 0.94420 0.98863 0.74677 0.93941 0.833 TCD-DMOEA

S1 0.34843 0.38187 0.75188 0.44420 0.4701 0.23 TCD-DMOEA
DF3 S2 0.54510 0.54590 0.54075 0.61212 0.44961 0.2828 PPS

S3 0.31963 0.30727 0.94657 0.42035 0.61989 0.2195 TCD-DMOEA

S1 0.23576 0.24019 0.37760 0.29071 0.4383 0.2705 Tr-DMOEA
DF4 S2 0.33726 0.33918 0.28217 0.37772 0.24422 0.2985 PPS

S3 0.23191 0.23489 0.56408 0.28755 0.31761 0.308 TCD-DMOEA

S1 0.99550 0.99626 0.99991 0.99233 1 0.9426 Tr-DMOEA
DF5 S2 0.99769 0.99685 0.99988 0.99959 0.99865 0.956 TCD-DMOEA

S3 0.99790 0.99836 0.99993 0.99998 0.99900 0.9303 PPS

S1 0.89098 0.94927 0.99909 0.931395 1 0.7099 Tr-DMOEA
DF6 S2 0.99325 0.99724 0.99999 0.898478 0.632845 0.8682 TCD-DMOEA

S3 0.96554 0.98084 0.99962 0.966298 0.61565 0.75 TCD-DMOEA

Appl. Sci. 2023, 13, 4795 18 of 23

Table 3. Cont.

Functions Settings DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA Winner

S1 0.9 0.93785 0.95660 0.920775 1 0.7155 Tr-DMOEA
DF7 S2 1 1 0.82791 0.9 0.691549 0.8441 DNSGA-II-A

S3 0.92498 0.94743 1 0.86527 0.66624 0.7515 TCD-DMOEA

S1 0.36573 0.35096 0.86352 0.37147 0.4501 0.3004 TCD-DMOEA
DF8 S2 0.35244 0.34334 0.63800 0.37548 0.71035 0.6078 Tr-DMOEA

S3 0.32656 0.33039 0.92433 0.32542 0.65714 0.4329 TCD-DMOEA

S1 0.85204 0.84753 0.35128 0.763924 0.8068 0.6775 DNSGA-II-A
DF9 S2 0.91461 0.92985 0.69664 0.92934 0.74104 0.7588 PPS

S3 0.76468 0.78770 0.83142 0.80924 0.64614 0.7012 TCD-DMOEA

S1 0.98810 1 0.99999 0.99426 0.9998 0.9502 DNSGA-II-B
DF10 S2 0.99999 1 0.99999 0.99559 0.99938 0.9927 DNSGA-II-B

S3 0.99151 1 0.99999 0.99842 0.99962 0.9125 DNSGA-II-B

S1 0.71851 0.71067 0.94698 0.94667 0.9709 0.9008 TCD-DMOEA
DF11 S2 0.69461 0.69353 0.86000 0.916407 0.9762 0.9891 KF-DMOEA

S3 0.72455 0.72170 0.9438 0.96196 0.99893 0.9826 Tr-DMOEA

S1 0.49625 0.47694 0.00105 0.06489 0.0045 0.3006 DNSGA-II-A
DF12 S2 0.53252 0.52852 0.00212 0.00185 0.00089 0.106 DNSGA-II-A

S3 0.49016 0.44808 0.60066 0.00174 0.00568 0.1009 TCD-DMOEA

S1 0.99324 0.99242 0.99794 0.995636 0.995 0.9087 TCD-DMOEA
DF13 S2 0.99485 0.99080 0.99706 0.99817 0.99721 0.9479 PPS

S3 0.99406 0.99434 0.99781 0.99708 0.99611 0.9361 TCD-DMOEA

S1 0.92624 0.78856 0.94998 0.92584 0.927 0.7855 TCD-DMOEA
DF14 S2 0.76854 0.75249 0.94998 0.82129 0.90391 0.826 TCD-DMOEA

S3 0.92649 0.81270 0.94996 0.93450 0.91622 0.772 TCD-DMOEA

S1 0.38698 0.47343 0.94583 0.34478 0.6768 0.6133 TCD-DMOEA
F5 S2 0.45555 0.48011 0.86738 0.45613 0.67023 0.7623 TCD-DMOEA

S3 0.57974 0.58742 0.94356 0.58405 0.59982 0.6696 TCD-DMOEA

Appl. Sci. 2023, 13, 4795 19 of 23

Table 3. Cont.

Functions Settings DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA Winner

S1 0.52946 0.50249 0.96014 0.46420 0.6917 0.5548 TCD-DMOEA
F6 S2 0.61363 0.58633 0.96502 0.56726 0.67553 0.6745 TCD-DMOEA

S3 0.56928 0.59685 0.97848 0.66460 0.59692 0.4971 TCD-DMOEA

S1 0.49083 0.50185 0.97899 0.558975 0.6482 0.5175 TCD-DMOEA
F7 S2 0.53120 0.57648 0.97198 0.46678 0.64896 0.7871 TCD-DMOEA

S3 0.54482 0.60665 0.98071 0.73543 0.59342 0.5414 TCD-DMOEA

S1 0.99865 0.99941 0.99998 0.99926 1 0.9871 Tr-DMOEA
F8 S2 0.99977 0.99991 0.99998 0.99977 1 0.998 Tr-DMOEA

S3 0.99908 0.99993 0.99997 0.99997 1 0.9835 Tr-DMOEA

S1 0.44287 0.33825 0.89925 0.29784 0.6831 0.5528 TCD-DMOEA
F9 S2 0.43699 0.333972041 0.96078 0.26047 0.58884 0.6172 TCD-DMOEA

S3 0.52120 0.42007 0.90454 0.40561 0.64952 0.5602 TCD-DMOEA

S1 0.65458 0.68298 0.98527 0.48178 0.6699 0.5614 TCD-DMOEA
F10 S2 0.52382 0.46490 0.95732 0.50696 0.69461 0.7753 TCD-DMOEA

S3 0.70696 0.73979 0.99873 0.50912 0.77093 0.6982 TCD-DMOEA

Appl. Sci. 2023, 13, 4795 20 of 23

Table 4. The average running time (seconds) of the six algorithms under the S2 configuration.

Functions DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA

DF1 23.0258 27.0289 10.0028 30.1587 461.5591 30.4620
DF2 29.8561 28.4196 9.8974 29.7459 363.2698 29.4512
DF3 39.274 30.4785 10.0525 18.4148 459.2658 27.1253
DF4 48.1478 30.0753 9.7598 17.4654 165.5802 23.3695
DF5 29.4796 31.7592 8.8895 30.6544 399.0036 32.4890
DF6 31.1548 29.2971 8.9536 24.8569 524.2016 21.0256
DF7 43.4574 28.1490 9.2587 25.2584 378.0154 23.1016
DF8 30.4765 29.0253 8.1258 28.5298 425.0545 27.4694
DF9 30.4654 36.4695 8.5891 20.1489 484.0154 25.9726

DF10 24.8989 24.6497 8.1856 89.2103 866.5962 97.6546
DF11 21.4890 25.0245 9.9782 81.0365 890.4168 91.6469
DF12 26.5982 21.4694 10.0159 49.2016 970.1460 47.4102
DF13 19.0023 21.7592 7.9987 85.4160 1093.0001 98.7912
DF14 18.8898 19.1654 12.0238 85.0489 908.4590 96.4694

F5 132.0001 32.0795 13.0173 48.2203 513.4169 59.8591
F6 63.8994 31.5911 13.5924 50.1605 545.2416 60.4991
F7 54.6565 57.2259 12.3654 59.2056 571.1560 61.1697
F8 32.7879 56.7411 13.2485 76.8569 1269.2036 86.7952
F9 58.9891 39.2899 12.2498 52.5892 970.2596 63.7961

F10 57.4590 29.0595 11.1475 49.0412 597.5269 52.5610

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

running times of other algorithms were not much different. The above experimental re-
sults show that the proposed TCD-DMOEA method not only improved the running speed
of the algorithm, but also greatly improved the quality of the Pareto optimal solution set,
resulting in a better state of convergence and distribution for the algorithm.

Table 4. The average running time (seconds) of the six algorithms under the S2 configuration.

Functions DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS Tr-DMOEA KF-DMOEA
DF1 23.0258 27.0289 10.0028 30.1587 461.5591 30.4620
DF2 29.8561 28.4196 9.8974 29.7459 363.2698 29.4512
DF3 39.274 30.4785 10.0525 18.4148 459.2658 27.1253
DF4 48.1478 30.0753 9.7598 17.4654 165.5802 23.3695
DF5 29.4796 31.7592 8.8895 30.6544 399.0036 32.4890
DF6 31.1548 29.2971 8.9536 24.8569 524.2016 21.0256
DF7 43.4574 28.1490 9.2587 25.2584 378.0154 23.1016
DF8 30.4765 29.0253 8.1258 28.5298 425.0545 27.4694
DF9 30.4654 36.4695 8.5891 20.1489 484.0154 25.9726

DF10 24.8989 24.6497 8.1856 89.2103 866.5962 97.6546
DF11 21.4890 25.0245 9.9782 81.0365 890.4168 91.6469
DF12 26.5982 21.4694 10.0159 49.2016 970.1460 47.4102
DF13 19.0023 21.7592 7.9987 85.4160 1093.0001 98.7912
DF14 18.8898 19.1654 12.0238 85.0489 908.4590 96.4694

F5 132.0001 32.0795 13.0173 48.2203 513.4169 59.8591
F6 63.8994 31.5911 13.5924 50.1605 545.2416 60.4991
F7 54.6565 57.2259 12.3654 59.2056 571.1560 61.1697
F8 32.7879 56.7411 13.2485 76.8569 1269.2036 86.7952
F9 58.9891 39.2899 12.2498 52.5892 970.2596 63.7961
F10 57.4590 29.0595 11.1475 49.0412 597.5269 52.5610

Figure 6. Average running time (s) obtained by comparing algorithms under the configuration of tn
= 5, tτ = 10.

5. Conclusions
In recent years, transfer learning has been proven to be one of the effective means to

solve dynamic multi-objective optimization problems. However, the efficiency of transfer
learning (also known as negative transfer) decreases significantly when the target domain
is poorly similar to the source domain, or when the transfer learning method is incorrect.
Negative transfer forces a search for solutions in the wrong direction, wasting a lot of

0
20
40
60
80

100
120
140

Time

DNSGA-II-A DNSGA-II-B TCD-DMOEA PPS KF-DMOEA

Figure 6. Average running time (s) obtained by comparing algorithms under the configuration of
nt = 5, τt = 10.

5. Conclusions

In recent years, transfer learning has been proven to be one of the effective means to
solve dynamic multi-objective optimization problems. However, the efficiency of transfer
learning (also known as negative transfer) decreases significantly when the target domain
is poorly similar to the source domain, or when the transfer learning method is incorrect.
Negative transfer forces a search for solutions in the wrong direction, wasting a lot of
computing resources. As a result, the running speed becomes slower and the convergence
becomes worse.

In this article, a transfer learning method based on a cluster difference dynamic multi-
objective optimization algorithm, TCD-DMOEA, was proposed. The TCD-DMOEA applies
a clustering difference strategy to increase the similarity between the target domain and the
source domain to reduce the likelihood of negative transfer, and the TradaBoost algorithm
to classify good-quality populations. Therefore, when the environment changes drastically,
the proposed method can improve the quality of the population in the drastically changing

Appl. Sci. 2023, 13, 4795 21 of 23

environment, thereby improving the convergence and diversity of the dynamic multi-
objective algorithm, and at the same time improve the running speed of the algorithm.

The above experimental results fully demonstrate that the algorithm significantly
improves the performance of dynamic optimization. Compared with existing transfer
learning-based algorithms, the proposed algorithms are tens or even hundreds of times
faster at finding POS.

Although the proposed TCD-DMOEA can generate a high-quality initial population,
the reliability of the acquired individuals becomes very poor. When the environmental
changes are more complex, the accuracy of the cluster-based difference strategy will de-
crease, and due to the added classifier, the computational complexity of the algorithm
will increase. Therefore, in future research work, we will explore the following promising
directions. First, it would be beneficial for our static evolution process to try to combine
multiple response mechanisms to cope with environmental changes, rather than employing
a single strategy. Second, we can try to use classifiers with lower complexity to speed up
the optimization process. Additionally, it will be worthwhile to test TCD-DMOEA on a
wider range of problems with different types of variation.

Author Contributions: Conceptualization, F.Y.; methodology, F.Y.; software, F.Y.; validation, F.Y.;
formal analysis, F.Y.; investigation, F.Y.; resources, F.Y.; data curation, F.Y.; writing—original draft
preparation, F.Y.; writing—review and editing, F.Y. and G.-G.W.; visualization, F.Y.; supervision,
G.-G.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Key R&D Program of China (Grant No. 2022YFB3305300)
and the Fundamental Research Funds for the Central Universities.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to the anonymous reviewers for their valuable sugges-
tions during the review process.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Parashar, S.; Senthilnath, J.; Yang, X.-S. A novel bat algorithm fuzzy classifier approach for classification problems. Int. J. Artif.

Intell. Soft Comput. 2017, 6, 108–128. [CrossRef]
2. Rama, B.; Rosario, G.M. Inventory model with penalty cost and shortage cost using fuzzy numbers. Int. J. Artif. Intell. Soft Comput.

2019, 7, 59–85. [CrossRef]
3. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.

Eng. 2021, 159, 107489. [CrossRef]
4. Gao, D.; Wang, G.-G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection

mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [CrossRef]
5. Wang, Z.; Ye, K.; Jiang, M.; Yao, J.; Xiong, N.N.; Yen, G.G. Solving hybrid charging strategy electric vehicle based dynamic routing

problem via evolutionary multi-objective optimization. Swarm Evol. Comput. 2022, 68, 100975. [CrossRef]
6. Qiao, J.; Zhang, W. Dynamic multi-objective optimization control for wastewater treatment process. Neural Comput. Applications

2018, 29, 1261–1271. [CrossRef]
7. Yang, C.; Ding, J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process.

J. Intell. Manuf. 2019, 30, 2701–2713. [CrossRef]
8. Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A.; Vicidomini, M. Sustainable energy design of cruise ships through dynamic

simulations: Multi-objective optimization for waste heat recovery. Energy Convers. Manag. 2020, 221, 113166. [CrossRef]
9. Wang, G.-G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High performance computing for cyber physical social systems by using

evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. 2020, 8, 20–30. [CrossRef]
10. Wang, G.-G.; Gao, D.; Pedrycz, W. Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential

evolution algorithm. IEEE Trans. Ind. Inform. 2022, 18, 8519–8528. [CrossRef]
11. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern. 2019, 49,

542–555. [CrossRef] [PubMed]

https://doi.org/10.1504/IJAISC.2017.084579
https://doi.org/10.1504/IJAISC.2019.105002
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1109/TFUZZ.2020.3003506
https://doi.org/10.1016/j.swevo.2021.100975
https://doi.org/10.1007/s00521-016-2642-8
https://doi.org/10.1007/s10845-017-1319-1
https://doi.org/10.1016/j.enconman.2020.113166
https://doi.org/10.1109/TETC.2017.2703784
https://doi.org/10.1109/TII.2022.3165636
https://doi.org/10.1109/TCYB.2017.2780274
https://www.ncbi.nlm.nih.gov/pubmed/29990274

Appl. Sci. 2023, 13, 4795 22 of 23

12. Yi, J.-H.; Xing, L.-N.; Wang, G.-G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of crossover operators in NSGA-III for
large-scale optimization problems. Inf. Sci. 2020, 509, 470–487. [CrossRef]

13. Cruz, C.; González, J.R.; Pelta, D.A. Optimization in dynamic environments: A survey on problems, methods and measures. Soft
Comput. 2011, 15, 1427–1448. [CrossRef]

14. Zheng, R.-Z.; Zhang, Y.; Yang, K. A transfer learning-based particle swarm optimization algorithm for travelling salesman
problem. J. Comput. Des. Eng. 2022, 9, 933–948. [CrossRef]

15. Xu, B.; Zhang, Y.; Gong, D.; Guo, Y.; Rong, M. Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic
multi-objective optimization. IEEE ACM Trans. Comput. Biol. Bioinform. 2017, 15, 1877–1890. [CrossRef] [PubMed]

16. Zhang, K.; Chen, M.; Xu, X.; Yen, G.G. Multi-objective evolution strategy for multimodal multi-objective optimization. Appl. Soft
Comput. 2021, 101, 107004. [CrossRef]

17. Liu, Q.; Zou, J.; Yang, S.; Zheng, J. A multiobjective evolutionary algorithm based on decision variable classification for
many-objective optimization. Swarm Evol. Comput. 2022, 73, 101108. [CrossRef]

18. Liang, Z.; Wu, T.; Ma, X.; Zhu, Z.; Yang, S. A dynamic multiobjective evolutionary algorithm based on decision variable
classification. IEEE Trans. Cybern. 2020, 52, 1602–1615. [CrossRef]

19. Chen, Q.; Ding, J.; Yang, S.; Chai, T. A novel evolutionary algorithm for dynamic constrained multiobjective optimization
problems. IEEE Trans. Evol. Comput. 2019, 24, 792–806. [CrossRef]

20. Yu, Q.; Lin, Q.; Zhu, Z.; Wong, K.-C.; Coello, C.A.C. A dynamic multi-objective evolutionary algorithm based on polynomial
regression and adaptive clustering. Swarm Evol. Comput. 2022, 71, 101075. [CrossRef]

21. Zou, J.; Li, Q.; Yang, S.; Bai, H.; Zheng, J. A prediction strategy based on center points and knee points for evolutionary dynamic
multi-objective optimization. Appl. Soft Comput. 2017, 61, 806–818. [CrossRef]

22. Huan-Tong, G.; Shan-Sheng, Z.; Zhe, C.; Wei-Min, H. Decomposition-based predictive dynamic multi-objective particle swarm
optimization algorithm. Control Decis. 2019, 34, 1307–1318.

23. Wang, F.; Li, Y.; Liao, F.; Yan, H. An ensemble learning based prediction strategy for dynamic multi-objective optimization. Appl.
Soft Comput. 2020, 96, 106592. [CrossRef]

24. Rong, M.; Gong, D.; Pedrycz, W.; Wang, L. A multimodel prediction method for dynamic multiobjective evolutionary optimization.
IEEE Trans. Evol. Comput. 2019, 24, 290–304. [CrossRef]

25. Zheng, J.; Zhou, Y.; Zou, J.; Yang, S.; Ou, J.; Hu, Y. A prediction strategy based on decision variable analysis for dynamic
multi-objective optimization. Swarm Evol. Comput. 2021, 60, 100786. [CrossRef]

26. Ma, X.; Yang, J.; Sun, H.; Hu, Z.; Wei, L. Feature information prediction algorithm for dynamic multi-objective optimization
problems. Eur. J. Oper. Res. 2021, 295, 965–981. [CrossRef]

27. Jiang, M.; Qiu, L.; Huang, Z.; Yen, G.G. Dynamic multi-objective estimation of distribution algorithm based on domain adaptation
and nonparametric estimation. Inf. Sci. 2018, 435, 203–223. [CrossRef]

28. Jiang, M.; Huang, Z.; Qiu, L.; Huang, W.; Yen, G.G. Transfer learning-based dynamic multiobjective optimization algorithms.
IEEE Trans. Evol. Comput. 2017, 22, 501–514. [CrossRef]

29. Jiang, M.; Wang, Z.; Qiu, L.; Guo, S.; Gao, X.; Tan, K.C. A fast dynamic evolutionary multiobjective algorithm via manifold
transfer learning. IEEE Trans. Cybern. 2020, 51, 3417–3428. [CrossRef]

30. Liu, Z.; Wang, H. Improved population prediction strategy for dynamic multi-objective optimization algorithms using transfer
learning. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021;
pp. 103–110.

31. Jiang, M.; Wang, Z.; Guo, S.; Gao, X.; Tan, K.C. Individual-based transfer learning for dynamic multiobjective optimization. IEEE
Trans. Cybern. 2020, 51, 4968–4981. [CrossRef]

32. Fan, X.; Li, K.; Tan, K.C. Surrogate assisted evolutionary algorithm based on transfer learning for dynamic expensive multi-
objective optimisation problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK,
19–24 July 2020; pp. 1–8.

33. Hu, Y.; Zheng, J.; Zou, J.; Jiang, S.; Yang, S. Dynamic multi-objective optimization algorithm based decomposition and preference.
Inf. Sci. 2021, 571, 175–190. [CrossRef]

34. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
35. Wang, Z.; Dai, Z.; Póczos, B.; Carbonell, J. Characterizing and avoiding negative transfer. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11293–11302.
36. Yao, Y.; Doretto, G. Boosting for transfer learning with multiple sources. In Proceedings of the 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1855–1862.
37. Farina, M.; Deb, K.; Amato, P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE

Trans. Evol. Comput. 2004, 8, 425–442. [CrossRef]
38. Emmerich, M.T.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput.

2018, 17, 585–609. [CrossRef]
39. Rong, M.; Gong, D.; Zhang, Y.; Jin, Y.; Pedrycz, W. Multidirectional prediction approach for dynamic multiobjective optimization

problems. IEEE Trans. Cybern. 2018, 49, 3362–3374. [CrossRef]
40. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans.

Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

https://doi.org/10.1016/j.ins.2018.10.005
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.1093/jcde/qwac039
https://doi.org/10.1109/TCBB.2017.2652453
https://www.ncbi.nlm.nih.gov/pubmed/28092573
https://doi.org/10.1016/j.asoc.2020.107004
https://doi.org/10.1016/j.swevo.2022.101108
https://doi.org/10.1109/TCYB.2020.2986600
https://doi.org/10.1109/TEVC.2019.2958075
https://doi.org/10.1016/j.swevo.2022.101075
https://doi.org/10.1016/j.asoc.2017.08.004
https://doi.org/10.1016/j.asoc.2020.106592
https://doi.org/10.1109/TEVC.2019.2925358
https://doi.org/10.1016/j.swevo.2020.100786
https://doi.org/10.1016/j.ejor.2021.01.028
https://doi.org/10.1016/j.ins.2017.12.058
https://doi.org/10.1109/TEVC.2017.2771451
https://doi.org/10.1109/TCYB.2020.2989465
https://doi.org/10.1109/TCYB.2020.3017049
https://doi.org/10.1016/j.ins.2021.04.055
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1109/TEVC.2004.831456
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1109/TCYB.2018.2842158
https://doi.org/10.1109/TII.2018.2822680

Appl. Sci. 2023, 13, 4795 23 of 23

41. Jiang, S.; Yang, S.; Yao, X.; Tan, K.C.; Kaiser, M.; Krasnogor, N. Benchmark Functions for the CEC’2018 Competition on Dynamic
Multiobjective Optimization; Newcastle University: Callaghan, Australia, 2018.

42. Zhou, A.; Jin, Y.; Zhang, Q. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans.
Cybern. 2013, 44, 40–53. [CrossRef]

43. Zhang, Q.; Zhou, A.; Jin, Y. RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans.
Evol. Comput. 2008, 12, 41–63. [CrossRef]

44. Van Veldhuizen, D.A.; Lamont, G.B. On measuring multiobjective evolutionary algorithm performance. In Proceedings of the
2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA, 16–19 July 2000; pp. 204–211.

45. Ruan, G.; Yu, G.; Zheng, J.; Zou, J.; Yang, S. The effect of diversity maintenance on prediction in dynamic multi-objective
optimization. Appl. Soft Comput. 2017, 58, 631–647. [CrossRef]

46. Long, Q.; Li, G.; Jiang, L. A novel solver for multi-objective optimization: Dynamic non-dominated sorting genetic algorithm
(DNSGA). Soft Comput. 2022, 26, 725–747. [CrossRef]

47. Liu, M.; Liu, Y. A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity
introduction. In Proceedings of the 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016; pp. 235–240.

48. Goh, C.-K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2008, 13, 103–127.

49. Deb, K.; Rao, N.U.B.; Karthik, S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case
study on hydro-thermal power scheduling. In Proceedings of the Evolutionary Multi-Criterion Optimization: 4th International
Conference, EMO 2007, Matsushima, Japan, 5–8 March 2007; pp. 803–817.

50. Muruganantham, A.; Tan, K.C.; Vadakkepat, P. Evolutionary dynamic multiobjective optimization via Kalman filter prediction.
IEEE Trans. Cybern. 2015, 46, 2862–2873. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCYB.2013.2245892
https://doi.org/10.1109/TEVC.2007.894202
https://doi.org/10.1016/j.asoc.2017.05.008
https://doi.org/10.1007/s00500-021-06223-0
https://doi.org/10.1109/TCYB.2015.2490738
https://www.ncbi.nlm.nih.gov/pubmed/26731782

	Introduction
	Background
	Dynamic Multi-Objective Optimization Problems
	TradaBoost

	Proposed TCD-DMOEA
	Overall Framework
	Processing of Target Domain
	Transfer Learning
	Computational Complexity Analysis

	Experiments
	Test Problems and Performance Indicators
	Performance Comparison with Other Algorithms
	Running Speed

	Conclusions
	References

